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ABSTRACT Supervisory control for discrete event systems that is widely studied in the literature to tackle
the Petri net model’s deadlock occurrence of flexible manufacturing systems. A supervisory structure con-
structed using control places imposed restrictions on the concurrent operation in the systems, which degrade
the supervisor’s efficiency. This study proposed a new method to construct a supervisory structure using
combine control places and control transitions to ensure flexible manufacturing systems’ smooth operation.
Place-Transition controller is designed for each concurrent process of the systems. Three algorithms are
proposed in this method. The algorithm 1 computes the loop markings at each process of the Petri net
model. Algorithm 2 is used to sort the deadlock markings based on the concurrent processes of the Petri
net model. The Transition-Place controller and Place-Transition controller are designed using algorithm 3.
Transition-Place controller creates extra states in the reachability graph, which is called dump markings.
Place-Transition controller projects the deadlock markings to the loop markings via dump markings. The
number of states created by the Transition-Place controller depends on the number of concurrent states in the
Petri net model. The final supervisory structure controls the deadlock occurrence of flexible manufacturing
systems with zero restrictions of systems operation. This proposed method is efficient as it retains all the
states generated in the controlled Petri net model.

INDEX TERMS Deadlock, Petri nets, flexible manufacturing systems, supervisory control, transition
control.

I. INTRODUCTION
Automated controlled for discrete event systems (DESs) are
widely used in flexible manufacturing systems (FMSs) due to
their applicability in controlling and boosting processed prod-
uct growth. Its flexibility makes the systems to be adjusted
to produce the desire specifications based on the needs.
Although, deadlocks occurrence is the persistence problem
that degrades the benefits derives from FMSs, and needs
to be tackled. Several supervisory controlled methods for
DESs are proposed in the literature to addressed the deadlock
occurrence in FMSs.

A Petri net is a mathematical tool that can best describe
FMSs properties, i.e., concurrency, synchronization, and
conflict. Two approaches exist to analyze the Petri net
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model (PNM) for FMSs: (i) structural analysis and (ii) reach-
ability graph analysis. Reachability graph analysis requires
the full or partial computations of reachable markings. Struc-
tural analysis usually utilizes the PNM’s structural prop-
erties such as siphon, resource transition circuit (RTC),
place/transition (P/T) invariants to determine the potential
deadlock markings and controlled them. Supervisor design
using a reachability graph provides optimal solutions, while
in most cases, the supervisory control design using structural
analysis provides suboptimal solutions. Because, in the struc-
tural analysis, it is challenging to ensure all the states in the
system. The supervisory control for discrete event systems
can be further categorized into two approaches: (i) use of
control places and (ii) use of control transitions.

Control places are used in the works of [1]–[17], [35], [36]
to enforce certain constraints that satisfied a specified set of
instructions, to restrict the firing of transitions that lead the
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systems to deadlock zone. Ghaffari developed the theory of
regions in [19] for optimal supervisors using control places to
realize the desired behavior. Too many inequality constraints
are generated to ensure a permissive supervisor, which com-
plicates the supervisory structure’s computation. An iterative
synthesis supervisory control for the PNM of FMSs is devel-
oped in [20]. The method classified the reachability markings
into two regions: live zone (LZ) and deadlock zone (DZ).
The obtained supervisor cannot provide an Optimal solution
for all classes of the PNM. Piroddi et al., [21] developed
a new method to computes supervisor by combining the
siphon techniques and deadlock markings of the PNM for
FMSs. A maximally permissive supervisor is obtained in the
developed method. However, the computational complexity
increases exponentially with the size of the PNM. An iter-
ative mixed integer programming based deadlock detection
technique is developed in [22] to enumerate minimal siphons
without complete siphons enumerations. The method pro-
vides the liveness of the PNM when all the control places are
added but cannot ensure the optimal solution of the controlled
PNM. In all the methods review [1]–[4], [15]–[17], [19]–
[22] have used the control places in the supervisor, which
characterized with high restriction on reachable states of the
PNM. This implies that too much use of control places in the
supervisor may lose concurrent systems properties for FMSs.
Our proposed method aims to relax the Petri net model’s
restriction of reachable states by construction a supervisor
using control places and control transitions to maintain the
concurrent operation by the processes in the FMSs.

Tomaintain all the reachable states generated by the uncon-
trolled PNM in the controlled nets, a supervisor using control
transition is introduced in the works of [23]. The methods
compute the deadlock markings such that a transition con-
troller is designed for each deadlock marking of the PNM.
The challenge faced by the method is where the deadlock
markings are returned in the live zone and the nature of
the reachability graph of the control nets. The works of
[24] modified the method in [23] to reduce the structural
complexity of the supervisor for FMSs using transition con-
troller. Deadlocks states are categorized into groups based
on their common mark places, such that for each group,
a single transition controller needs to control the deadlocks
marking in that group. In that case, not all deadlock states are
controllable after adding the control transitions, necessitating
a recomputation of the reachability graph for the second
time to determine livelock markings in the partial control
PNM. This iterative process is continued till all the deadlock
and livelock markings are controllable. The methods suffer
from computational complexities due to several computa-
tions of reachable markings of the PNM. Chao et al., [25]
developed a supervisor of the PNM for FMS in combined
control places and control transitions. Siphon analysis is used
to design control places, while a label Petri net is used to
implement the control transitions. Simultaneously, the tran-
sition controllers are added to ensure that all the uncontrolled
PNM states are reached in the controlled PNM. Its limita-

tion is that the reachability of the controlled PNM remains
unknown.

Zhang and Uzam developed a new method in [26] that
enforce liveness on the PNM using control transitions.
A reachability graph is used to computes the deadlocks mark-
ings of the PNM for FMSs. Control transitions that are equal
to the number of markings in the live zone are designed for
each deadlockmarking since there is uncertainty onwhere the
deadlock markings will return in the live zone. In this case,
too many control transitions are computed in the supervisor,
which increases computational and structural complexities.
The methods employed a set of covering problems (SCP) to
minimize the number of control transitions. The SCP reduces
the structural complexity, yet the method has suffered compu-
tational complexities. The works of [27] developed a super-
visor for FMSs using structural analysis, which utilized some
important properties of the PNM to minimize the computa-
tional complexity of the supervisor. Themethod is an iterative
procedure that computes first-met uncontrolled transitions,
second-met uncontrolled transitions, and n-met uncontrolled
transitions. The first-met controller creates Self-loops control
arcs to all the markings generated by the first-met uncon-
trolled transitions. Similarly, the same procedure is repeated
for the second-met, n-met uncontrolled transitions. These
self-loop control arcs created by the controllers causes works
repetitions by the processes that may be possible, which delay
the complete processing of the parts. In the proposed paper,
the controller creates new markings equal to the number
of concurrent states possessed by the FMS, such that the
deadlock markings are first projected to the new markings.

The studies of Huang et al., in [28] design a supervisor
using control transitions. Deadlocks markings are computed
iteratively using a reachability graph by varying the markings
of the idle places of the PNM. The deadlock markings are
computed iteratively from the lowest possible combination
of markings in the idle places. At each iteration step, control
transitions are designed for each deadlock markings if it
exists. The method greatly simplified the supervisory struc-
ture of the PNM. Row and Pan developed a supervisor using
control transitions [29] to modify the methods developed in
[28] based on reachability graph analysis. The methods min-
imize the complexity of the supervisor but did not obtain the
minimal supervisory structure. The literature in [29] further
simplifies the supervisor of FMSs in Row and Pan to obtained
the minimal supervisory structure. The methods introduce
the iterative computations of crucial deadlock markings by
varying the initial markings of the idle places of the PNM
for FMSs. Generally, the supervisors computed for these
methods developed in [28]–[30] return the deadlockmarkings
to the initial marking.

A newmethod to computes supervisory structure for FMSs
using transition controller is developed by Chen et al., in [31].
The method uses a reachability graph analysis to computes
the deadlocks markings in the PNM. It then employed the
vector covering approach to computes the minimal number
of legal markings by solving integer linear programming
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problems (ILPPs). Themethods return the deadlockmarkings
to the minimal number of legal markings in the reachability
graph of the PNM for FMSs. Since the minimal number
of legal markings for the large PNM for FMSs are many.
It implies that it is difficult to track where the systems may
return when entering deadlock states. Moreover, the method
is computationally complex, but it guaranteed a minimal
supervisory structure. Dong et al., [32] further simplified
the method developed in [31] to reduce the computational
complexity by avoiding the computation of ILLP. Instead,
it employed a vector intersection approach of the deadlock
markings to regroup them. A single transition controller is
designed to return all the deadlock markings to the minimal
legal markings in the reachability graph for each group. The
uncertainty that dominates the works for supervisor using
control transitions [23]–[33] are what markings in the live
zone should the deadlock markings returns, such that it can
maintain a smooth operation of the systems.

This paper proposed a new method to design supervisor
for FMSs using a Place-Transition Controller (PTC) and a
Transition-Place Controller (TPC). A loop marking is com-
puted for each concurrent processes in the FMSs to spec-
ify where the deadlock markings return in the live marking
without affecting the proper operation of the system. TPC
constitutes the input control transitions that are enabled at
the deadlock markings and generates new markings in accor-
dance with the number of concurrent processes in the PNM,
such that all deadlock markings are first projected to the new
markings. Then, the new markings are further projected to
the loop markings in the PNM by the action of PTC. This
method’s main advantage is that the controllers have zero
restriction in executing the concurrent works by the PNM
for FMSs. Furthermore, the number of controller states is
minimal compared with the related method developed in the
literature. Finally, our proposed method is efficient and has
moderate structural complexity than the related methods in
the literature.

The paper is organized as follows. Section II presents the
preliminaries of the PNM. Section III describes the dump and
loop states. Section IV presents the computation of the Place-
Transition/Transition-Place Controller. Section V provides a
control policy of the proposed method. While in Section VI,
and Section VII presents experimental examples and discus-
sions, respectively. Finally, Section VIII concludes this paper.

II. PRELIMINARIES
A. PETRI NETS
A Petri net is a four-tuple N = (P,T ,F,W ), where P is the
set of place, and T is a transition set in the PNM. Places in
the PNM are partitions into two sets as P = PA ∪ 2, where
PR represents the set of activity places, and 2 represents the
shared places. F ⊆ (P × T ) ∪ (T × P) are control arcs
connected from places to transitions or transitions to places.
W : (P × T ) ∪ (T × P) → N is a weight assigned to
the control arcs connected from places to transitions or vice

versa. A token is a black dot that is put in places to indicate
the marking (state) of the system. If tokens are introduced
in N = (P,T ,F,W ), the PNM is represented as (N ,M0)
symbolizing its dynamic structure at the initial marking. Let
y ∈ P∪ T be a node in N = (P,T ,F,W ). The preset (input)
of y is defined as •y = {l ∈ P ∪ T | (l, y) ∈ F} and
its output (postset) of y is defined as y• = {l ∈ P ∪ T |
(y, l) ∈ F}. Let [N+] and [N−] be the input and output
incidence matrix of N , and defined as [N+](p, t) = W (t, p)
and [N−](p, t) = W (p, t), respectively. The incidence matrix
of the PNM is [N ] = [N+](p, t)− [N−](p, t).

A marking M of a PNM is a mapping vector M : P→ N.
M (p) represents the number of tokens in place p. With no
ambiguity, a marking is some time refer to as state in this
paper. ∀p ∈ P is said to be marked if M (p) ≥ 0. Marking is
represented in a formal sum notation as

∑
Pi∈PM (pi)pi. For

example, let a PNM has set of place P = {p|p : p1, · · · , p6}.
If each place p1 and p3 have one token and place p6 has two
tokens. Then, the marked places are M (p1) = 1, M (p3) = 1,
and M (p6) = 2. The marking of the PNM in formal sum
notation is M = p1 + p3 + 2p6.
Let t ∈ T be transition in (N ,M0). t is enabled at a marking

M if ∀p ∈ t•, M (p) ≥ W (p, t), and it is denoted as M [t〉.
The marking M of the system (N ,M0) is change when the
transition t is fired, generating a newmarkingM ′ represented
as ∀p ∈ P,M ′(p) = M (p)−W (p, t)+W (t, p). For example,
if (N ,M0) is at marking M = p1 + p2 + p6 with W (p1, t) =
W (p2, t) = W (t, p3) = 1. This translate that p1, and p2 are
preset of t , and p3 is postset of t in (N ,M0). Transition t is
enabled since M (p1) ≥ W (p1, t), and M (p2) ≥ W (p2, t),
when it’s fired it is new marking is M ′ = p3 + p6. t is said
to be dead if ∀p ∈• t , W (p, t) ≥ M (p). A PNM (N ,M0) is
said to be dead at M0 if @t ∈ T can satisfy M0[t〉. t is live if
∀M ∈ R(N ,M0), ∃M ′ ∈ R(N ,M ), such that M ′[t〉. (N ,M0)
is live if ∀t ∈ T , t is live at M0.
Place invariant and transition invariant are two important

structural properties, which play vital role in mathematical
computation of (N ,M0). A P-vector is a column vector I :
P→ Z, indexed by P, where Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
A P-vector I is a place invariant if I 6= 0 and IT [N ] = 0T .
A P-invariant I is called P-semiflow if every element of I is
non-negative. ||I || is called the support of P-invariant and is
defined as ||I || = {p|I (p) 6= 0}. The support of P-invariant
is called minimal P-invariant if it doesn’t contains any other
invariant. A T-vector is a column vector D : P→ Z, indexed
by T , where Z = {. . . ,−2,−1, 0, 1, 2, . . .}. A T-vector D
is called transition invariant if D 6= 0 and [N ]D = 0. The
support of T-invariant is defined as (||D|| = {t|D(t) 6= 0}).

B. MOTIVATION
Concurrency is a property of a system to executes multiple
works using shared resources. For example, FMS consists of
shared resources, and each shared resource can ensure the
correctness of its work. If shared resources operate concur-
rently in the system to works on the parts for the processes,
some parts may be retained by the resources longer than
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desired and causes the blockage of the system or deadlock.
It necessitates controlling the FMSs concurrent operation on
different parts to deals with incorrect operations of FMS.

Supposed, we consider the PNM shown in Fig. 1a, which
has two concurrent processes that can process two parts at a
time. Each process has one input and output place, such that
parts P1 and P2 can work independently. Machines M1 and
M2 need to work on parts P1 and P2 before the product’s
output. Robot R1 can load and unload parts P1 and P2 from
machines M1 to M2 or vice versa. The processes are inde-
pendent in terms of input and output sources. However, they
shared resources to complete their operation on the parts.
At the initial marking of the PNM shown in Fig. 1a, the tran-
sitions t1 and t5 are enable, which allow the system to process
parts P1 and P2 concurrently at a time as desire from the
modelling perspective. That meansmachinesM1 canwork on
part P1 and machine M2 can work on part P2 simultaneously,
then R1 can unload P1 fromM1 or P2 fromM2 that depend on
which machine can operate first. The next enable transitions
are either t2, t5 or t1, t6 in the PNM. This process would
continue to evolve as it is desired till the system is turned
off. However, deadlock occurrence can stop the system earlier
than the desired time. Suppose control places are used in
constructing the supervisory structure, as shown in Fig. 1b,
to control the deadlock occurrence. In that case, it restricts
the system’s concurrent operation.

III. COMPUTATION OF LOOP MARKING
This section presents the basic concept for the computation
of the loop marking in the reachability graph for a PNM
(N ,M0). The two markings are the key aspect in designing
the controller for the PNM of FMSs. The loop marking is
the live marking in the original reachability graph before the
controller is added to the (N ,M0). Its primary function is
to accept all the deadlock markings into the legal marking.
A dump marking is an extra state created by the controller to
link the deadlock markings to the loop markings via it. The
dump state is the next state after the deadlock markings when
the control transition is fired. Generally, our proposedmethod
works on S4PR class of Petri nets, which is more generalized
than other classes of Petri nets.
Definition 1: [37] A system of sequential systems with

shared resources (S4PR) is a generalized connected self-loop
Petri net N = (P,T ,F,W ), where

1) P = PA ∪2, is a place partition such that

• PA = ∪ni=1PAi is called the set of activity places,
where PAi 6= 0 and PAi ∪ PAj = ∅;

• 2 = {r1, r2, · · · , rm|m ∈ N} is called the set of
resource places;

2) T = ∪ni=1Ti is called the set of transitions, where
∀(i, j) ∈ N, i 6= j, Ti 6= ∅, and Ti ∩ Tj = ∅;

3) W = WA ∪W2, where WA : (PA × T ) ∪ (T × PA)→
{0, 1} such that ∀i, j ∈ N, j 6= i, (PAj×Ti)∪(Ti×PAj )→
{0}, and We : (2× T ) ∪ (T ×2)→ N;

4) ∀r ∈ 2, there exists a unique minimal P-invariant Ir ∈
N|p|, such that {r} = ‖Ir‖ ∩ 2, PA ∩ ‖Ir‖ 6= ∅, and
Ir (r) = 1, where N‖P‖ is a set of P-dimensional non-
negative integer vectors;

5) N is strongly connected.

Definition 2: [5] Let r be a resource in (N ,M0) with N =
(PR∪PA,T ,F) and Ir be the minimal P-semiflow associated
with r . Resource rs ∈ PR is said to be shared if rs ∈ ||I ||, and
∃j ∈ {1, 2, · · · , n}, (||I || \ {rs}) ⊆ PAj. Let 2 denotes the set
of rs in (N ,M0), then ∀pi ∈ P,2(p) = 1 if rs ∈ 2, otherwise
2(p) = 0.
Definition 3: Let j ∈ {1, 2, · · · , d} be the number of

concurrent processes in (N ,M0) with N = (PR ∪ PA,T ,F).
Hj denotes the set of activity places in the j-process of the
(N ,M0) such that PA =

⋃d
j=1 Hj. ∀pi ∈ P, H (pi) = 1,

if pi ∈ H and ∀pi ∈ P, H (pi) = 0, if pi /∈ H
Definition 4: Let t ∈ T be a transition in (N ,M0). t is

called an active transition in (N ,M0) if it enables at the initial
marking (i.e., M0[t〉). t ∈ T is said to be sink transition if it
consumes token when fired (i.e., it return the system to the
previous states in (R,M0)). Let denotes tq and ts be the active
and sink transition, respectively.
Definition 5: Let tq ∈ T and ts ∈ T be the active and sink

transition, respectively, and LZ be the set of legal markings in
R(N ,M0). A marking M is called a loop marking denoted as
M δ
r if it satisfiesM

δ
r ∈ LZ ,M

δ
r [t

q
〉, andM δ

r [t
s
〉. Let9 denotes

the set of loop markings, then 9 = {M δ
r |M

δ
r ∈ LZ , t

s, tq ∈
T , s.t. M δ

r [t
s
〉 ∧M δ

r [t
q
〉}

Supposed we considered the PNM shown in Fig. 1a,
the PNM has two concurrent processes as j ∈ {1, 2}. The
places in (N ,M0) is categorise into two partition P = PA∪2,
where PA is further categorised according to their concurrent
process i.e.,H1 = {p1, p2, p3}, andH2 = {p4, p5, p6}. The set
of resource place is 2 = {p7, p8, p9} that are shared among
the two concurrent processes. Threeminimal semiflow for the
PNM shown in Fig. 1a exists namely as I1 : p1+p7+p6 ≤ 1,
I2 : p2 + p8 + p5 ≤ 1, and I3 : p3 + p9 + p4 ≤ 1. The
support of the minimal semiflow are ||I1|| = {p1, p6, p7},
||I2|| = {p2, p5, p8}, and ||I3|| = {p3, p4, p9}, respectively.
The sink and source transitions for H1 are t1 and t4, respec-
tively. Similarly, the sink and source transitions for H2 are t5
and t8, respectively. Several loop markings may exist due to
the sink transition in Hj. Table 1 provides the detail markings
of R(N ,M0) for the PNM shown in Fig. 1a, and the loop
markings at each process.

A structural analysis is utilized to reduce the loop mark-
ings’ identification complexity that satisfied Definition 3 in
R(N ,M0). Since, the number of loop markings in each Hj
increases with the PNM’s size. An optimization problem is
formulated to minimize computational identification of the
loop marking at each concurrent process. The mark activity
places selection goal in the loop marking due to each process
is to satisfy the constraint in Equ. 1.∑

i∈N
αi · (Ik (pi)− H (pi)) ≤ −βk (1)
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FIGURE 1. PNM control using control places.

TABLE 1. Detail markings of the PNM shown in Fig. 1a.

where αi is a characteristic integer constant-coefficient for the
marking of place pi, k = {1, 2, · · · } represent the number
of places invariant, and βk is a positive constant that can be
determine using Equ. 3. The mark resource places selection
goal in the loop marking is to satisfy Equ. 2.∑

i∈N
αi · (Ik (pi)−2(pi)) ≤ −βr (2)

where2(pi) are marked resource places at the initial marking
of (N ,M0), and βr is a positive constant that can be deter-
mine using Equ. 4. Let Gr be the set of resource places in
Equs. 1 and 2, and GA be the set of activity places in Equs. 1
and 2. Then, βk , and βr are determined in Equs. 3, and 4,

respectively:

βk =

{
|Gri | − |GAi |, rs ∈ Ik ;
|Gri | − |GAi | − 1, ru ∈ Ik .

(3)

where R = rs ∪ ru, and ru is the set of non-shared resource
place in (N ,M0).

βr = |Gri | (4)

Based on the Equs. 1, 2, 3, and 4, we can formulate an
ILPP to determine the minimum number of mark activity
and resource places present in loop marking, denoted as the
Minimal Number of Loop Marking Problems (MNLMP).

Min
∑
i∈|P|

αi

subject to
∑
i∈N

αi · (Ik (pi)− H (pi)) ≤ −βk∑
i∈N

αi · (Ik (pi)−2(pi)) ≤ −βr

αi ∈ {1, 2, · · · , }

2(pi), H (pi) ∈ P (5)

If α(pi) 6= 0, it means place pi is marked inM δ
ri . Otherwise,

place pi is unmarked in M δ
ri . The solution to the MNLMP

represents the marked activity and resource places in the loop
marking. Thanks to the minimization problem that reduces
the complexity of searching the vast number of loopmarkings
in R(N ,M0).

IV. COMPUTATION OF PLACE TRANSITION/TRANSITION
PLACE CONTROLLER
The Place-Transition and Transition-Place controller write as
PTC and TPC, respectively. Both PTC and TPC combine
as a single controller connected to a particular concurrent
process. At each concurrent process of (N ,M0), the PTC has
a single control place and control transition. In contrast, TPC
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FIGURE 2. Illustration of dump marking.

has multiple control transitions that depend on the number of
deadlock markings.
Definition 6: T

Ij
i is called an additional input control tran-

sition if Md [T
Ij
i 〉, and T

Oj
i is called an additional output

control transition if ∃p ∈ M δ
rj , M

δ
rj (p) ∈ (T

Oj
i )•, ∀j ∈

{1, 2, · · · , d}.
Definition 7: Let T

Ij
i and T

Oj
i be the additional input con-

trol transition and output control transition of the Petri net
controller for FMSs, respectively. Vj is called the additional
control place to the (N ,M0) if T

Ij
i and T

Oj
i serve as preset and

postset to the Vj, respectively.
Definition 8: Let Md be a deadlock marking of a PNM

(N ,M0) with N = (P,T ,F,W ). M δ
fj is called a dump

marking generated as a result of firing T
Ij
i from Md ,

i.e., Md [T
Ij
i 〉M

δ
fj .

Definition 9: Let T
Ij
i be the input control transition and Vj

be the control place of the PNM. The TPC is a four-tuple
define as TPC = ({M δ

fj ∪ Vj},T
Ij
i ,F,W ), where M δ

fj is the
marked places in the dump marking, and Vj is the additional
control place. T

Ij
i is the additional controlled transitions in the

net. F ⊆ (M δ
fj×T

Ij
i )∪(T

Ij
i ×Vj) is a controller input flow rela-

tion represented by arcs with arrow from places to transitions
or transitions to places. W : (M δ

fj × T
Ij
i )∪(T

Ij
i × Vj) → N

is a weight assign to control arc. j ∈ {1, 2, · · · , d}, where
d is finite number that represent the concurrent processes in
(N ,M0), and i ∈ {1, 2, · · · }.
Definition 10: Let T

Ij
i be the input control transition and

Vj be the control place of the PNM. The PTC is a four-tuple
define as PTC = ({M δ

rj ∪ Vj},T
Oj
i ,F,W ), where M δ

rj is the
marked places in loop marking, and Vj is the additional con-
trol place. T

Oj
i is the additional output controlled transitions in

the net. F ⊆ (M δ
rj×T

Oj
i )∪(T

Oj
i ×Vj) is a controller input flow

relation represented by arcs with arrow from places to transi-
tions or transitions to places.W : (M δ

rj ×T
Oj
i )∪(T

Oj
i ×Vj)→

N is a weight assign to control arc. j ∈ {1, 2, · · · , n}, where
n is finite number that represent the concurrent processes in
(N ,M0), and i ∈ {1, 2, · · · }.

FIGURE 3. Actions of PTC and TPC on (N, M0).

Let considered the markings in the reachability graph as
shown in Fig. 2. Markings Md1 ,Md2 , · · · , Md8 are deadlock
markings of (N ,M0). Before the addition of the controller,
if (N ,M0) enter into any deadlock markings Md1 to Md8 ,
the system can no longer evolve further. Let assume that
(N ,M0) has two concurrent processes (i.e., j = {1, 2}),
and translate to have two set of activity places as H1 and
H2. Activity places are categorized based on the concurrent
processes. Marking is referred to the particular process if
it contains more marked activity places from that process.
Hence, from Fig. 2, the markings Md1 , Md2 , Md4 , and Md6
are characterized to H1, and markings Md1 , Md3 , Md5 and
Md7 are characterized to H2. When the TPC is connected
to (N ,M0), it implies that two extra markings are created as
shown in Fig. 2. The extra markings created by the additional
input control transition and control place are known as dump
markings (i.e., M δ

f1
and M δ

f2
), and their primary function is

to serve as a transit state from deadlock states to live state.
Figure 3 provides the detailed action of TPC and PTC when
added to the (N ,M0). The reachability graph of the controlled
net by the proposed method are categorized into three regions
as shown in Fig. 3, namely as LZ, DZ, and controller Zone
denote as CZ. The dump markings M δ

f1
and M δ

f2
are the CZ

marking. The aim of the proposed method is to project the
deadlock markings to the loop markings M δ

r1 and M δ
r2 by

the action of PTC via the dump markings M δ
f1
and M δ

f2
. The

supervisory structure combines of TPC and PTC that provide
full control of (N ,M0).
Proposition 1: Let CZ be the set of markings created by

the controller. The number of markings in CZ depends on the
number of concurrent processes of (N ,M0).

Proof: From Equ. 5, the loop markings are determined
based on the concurrent process in (N ,M0). Moreover, only
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one TPC is added to each concurrent process in (N ,M0).
Therefore, the extra places created by the action of TPC
depend on the number of concurrent processes possessed by
the net systems. Hence, each dump marking is projected to
the loop marking in the same process.
Theorem 1: Let CZ be the set controller zone states and

� be the set of deadlock markings in R(N ,M0). The number
of states in CZ is always less than the number of deadlock
markings in (N ,M0), i.e., |CZ | ≤ |�|.

Proof: This is obvious from proposition 1.

V. CONTROL POLICY
This section presents the computations of the PTC and TPC
for (N ,M0). The TPC design involves the computations of
deadlock markings that serve as input to the TPC, while its
output control arc goes to the control place Vj. The output
control arc of Vj serves as input to the PTC, and the M δ

rj
serves as output places. Three algorithms are developed to
implement our proposed method. Algorithm 2 is used to
classify the deadlock marking based on their associates’ con-
current processes in (N ,M0). Algorithm 1 presents a step-
by-step computation of loop markings from (N ,M0), while
algorithm 3 presents TPC and PTC computation that can be
included in (N ,M0).

Algorithm 1 Computation of Loop Markings
Input: PNM of an FMS structure suffering from deadlock
Output: Set of loop markings 9
1: Identify the sets of activity places Hj, and set of resource

places 2(pi)
2: Compute theminimal semi-flow (Ik ) of the PNM (N ,M0)

3: while j ≤ d do
4: for (k = 1, z, k ++) do

/∗ k ∈ {1, 2, · · · , z} where z is the number of I in
(N ,M0) ∗/

5: Compute
∑

i∈N αi · (Ik (pi)− H (pi)) ≤ −βk
6: Compute

∑
i∈N αi · (Ik (pi)−2(pi)) ≤ −βr

7: Solve the minimization problem as presented in
Equ. 5

8: The solution to the MNLMP represent the loop
marking M δ

rj
9: end for
10: 9 = {M δ

rj}

11: j = j+ 1
12: end while
13: Output the set of the loop markings (9)

Proposition 2: Let αi ∈ N+ be the solution for the mini-
mization problems computed using algorithm 1. The solution
αi ∈ N+ is the marked places in M δ

rj .
Theorem 2: Let 9 be the set of M δ

rj computed using algo-
rithm 1. The 9 is the minimal set of loop markings that
shall guarantee all the deadlock markings are reachable to the
initial marking via it.

Algorithm 2 Sorting of Deadlock Markings Based on Their
Associated Processes
Input: Reachability graph of PNM
Output: Sets of deadlock markings based on their associate

processes 8j
1: Identify the activity places p ∈ PA, and there concurrent

processes it belong, i.e., Hj
2: Compute the reachability graph R(N ,M0) of (N ,M0)
3: Identified the set of dead markings from R(N ,M0)

denoted as �
4: while j ≤ d do

//∗ where d is the number of concurrent processes
in (N ,M0) ∗//

5: while i ≤ n do
//∗ where n = |�| ∗//

6: Compute Mdi ∩ Hj = l, ∀Mdi ∈ �,
7: if |l| > |Mdi | then
8: Mdi ∈ Hj
9: else
10: � = �+Mdi
11: end if
12: 8j = {Mdi}

13: i = i+ 1
14: end while
15: j = j+ 1
16: end while
17: Output the sets of 8j

Proof: Supposed thatM δ
r is a loop marking in R(N ,M0)

satisfies these constraints
∑

i∈N αi · (Ik (pi) − H (pi)) ≤ −βk
and

∑
i∈N αi · (Ik (pi) − 2(pi)) ≤ −βr . Since it is true that

βk ≥ βr , then we have
∑

i∈N αi · (Ik (pi)−2(pi)) ≤
∑

i∈N αi ·
(Ik (pi)−H (pi)), which can be simplified to

∑
i∈N αi ·2(pi) ≤∑

i∈N αi · H (pi). Therefore, it shows that the characteristic
coefficient of marked resource places is less than the charac-
teristic coefficient of mark places by the concurrent places in
M δ
r . This implies that,M δ

r is the minimal solution at each Hj,
j ∈ {1, 2, · · · }. Hence, the overall M δ

r is the minimal number
in 9 due to the concurrent processes.
Theorem 3: Algorithm 3 can provide the optimal control

of (N c,M c
0 ) if all the TPC and PTC computed are added to

the uncontrolled PNM (N ,M0).
Proof: If an optimal solution is obtained by algorithm 1,

then there exists at least a loopmarkingM δ
ri that can be used to

design a PTC from algorithm 3. Since, all the deadlock mark-
ings are rerouted to the loop markings via dump markings.
Hence, algorithm 3 provides optimal control for (N c,M c

0 ).
Demonstrated Example:
Let consider the PNM shown in Fig. 4 to illustrate our

proposed method. The PNM has 9 places and 8 transitions.
Places have the set partitions as P = PA ∪ 2, where
PA = {p1, p2, · · · , p6} and2 = {p7, p8, p9}. Two concurrent
processes possessed by the PNM (i.e., j = {1, 2}) with
H1 = {p1, p2, p3} and H2 = {p4, p5, p6}. To demonstrate the
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Algorithm 3 Computation of TPC and PTC
Input: The uncontrolled Petri nets model (N ,M0)
Output: Control PNM (N c,M c

0 )
1: Compute the reachability graph of the Petri nets (N ,M0)

2: Identify the deadlock markings in the Petri nets
3: Identify the set of deadlock markings using algorithm 2

4: Computes the loop markings using algorithm 1
5: for (j = 1, d, j++) do
6: while 8j ≤ ∅ do
7: Compute the TPC using Definition 9
8: |8j| = |8j| − 1
9: end while
10: Compute the PTC using Definition 10
11: end for
12: Add all the TPC to the (N ,M0)
13: Add the PTC to the (N ,M0)
14: Output the control PNM (N c,M c

0 )

FIGURE 4. A PNM for FMS.

proposed method, we first compute the minimal semi-flow
in the PNM shown in Fig. 4. The minimal semi-flow are
I1 : I1 + I6 + I7 <= 2; I2 : I2 + I5 + I8 <= 1; and
I3 : I3 + I4 + I9 <= 2. Then, at each concurrent processes,
we formulate the MNLMP in accordance with Equ. 1 to 5.
This implies that, we are to solve two MNLMP for the PNM
shown in Fig. 4.

First, for H1 = {p1, p2, p3} with H1(p1) = 1, H1(p2) = 1,
H1(p3) = 1, H1(p4) = 0, H1(p5) = 0, and H1(p6) = 0.
The set of shared resource places is 2 = {p7, p8, p9} with
2(p7) = 1, 2(p8) = 1, and 2(p9) = 1.

Min α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9
Subject to α1 + α6 − α7 − α8 − 2α9 <= −2

− α2 − α3 − α6 − α7 <= −1

α2 + α5 − 2α7 − 2α9 <= −2

− α1 − α3 − α5 − α8 <= −1

α3 + α4 − 2α7 − α8 − α9 <= −2

TABLE 2. Details parameters of the TPC for the PNM shown in Fig. 4.

TABLE 3. Details parameters of the PTC for the PNM shown in Fig. 4.

− α1 − α2 + α4 + α9 <= −1

αi ∈ {1, 2, · · · }

The above MNLMP has a solution of α1 = α2 = α3 =

α7 = α9 = 1, and all other parameters are zeros. This implies
that the loopmarking associated toH1 isM δ

r1 = p1+p2+p3+
p7 + p9. Next, we considered the second concurrent process
of the PNM with the set of activity places H2 = {p4, p5, p6}
with H2(p1) = 0, H2(p2) = 0, H2(p3) = 0, H2(p4) = 1,
H2(p5) = 1, and H2(p6) = 1.

Min α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9
Subject to α1 + α6 − α7 − α8 − 2α9 <= −2

− α1 − α4 − α5 + α7 <= −1

α2 + α5 − 2α7 − 2α9 <= −2

α2 − α4 − α6 + α8 <= −1

α3 + α4 − 2α7 − α8 − α9 <= −2

− α3 − α5 − α6 + α9 <= −1

αi ∈ {1, 2, · · · }

The above MNLMP has a solution of α4 = α5 = α6 =

α7 = α9 = 1, and all other parameters are zeros. The loop
marking associated withH2 asM δ

r2 = p4+p5+p6+p7+p9.
The next step is to compute the reachability graph of the
PNM and determine the deadlock markings. Two deadlock
markings are present in the PNM, as shown in Fig. 4. The
set of the deadlock marking is � = {Md1 ,Md2} with Md1 =

2p1+p2+2p4 andMd2 = 2p1+2p4+p5. From algorithm 2,
the sets of deadlock markings associated to H1 and H2 are
81 = {Md1}, and 82 = {Md2}, respectively. The TPC
associated with H1 has input places from Md1 , and its PTC
has output places of M δ

r1 . Similarly, the TPC associated with
H2 has input places from Md2 , and its PTC has output places
ofM δ

r2 . Fig. 5 provides the controllers for the two concurrent
processes j = 1, and j = 2, respectively. When the two
controllers are included in the PNM shown in Fig. 4, the PNM
is live with 97 good Markings.

VI. EXPERIMENTAL EXAMPLES
This section presents an experimental example of an
FMS model by PNM to explore the proposed method’s
applicability.
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FIGURE 5. (a) Combined TPC and PTC for a PNM shown in Fig. 4
associated with j = 1, (b) combined TPC and PTC for a PNM shown
in Fig. 4 associated with j = 2.

FIGURE 6. A PNM for FMS.

TABLE 4. Details parameters of the TPC for the PNM shown in Fig. 6.

Example 1: Let consider the PNM of FMS shown
in Fig. 6. The PNM has 15 places and 12 transitions. The
places have the following partitions: PA = {p1, p2, · · · , p10},
and 2 = {p11, p12, · · · , p15}. The PNM has 112 reachable
markings.

Five minimal semi-flow exist in the PNM: I1 = p1+p10+
p11, I2 = p2+p9+p12, I3 = p3+p8+p13, I4 = p4+p7+p14,
I5 = p5 + p6 + p15. The PNM has two concurrent processes,

FIGURE 7. (a) Combined TPC and PTC for a PNM shown in Fig. 6
associated with j = 1, (b) combined TPC and PTC for a PNM shown
in Fig. 6 associated with j = 2.

and the sets of their activity places are H1 = p1 + p2 + p3 +
p4+p5 and H2 = p6+p7+p8+p9+p10. First, we compute
the loop markings using algorithm 1. For j1, in accordance
with equations 1 to 5, we formulate this MNLMP:

Min
∑|P|

i=1
αi

Subject to α1 + α10 − α12 − α13 − α14 − α15 <= −2

− α2 − α3 − α4 − α5 + α10 + α11 <= −1

α2 + α9 − α11 − α13 − α14 − α15 <= −2

− α1 − α3 − α4 − α5 + α9 + α12 <= −1

α3 + α8 − α11 − α12 − α14 − α15 <= −2

− α1 − α2 − α4 − α5 + α8 + α13 <= −1

α4 + α7 − α11 − α12 − α13 − α15 <= −2

− α1 − α2 − α3 − α5 + α7 + α14 <= −1

α5 + α6 − α11 − α12 − α13 − α14 <= −2

− α1 − α2 − α3 − α4 + x6 + α15 <= −1

αi ∈ {1, 2, · · · }

The above MNLMP has the solutions of α4 = α5 =

α11 = α12 = α13 = 1, and all other parameters have the
value of 0. Similarly, After applying the same procedure on
j = 2, the loop marking associated with the second process
is M δ

r2 = p9 + p10 + p13 + p14 + p15. Then, we compute
the reachability graph of the PNM to determine the deadlock
markings. The deadlock markings in the net are: Md1 =

p1 + p2 + p3 + p4 + p6, Md2 = p1 + p2 + p3 + p6 + p7,
Md3 = p1+p2+p6+p7+p8,Md4 = p1+p6+p7+p8+p9.
According to algorithm 2, the set of deadlock markings are
91 = {Md1 ,Md1} and 92 = {Md3 ,Md4}. For j = 1, the TPC
has two input control transitions as T I11 , T I12 . The PTC has one
output control transition TO1

1 and one control place V1.
Similarly, the same procedure is applied for j = 2. The

TPC has two input transitions as T I23 , T I24 , and the PTC has
one output control transition TO2

2 and one control place V2.
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TABLE 5. Details parameters of the PTC for the PNM shown in Fig. 6.

TABLE 6. Supervisory structure performance comparison for the PNM shown in Fig. 6.

FIGURE 8. A PNM for FMS from [18].

The detailed parameters of the TPC and PTC are presented
in Table 4, and Table 5, respectively.
Example 2: Supposed we consider the PNM of FMS

shown in Fig. 8. The PNM has 14 places and 13 transitions
with 169 reachable makings in its reachability graph. The
places have the following partitions: PA = {p1, p2, · · · , p10},
and 2 = {p11, p12, · · · , p14}.

Following the same procedure as in Example 1, we for-
mulate this MNLMP. The solution to the MNLMP gives the
marked places in M δ

r1 .

Min
∑|P|

i=1
αi

Subject to α1 + α10 − α11 − α12 − α13 − α14 <= −2

TABLE 7. Details parameters of the TPC for the PNM shown in Fig. 8.

FIGURE 9. (a) Combined TPC and PTC for a PNM shown in Fig. 8
associated with j = 1, (b) combined TPC and PTC for a PNM shown
in Fig. 8 associated with j = 2.

− α2 − α3 − α4 − α5−α6+α10+α11 <= −1

α2 + α3 + α4 + α5 + α8 + α9 − α11

− α13 − α14 <= 3

− α1 − α6 + α8 + α9 + α12 <= −1

α3 + α5 + α6 + α7 + α8 − α11 − α12

− α14 <= 2

− α1 − α2 − α4 + α7 + α8 + α13 <= −1

α2 + α4 − α11 − α12 − α13 <= −1

− α1 − α3 − α5 − α6 + α14 <= −1

The above MNLMP has optimal solutions of α2 = 1,
α6 = α11 = 2, and all other parameters have the value
of 0. The loop marking associated to j = 1 is M δ

r1 = p2 +
2p6 + 2p11. Similarly, when the same procedure is applied
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TABLE 8. Details parameters of the PTC for the PNM shown in Fig. 8.

TABLE 9. Supervisory structure performance comparison for the PNM shown in Fig. 8.

on j = 2, the loop marking associated with the second pro-
cess isM δ

r2 = p7 + p9 + p10 + p13 + p14. Then, we compute
the reachability graph of the PNM to determines the dead-
lock markings. The net model has the following deadlock
markings: Md1 = 2p1 + p2, Md2 = 2p1 + p4, Md3 =

2p1 + 3p7 + p9. The TPC and PTC controllers are design
based on algorithm 3. When the controllers are added to the
PNM shown in Fig. 8, the PNM is live with 169 reachable
marking with the two markings from the controller side. The
detailed parameters for the TPC and PTC of the PNM shown
in Fig. 8 are shown in Table 7, and Table 8, respectively.

VII. DISCUSSION
This section provides a discussion of the proposed method
based on its structural complexity and computational com-
plexity. First, we compared the obtained supervisor perfor-
mance with some related methods developed in the current
literature. The works of [25], [34] used a siphon technique to
build a supervisor for PNMof FMSs. However, the supervisor
in [25] combined the control places and control transitions
to obtain a complete reachable marking for PNM. Moreover,
the works in [18] report a related supervisor that both contain
additional control places and transitions. The method used
reachability graph analysis to computes its elements of a
supervisor. Our proposedmethod is comparedwith the results
obtained in [25], [34], and [18].

Based on the state-of-the-art methods, we have com-
pared the supervisory structure components for our proposed
method with other related methods in the literature based on
structural complexity and computational complexity. Table 6
provides a detailed number of control places and a number of
control transitions in column 1 and column 2, respectively.
Column 3 provide the total number of control node (i.e.,
number of control places plus the number of control transi-
tions) used by each method. The number of additional control
arcs is provided in column 4 of Table 6. Column 1-4 gives
the total supervisory structural complexity for each method.
Column 5 of Table 6 provides the number of reachable mark-

ings representing the supervisory structural performance effi-
ciency. The additional number of markings generated by
the controllers of the supervisory structure is represented
in column 6, aiming to keep the number of the additional
controller markings minimal. Columns 7 and 8 provide the
total number of constraints and variables to be solved for
eachmethod, which amounts to eachmethod’s computational
complexity. System resource utilization is defined as the ratio
of the number of reachable states in the control PNM to that
of the reachable states in the uncontrolled PNM. The last
column provides system resource utilization for each method.
Overall, the method in [34] provides the minimal structural
complexity as view in columns 4-5, but has the least reachable
states and system resource utilization. Our proposed method
has moderate structural complexity as a view from columns
4-5 with a total control node of 7 and 30 control arcs. Our
proposed method has 100 percent system resource utilization
and less computational complexity. Similarly, the same com-
parison is applied to Table 9.

Second, we analyzed the computational complexity of the
proposed method. The computational complexity of solving
MNLMP from algorithm 1 is O(α · |P|). Since the MNLMP
involves solving only one variable αi for |P|-times. In this
regard, its computational complexity is polynomial time. For
algorithm 2, it’s computational complexity is NP-hard since
it involves the computation of deadlock markings from the
reachability graph. The computational complexity from algo-
rithm 3 is O(|Vj|)-times, which is polynomial, where j is
the number of concurrent processes in (N ,M0). In general,
the overall computational complexity of the proposedmethod
is polynomial time complexity.

VIII. CONCLUSION
In this paper, we proposed a supervisory structure constructed
using control places and control transitions to control the
operation of FMSs. Deadlock markings are returned to the
live markings via the extra states created by the TPC, while
PTC determines the loop markings in the legal markings
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by solving an integer linear programming problem known
as MNLMP. Three algorithms are proposed in this study.
The first algorithm computes the minimal number of loop
markings from the legal markings in the reachability graph
using structural analysis. The second algorithm is used to sort
the deadlock markings based on the concurrent processes it
associates. The third algorithm is used to construct the TPC
and PTC as a supervisory structure responsible for controlling
the operation of the FMSs. The final supervisory structure
has a zero restriction on the states generated by the controlled
systems. This implies that the processes of FMS observe a full
concurrent operation as it is desired. The proposed method
is efficient as it provides maximally permissive behavior of
the PNM. The limitation of the proposed method is that the
overall supervisory structure is not minimal, even though it
is better than the related works in the literature. Our future
works would focus on getting the minimal supervisory struc-
ture for the PNM of FMSs using combined PTC and TPC.
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