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ABSTRACT High-performance InAs/GaSb type-II superlattice infrared detectors and focal plane
arrays (FPAs) are normally grown by molecular beam epitaxy (MBE). In this work, we demonstrate
the first long-wavelength infrared InAs/GaSb superlattice FPA grown by metalorganic chemical vapor
deposition (MOCVD) with clear image. High-quality superlattice material was obtained evidenced by sharp
X-ray diffraction peaks and atomic flat surface. Electrical and optical measurements performed on single
element detectors showed a 50% cut-off wavelength of ∼10.1 µm, a dark current density of 2.5 × 10−5

A/cm2, a peak responsivity of 0.88 A/W and a peak detectivity of 1.7× 1011 cm·Hz1/2/W at 80 K. A 320×
256 FPA with 30 µm pixel pitch was then fabricated. With an integration time of 1.9 ms and an applied bias
of -0.1 V, the FPA shows an average operability of 96.96%, a non-uniformity of 4.97%, a noise equivalent
temperature difference of 51.1 mK and a peak detectivity of 2.3×1010 cm·Hz1/2/W at 80 Kwithout thinning
down the substrate.

INDEX TERMS Long-wavelength infrared, InAs/GaSb superlattice, focal plane array, metalorganic chem-
ical vapor deposition.

I. INTRODUCTION
Long-wavelength infrared (LWIR) focal plane arrays (FPAs)
with 50% cut-off wavelength of 8 to 12 µm have broad
applications in diagnosis assistance, industrial process moni-
toring, and night vision. Compared to the dominant HgCdTe
technology used in LWIR detection, InAs/GaSb type-II
superlattices (T2SLs) have the merits of low Auger recom-
bination rate [1], good material uniformity [2] and low fab-
rication cost [3]. Up to now, all the InAs/GaSb T2SL FPAs
have been exclusively grown by molecular beam epitaxy
(MBE) [4]–[10]. On the other hand, metalorganic chem-
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ical vapor deposition (MOCVD), as the industry leading
epitaxy technique, has the advantages of high throughput
production, easy maintenance process, and flexible reactor
configuration. Recently, Wu et al. reported MOCVD-grown
LWIR InAs/InAsSb SL single element detectors with a peak
detectivity of 5.4 × 1010 cm·Hz1/2/W [11]. In our group,
we have carried out extensively the growth of Sb-based
materials by MOCVD [12], [13]. We previously reported
high-quality InAs/GaSb SL materials grown by MOCVD
with nearly zero strain and atomic flat surface by insert-
ing GaAs-like interfacial layers [14]. Scanning transmis-
sion electron microscopy (STEM) also reveals very abrupt
interfaces with narrow interface widths in MOCVD-grown
T2SLs [15]. Recently, we have proposed and demonstrated
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high-performance LWIR detectors with Al-free single hetero-
junction structure named ‘‘PNn’’ [16], [17].

In the PNn structure, the space charge region is only con-
fined in the mid-wavelength barrier layer and LWIR absorber
remains a flat band condition., which reduces the generation-
recombination (G-R) and tunneling current. In addition, this
structure can also be exploited to realize bias-selectable dual-
band detection [18]. We have achieved LWIR PNn detectors
with the peak detectivity of 7.3 × 1011 cm·Hz1/2/W and
1.0 × 1011 cm·Hz1/2/W at the cut-off wavelength of 8 and
12 µm, respectively [16], [17]. In this paper, we demonstrate
a MOCVD-grown LWIR T2SL single detector and FPA at
a cut-off wavelength of around 10 µm. To the best of our
knowledge, this is the first antimonide-based LWIR FPA
demonstrated by MOCVD.

II. MATERIALS GROWTH AND CHARACTERIZATION
The detector structure was grown on a 2-inch InAs (100)
wafer using an Aixtron MOCVD reactor. More details about
the growth conditions, growth uniformity evaluation and pho-
todiode structure can be found elsewhere [14], [16], [17]. The
detector structure was started with a 0.5 µm thick Si-doped
n-type (2.0 × 1018 cm−3) InAs contact layer and a 2.0 µm
thick Si-doped n-type (2.0 × 1016 cm−3) long-wavelength
SL (LWSL) absorber layer. Then, a 110 nm thick Si-doped
n-type (2.0 × 1016 cm−3) mid-wavelength SL (MWSL)
electron-barrier layer was grown followed by a 500 nm thick
Zn-doped p-type (1 × 1018 cm−3) MWSL contact layer.
Finally, the whole structure was capped with a 20 nm thick
Zn-doped p-type (1 × 1018 cm−3) GaSb layer. The LWSL
was designed to have a cutoff-wavelength of 10 µm with
20/8 monolayers (MLs) of InAs/GaSb, whereas 6/8 MLs
of InAs/GaSb is chosen for the MWSL with an estimated
effective bandgap of 0.3 eV. X-ray diffraction (XRD) and
atomic force microscopy (AFM) were used as the material
characterization tools. For structural evaluation, the XRD
curve in ω-2θ scan mode and corresponding simulation curve
of the epitaxial structure along the InAs (004) direction
were presented in Fig. 1(a). The full-width at half maxi-
mum (FWHM) of the±1st order peak for the LWSL absorber
is as low as 38 arcsec. Up to ±4th order satellite peaks
for LWSLs are visible. These sharp satellite peaks and high
order diffraction indicate excellent periodicity and crystalline
quality of the epitaxial structure. For surface characteriza-
tion, the surface morphology measured by AFM is shown
in Fig. 1(b). The sample exhibits a smooth surface with a
root mean square (RMS) roughness of only 0.206 nm over
a 5× 5 µm2 scan area. Both XRD and AFM characterization
indicate the high crystalline quality of the MOCVD-grown
epitaxial materials. Single element detectors and FPAs are
fabricated from this epitaxial material.

III. MOCVD-GROWN InAs/GaSb SUPERLATTICE SINGLE
ELEMENT DETECTORS
For single element detector fabrication, diodes with sizes
ranging from 150× 150 to 800× 800µm2 were processed by

FIGURE 1. (a) XRD ω-2θ curve and corresponding simulation curve of the
epitaxial structure along the InAs (004) direction. (b) AFM image of
epitaxial material.

standard lithography and inductively coupled plasma (ICP)
dry etching. A 200 nm thick SiO2 passivation layer was
deposited by plasma enhanced chemical vapor deposition
(PECVD). Then reactive ion etching (RIE) was used to
for window opening. Finally, top and bottom metals of the
diodes were formed by depositing Ti (25 nm)/Pt (55 nm)/Au
(300 nm). No antireflection coating was applied.

The dark current measurement of single element detector
was performed at 80 K. Fig. 2(a) shows the current–voltage
characteristics and corresponding differential resistance area
product (RA) of the diodes. At -0.1 V, dark current den-
sity (Jd) and RA are determined as 2.5 × 10−5 A/cm2 and
2871.8 �·cm2, respectively. RA at zero bias (R0A) is up to
1348.6 �·cm2. The inset of Fig. 2(a) shows the measured
Jd as a function of the perimeter to area ratio. The surface
resistivity (rsurface) is calculated using the following equation:

Jd = (Jbulk +
Vb

rsurface
× P/A) (1)

In Eq. (1), Jbulk, Vb, P, and A correspond to the bulk cur-
rent contribution, the applied bias voltage, the perimeter
and the area, respectively. The rsurface is calculated to be
2.2 × 105�·cm, which is close to the reported results for
infrared detectors with the optimized process [19], [20].
Then, the spectral response (Rλ) of a single element detector
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FIGURE 2. (a) Dark current density and RA of a single element detector.
The inset is dark current density vs P/A. (b) Spectral responsivity of a
single element detector.

was measured by a FTIR system, calibrated by a 600 K point-
source blackbody with front side illumination. The result is
shown in Fig. 2(b). At -0.1 V and 80 K, the device exhibits
a 50% cut-off wavelength at 10.1 µm and 100% cut-off
wavelength at 12 µm. The responsivity reaches the peak
of 0.88 A/W and A/W at 7.7µm, corresponding to a quantum
efficiency of 14.2%. At 10 µm, the QE is 5.5%. The dip
around 8∼9 µm was identified as a signature absorption of
SiO2 passivation layer. The cut-off in Fig. 2(b) is not steep
due to the use of a thin absorber. Fig. 3 plots the specific
detectivity (D∗λ) spectrum, which is given by:

D∗λ = Rλ(2qJd +
4kBT
RA

)−
1
2 (2)

In Eq. (2), q is the electronic charge, kB is Boltzmann’s
constant, and T is the temperature. At −0.1 V and 80 K,
the device achieves a peak detectivity (D∗λp) of 1.7 × 1011

cm·Hz1/2/W at 7.7 µm, which is comparable to those
reported for MBE-grown detectors with similar cut-off wave-
lengths [4], [21], [22].

IV. MOCVD-GROWN InAs/GaSb SUPERLATTICE FOCAL
PLANE ARRAYS
For FPA fabrication, the wafer was first etched using an
ICP dry etching system. The 320 × 256 arrays consisted

FIGURE 3. Specific detectivity of a single element detector.

FIGURE 4. Micrograph of an array after under-bump metallization
deposition.

of 25 × 25 µm2 mesas with a pitch of 30 × 30 µm2. Top
and bottom metal contacts were formed by depositing Ti
(25 nm)/Pt (55 nm)/Au (300 nm). The devices were passi-
vated by PECVD-grown SiO2. Windows were opened in the
passivation layer using RIE. Ti (25 nm)/Au (300 nm)was then
deposited as an under-bump metallization layer, as shown
in Fig. 4. Then, 8 µm tall indium bumps were deposited on
both the arrays and the read out integrated circuit (ROIC),
which is the ISC9705 from Indigo Systems. The FPAs were
then hybridized to the ROIC at room temperature. In order
to improve the mechanical reliability of the arrays, the FPAs
were underfilled with low viscosity epoxy. Finally, because
the absorption of LWIR from the InAs substrate is low enough
to perform imaging, the substrate was only polished to reduce
the diffuse reflection of incident infrared radiation without
thinning down. It should be noted that no antireflection coat-
ing was applied.

After processing, the 320 × 256 LWIR FPA was mounted
in a leadless ceramic chip carrier (LCCC) and loaded into an
infrared detector dewar. With an integration time of 1.9 ms
and a lens F-number of 2.0, the signal level, the noise level,
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FIGURE 5. Image taken by the MOCVD-grown LWIR T2SL FPA camera with
an integration time of 1.9 ms.

the noise equivalent temperature difference (NETD) and the
operability were measured at 80 K. NETD of the FPA can be
calculated using the following formula [23]:

NETD =
Thigh − Tlow
VS/VN

(3)

where VS is the output voltage, the VN is the noise voltage,
Thigh is the high temperature and Tlow is the low temperature.
The temperatures of 293 K and 308 Kwere utilized as the low
and high plane-source blackbody temperature in measure-
ment. At -0.1 V and 80 K, the average NETDwas determined
as 51.1 mK. In the test, the operable pixels are defined as the
pixels having a responsivity greater than half of the average
responsivity and a noise voltage lower than twice the average
noise voltage. The non-uniformity is defined as the ratio
of root mean square deviation of responsivity and average
responsivity of each operable pixel. The operability and the
non-uniformity were then measured as 96.96% and 4.97%,
respectively. The non-operable pixels are due to the use of
thick substrate, which increases the thermal stress caused by
the different thermal expansion of the InAs substrate and
the silicon ROIC. The non-uniformity is caused by material
defects and unoptimized fabrication process. The detectivity
of the FPA was calculated using the following formula:

D∗bb =
VS ∗ (4F2

+ 1)

αVN (T 4
high − T

4
low)
√
2πA

(4)

D∗λp = D∗bb ∗ G (5)

where Dbb
∗ is the average blackbody detectivity, F is the

F-number of the lens, α is the Stefan-Boltzmann constant, τ is
the integral time and G is the G-factor obtained from relative
spectral response. With a 1.9 ms integration time, Dbb

∗ and
the mean responsivity reached 7.1 × 109 cm·Hz1/2/W and

1.0× 108 V/W, respectively. G was calibrated as 6.7 and D∗λp
was calculated to be 2.3 × 1010 cm·Hz1/2/W. Compared to
the single element detector, the lower Dλp∗ of FPA is due
to the increased surface leakage from the unoptimized fab-
rication process and the absorption from the InAs substrate.
At an operating temperature of 80 K, an image was taken by
the FPA camera with 300 K background without two-point
non-uniformity correction, as shown in Fig. 5. A clear image
was obtained by this MOCVD-grown LWIR FPA. Although
the performance of the FPA is still inferior to those of the
state-of-art MBE-grown FPAs, it definitely demonstrates the
potential of MOCVD-grown T2SL materials for high-quality
imaging. Further improvement of the FPA performance, such
as higher operability and higher detectivity, is expected by
optimizing the fabrication process, thinning down the InAs
substrate, and applying the antireflection coating.

V. CONCLUSION
In conclusion, we have demonstrated MOCVD-grown LWIR
T2SL single detectors and FPAs. At 80 K and a bias
voltage of −0.1 V, a single element detector exhibited a
50% cut-off wavelength of 10.1 µm, a dark current density
of 2.5 × 10−5 A/cm2, a peak responsivity of 0.88 A/W
and a peak detectivity of 1.7 × 1011 cm·Hz1/2/W. For a
320 × 256 FPA, the NETD was measured as 51.1 mK with
a 1.9 ms integration time, and the peak detectivity reached
2.3× 1010 cm·Hz1/2/W without antireflection coating. The
operability and non-uniformity were 96.96% and 4.97%,
respectively. Clear image was taken by the FPA camera.
To the best of our knowledge, this is the first MOCVD-grown
T2SL FPA that is able to image. The FPA performance can be
further improved by optimizing the fabrication process.
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