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ABSTRACT Developments of richer integrative analysis methods for oncological studies are needed for
efficiently leveraging the amount of clinical and genetic data available to provide the clinicians with better
information. However, analyses of this nature often require mixing data of different types, which are not
immediate to address jointly with classical methods. In this work, our aim is to find relationships between
clinical and genetic features of different types (metric, categorical, and text) and the ovarian cancer (OC)
disease progression. To this end, we first propose a univariate statistical method for text type applying
bootstrap resampling to Bag ofWords and Latent Dirichlet Allocation in order to include as features the free-
text fields of the health recordings. Secondly, we extend bootstrap resampling for metric and categorical fea-
ture extraction with Principal Component Analysis (PCA) and Multiple Correspondence Analysis (MCA),
respectively. We subsequently formulate a novel and integrative method for jointly considering metric,
categorical, and text features. Results obtained in text analysis indicate individual differences in some words
between two OC patients groups categorised according to their sensitivity to platinum drugs. These results
indicate separability between both groups for text features. Also, regarding the multivariate analysis, clinical
data results showed separability patterns for the three methods analysed according to the platinum-sensitivity
degree. The use of these analytical tools in our OC cohort has allowed us to demonstrate their strengths by
confirming the predictive and prognostic role of widely-known clinical and genetic variables (BRCA status,
value of adjuvant therapy and optimal resection, or family history) and demonstrating significant associations
in other variables whose role in OC development has been studied to a lesser extent (such as PMS1, GPC3,
and SLX4 genes). These results highlight the value of implementing these approaches for the identification
of novel biomarkers in the context of OC.

INDEX TERMS Bag of words, bootstrap resampling, clinical data, feature extraction, genetic data, latent
Dirichlet allocation, multiple component analysis, ovarian cancer, principal component analysis.

I. INTRODUCTION
High throughput sequencing strategies have been widely
applied for gaining insights into the genomic profile of
tumors. The comprehensive characterization of genetic alter-
ations, combined with improvements in sequencing tech-
niques, functional interpretation of genetic results, and in
silico analysis tools helped us to define predictive/prognostic

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

biomarkers and resulted in the clinical application of these
molecular findings (e.g. FDA approved panels evaluating the
status of cancer predisposing genes) [1].

However, several challenges could be mentioned as limit-
ing factors for the translation of molecular data into clinically
actionable markers. First, the need for establishing standard-
ized laboratory and analytical practices to reduce the bias
of the experimental workflow followed by each scientific
group and to facilitate the integration, sharing and compar-
ison of data of interest. Second, there is a lack of information

58034 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8845-2834
https://orcid.org/0000-0002-5003-1759
https://orcid.org/0000-0003-1356-2646
https://orcid.org/0000-0001-9438-5703
https://orcid.org/0000-0002-3701-0347
https://orcid.org/0000-0003-0426-8912


L. Bote-Curiel et al.: Text Analytics and Mixed Feature Extraction in OC Clinical and Genetic Data

regarding the biological role of unknown significance genetic
variants (USVs) in the development of cancer, which could
behave either as pathogenic alterations (causative), as vari-
ants slightly increasing the risk for cancer development or
modifying the clinical presentation of the disease (age of
onset, developed symptoms, or aggressiveness of the tumor)
or as passenger alterations (not causative). In addition, despite
that tumor mutational burden (TMB) has become a promising
biomarker for both prognosis and immunotherapy, several
challenges still compromise the adoption of TMB for clinical
decision making. Lastly, the development of better integra-
tive analysis models for studies including both extensive
clinical and genomics or other -omics data (transcriptomics,
proteomics, or epigenomics, among others) are needed for
efficiently leveraging the massive amount of molecular data
in the benefit of providing treatment recommendations to the
clinicians [2].

Given that Data Science analyses often requires mixing
sources with different nature, which are not immediate to
analyse jointly, the purpose of our study was to use existing
or novel analysis methods to identify significant relation-
ships between different types of clinical and genetic features
(metric, categorical, and text) and consequently define more
reliable predictive and prognostic biomarkers in the context
of ovarian cancer (OC) disease. To achieve this goal, we pro-
pose, in the first part of this work, a univariate statistical
method for text type applying bootstrap resampling to Bag
of Words (BoW) in order to inspect the free-text fields of
the health recordings. This method is an extension, for text
variables, of a previous work that enables to scrutinize, with
a unique framework, differences in metric and categorical
variables [3]. To complete the text analysis, we introduce the
use of Latent Dirichlet Allocation (LDA) method for topic
discovery in the same text fields of the health recordings,
and, as a novelty, for using it as a method to represent text
in which each observation of the dataset is encoded as a real-
valued vector. But, although univariate analysis methods are
extremely useful and provide us with very relevant infor-
mation, they have the limitation of not considering interac-
tions between variables. To overcome this limitation, more
advanced or sophisticated multivariate methods need to be
used.

For this reason, in the second part of this work, we propose
a framework which consists of the application of bootstrap
resampling to the classical Principal Component Analy-
sis (PCA) and Multiple Correspondence Analysis (MCA)
methods to use them as a feature extraction framework of
metric and categorical variables, respectively. In detail, this
creates a new set of features which capture most of the useful
information contained in the initial set of variables. By inter-
preting this new set of features, we can have an idea of which
original variables are more relevant. In addition, the represen-
tation of these new features in 2 or 3 dimensions (the most
relevant eigendirections) often provides useful information
about patterns present in the data. However, neither PCA nor
MCA can be used straightforwardly with mixed variables.

Therefore, in order to be able to conduct a joint exploration
of variables of different nature (metric, categorical, and text),
we introduce a new method based on the principles of the
two previous ones, which we call MCAPCAmethod. Overall,
these methods are used to extract information and intrinsic
patterns in an OC dataset consisting of clinical, text, and
genetic features.

The scheme of the paper is as follows. In Section II,
we describe the OC dataset used in this work. Then, in
Section III, we extend the use of bootstrap resampling prin-
ciples for textual variables in terms of BoW, and we also
present LDA method in this setting. Furthermore, we expand
the bootstrap resampling principles to multivariate analysis,
using PCA for metric variables, MCA for categorical vari-
ables, and a novel variation of these methods for combina-
tions of metric, categorical, and text variables. After that,
results with OC data are provided in Section IV. Discussion
and conclusions are established in Section V. Additionally,
we present simple examples of the use of the described mul-
tivariate methods using synthetic data in Appendix.

II. DATASET DESCRIPTION
The dataset used in this work was created as part of the
BRCAness initiative from the Innovation Oncology Labora-
tory of the Gynecologycal, Genitourinary, and Skin Cancer
Department, at Clara Campal Comprehensive Cancer Center
Madrid (Hospital HM Sanchinarro, Spain). Based on the
degree of sensitivity to platinum-based drugs, 54 patients
were selected from an OC cohort including approximately
300 cases. Genomic DNA was extracted from formalin-
fixed embedded paraffin tumors of these 54 patients to per-
form Next Generation Sequencing (NGS) profiling, either by
means of whole-exome sequencing (WES) or predesigned
targeted gene panels (Onco80).1

Clinical variables cover different aspects of the disease
such as: (1) Information provided by the patient prior to the
diagnosis, including the symptoms developed or the oncolog-
ical personal or familial antecedents, which are key variables
considering the genetic factors involved in the heritability of
ovarian carcinoma; (2) The molecular profiling of potential
familial OC patients and the results obtained in the genetic
diagnosis screening; (3) Main features of the OC developed,
namely the anatomical location of the studied samples, histo-
logical features of the primary tumor, tumor stage, grade and
perineural invasion; (4) Type of surgical procedure (primary
debulking vs. interval surgery) and information regarding the
administration of neoadyuvant and/or adyuvant chemothera-
pies (number of cycles, toxicities, degree of response, or pro-
gression, among others); (5) Data regarding the subsequent
chemotherapeutic lines of treatment (drug scheme, number
of cycles, toxicities, degree of response, or progression); And
(6) current status of the patient or information related to
disease progression variables (platinum free interval [PFI],

1An informed consent was obtained from all the study participants, and
the study was approved by the Institutional Review Board of HM Hospitals
Ethics committee.
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TABLE 1. List of the most relevant variables of the clinical part in the OC dataset and their type and description.

TABLE 2. List of the most relevant variables of the genetic part of the OC dataset and their types and description.

progression free survival [PFS], overall survival [OS]) and
exitus of the studied cases. The names of the clinical variables
used in this work, together with their types and descriptions,
are shown in Table 1.

Genetic variables provide information for each of the
somatic or germline detected variants. Relevant variables
included the gene and chromosome harbouring the mutation,
the coding strand, the chromosomic position of the variant,
and the detected alleles (genome reference vs. mutant allele).
NGS platforms also provided information regarding the
sequencing depth of the position of considered nucleotides
and the detection frequency for each allele (reference vs.
mutation), which is an indirect estimate of the variant status
(heterozygous or homozygous), the clonality of the muta-
tion, and the potential infiltration of non-tumoral cells in
the tumoral sample. The functional implication of the muta-
tions was covered by different genetic variables such as
the location of the variant (coding regions vs. non trans-
lated regions, 5’ or 3’ UTR), the effect on the codified
protein (punctual [missense], early truncation, frameshift, or

alternative splicing), the phylogenetic conservation score of
the DNA region including the mutated nucleotide, and the
prediction of pathological defects based on several in silico
tools (Condel, Polyphen, or Shift). Names, types, and descrip-
tions of the most relevant genetic variables used in this work
are presented in Table 2.

III. DATA ANALYSIS
In a preceding work [3], we established a bootstrap resam-
pling analysis framework using simple and univariate sta-
tistical descriptions of categorical, metric, and date features
in datasets, making results easily interpretable by the users
(managers, clinicians, and others). However, text data type
was left out of that work. In this current work, we com-
plete the proposed framework by providing an extension of
the univariate resample analysis on free-text features using
BoW. Besides, this text analysis is supplemented with LDA,
a method that discovers latent topics in text and the most rele-
vant words of each of them. Also, and given the need to con-
sider interactions among features, we expand the bootstrap

58036 VOLUME 9, 2021



L. Bote-Curiel et al.: Text Analytics and Mixed Feature Extraction in OC Clinical and Genetic Data

resampling principles to linear multivariate analysis to use
them as a feature extraction framework: First, for PCA for
subsets of metric variables; Second, for MCA for subsets
of categorical variables; And third, for analysis of a mix of
metric, categorical, and text variables using a new variant of
PCA and MCA adapted to this type of problems.

A. TEXT FEATURES
To address text-analytic problems, BoW method is often
used [4]. This method basically consists of histograms for
the amount of appearances of each word in a text. We denote
by Tj a text feature Fj, that is, Fj.type = T. With this,
{(wkj ,T

k
j ), k = 1, · · · ,Kj} is the set of the Kj different words,

wkj , that can be found in the text of that feature, and their
corresponding relative frequency, T kj . This relative frequency,
T kj , which represents the proportion of presence of the word
wkj in the text, can be written as a probability mass function
(pmf), denoted here by P(wkj ). Considering two groups, G1
and G2, the conditional pmfs for that feature are as follows:

P(wkj |G1), P(wkj |G2).

With this, we can define a statistic as the difference in
conditional pmfs,

1P(wkj ) = P(wkj |G1)− P(wkj |G2),

which could be used to perform hypothesis tests.

B. LATENT DIRICHLET ALLOCATION
LDA is a generative probabilistic model describing a col-
lection of documents called corpus. Its basic idea is that
documents in the corpus are represented as a distribution
over latent topics, where each topic is characterized by a
distribution over fixed words called vocabulary [5].

We represent the corpus of M documents as D =

{d1, · · · , di, · · · , dM }, where di is a document. Each doc-
ument di has a sequence of Ni words denoted by wi ={
wi1, · · · ,wij, · · · ,wiNi

}
, where wij is the jth word in the

document di. The number of latent topics in this corpus is
written asK . The probability distribution of the kth topic over
the vocabulary is represented as φ(k), and θ i is a probability
distribution over the topics in the document di. We also
define zij as the topic index for word wij. With this notation,
the generative process for a corpus D under a LDA model is
as follows:

1) For k = 1, · · · ,K :
a) we choose φ(k) from a symmetric Dirichlet

distribution with parameter β.
2) For each document di of the corpus D:

a) We choose θ i from a symmetric Dirichlet
distribution with parameter α.

b) For each word wij:
i) We choose zij from a multinomial distri-

bution with probabilities θ i and number of
trials n = 1.

ii) We choose wij from a multinomial distribu-
tion with probabilities φ(zij) and number of
trials n = 1.

The value zij represents the topic for the jth word in docu-
ment di and is grouped in a set zi =

{
zi1, · · · , zij, · · · , ziN

}
.

For a document di, if we know the parameters α and β,
the probability distributions of the topics over the vocabulary,
φ =

{
φ(1), · · · ,φ(k), · · · ,φ(K )}, the probability distribution

over the topics, θ i, the set of N words, wi, and the set of N
topic per word, zi, we can define the joint distribution as

p(wi, zi, θ i,φ|α, β) = p(φ|β)p(θ i|α)p(zi|θ )p(wi|φ).

However, variables zi, θ i, and φ are unobserved or latent
variables. The key problem is to reversing the defined gen-
erative process and learning the distributions of these latent
variables in the model using the observed data wi and the
given parameters α and β. In LDA, this amounts to solving
the posterior distribution

p(θ i,φ, zi|wi, α, β) =
p(wi, zi, θ i,φ|α, β)

p(wi|α, β)
.

This distribution is intractable to solve analytically.
However, there are a number of approximate inference
techniques available that they can be applied to the problem,
including collapsed variational Bayes [6] and collapsed
Gibbs sampling [7].

All in all, LDA is primarily used as a method for topic
discovery in text. These latent topics can be well displayed in
a chart with the most relevant words of each topic using the
probability distribution of each topic over the vocabulary, φ.
In addition, and as a novelty, we propose to use LDA as a
method to represent text where each document is encoded as
a real-valued vector using the probability distribution over the
topics in this document, θ i.

C. PCA WITH BOOTSTRAP RESAMPLING
PCA is one of the best known linear multivariate statistical
technique. It analyses a dataset representing observations
described by several metric variables, which are, in gen-
eral, mutually correlated. Its goal is to represent this set of
observed metric variables in terms of a smaller set of new
orthogonal variables [8]. Therefore, PCA is often used as
a dimension reduction technique for data compression or
visualisation.

Suppose a dataset with N observations and Q metric vari-
ables available. In PCA, the interest is to find the projections
of the observations in a lower dimensional space, P, known
as principal subspace, with P < Q, so that variance is
maximised to retain as much variability as possible [9].

Given a dataset in form of table of N×Q, we can represent
it by a data matrix X ∈ RN×Q, which we assume that is
centered (the mean of each of the Q metric variables is 0).
If B ∈ RN×P is a orthogonal matrix whose columns form an
orthonormal basis of the principal subspace, PCA problem is
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reduced to

argmin
B

∥∥∥X− XBB>
∥∥∥2
F

subject to B>B = I,

where XBB> is the reconstruction of projections of the X
over the subspace spanned by the columns of B and ‖·‖F is
the Frobenius norm [10].

Knowing that ‖A‖2F = Tr
{
AA>

}
, we can write∥∥∥X− XBB>

∥∥∥2
F
= Tr

{
(X− XBB>)(X− XBB>)>

}
= Tr

{
X>X

}
− Tr

{
B>X>XB

}
.

Therefore, the minimization problem can be seen as a
maximization problem,

argmax
B

Tr
{
B>X>XB

}
subject to B>B = I.

SinceX is a centered matrix, its covariance matrix (regardless
of the scale factor 1

N ) is S = X>X. Then,

argmax
B

Tr
{
B>SB

}
, subject to B>B = I.

Using Lagrange multipliers, we can rewrite the above
equation as

argmax
B

Tr
{
B>SB

}
− Tr

{
(B>B− I)3

}
,

where 3 is a diagonal matrix containing the Lagrange mul-
tipliers. If we derive with respect to B and set equal to zero,
we can solve this problem as a standard eigenvalues problem

SB = B3,

where B ∈ RN×P is the eigenvectors matrix and 3 ∈ RP×P

is the diagonal eigenvalues matrix.
Therefore, eigenvectors give the directions of maximum

variation of the data and eigenvalues quantifying the amount
of variation of the data projected on its corresponding eigen-
vector. So, if we want to find a lower dimensional space
to represent the data, we must retain only the eigenvectors
where data has more variation, that is, those with larger
eigenvalues. For visualisation, the lower dimensional space,
P, would be equal to 2 (for 2 dimensions) or equal
to 3 (for 3 dimensions).

To find the projections of the observations X in the lower
dimensional space, P, spanned by B, we just perform

F = XB,

where F ∈ RN×P is the projected data matrix whose columns
are the new uncorrelated variables with standard deviation
equal to zero.

Projections of the observations can be seen, according to
the above equation, as a liner combination of each compo-
nent of eigenvectors with the original variables, resulting the
new (projected) variables. Thus, a large component in an
eigenvector (in absolute value) means that the corresponding
original variable has more influence in the creation of the new

variable. With this, we can have an idea of which original
variables are most relevant in each new variable. Also, visual-
izing the projections of the observations in 2 or 3 dimensions,
we can see if the dataset has intrinsic or natural separability.

It is sometimes important to visualise not only the projec-
tions of the observations in the principal subspace, but also
the original variables. These variables can be plotted as points
using the B matrix as coordinates, with P equal 2 or 3 [8].
More specifically, each of the N rows of the matrix is an
original variable that can be represented by its P coordinates.
In this way, we can detect the relationships between them.

In some cases, centered data matrix X is normalised by the
standard deviation of each of the Q metric variables. In this
situation, we can write the new centered and normalised data
matrix as X̃ = XD−

1
2 , where D is the diagonal matrix of the

variances of the Q metric variables. The covariance matrix
without the scale factor 1

N of X̃ is S̃ = X̃>X̃ = D−
1
2 SD−

1
2 ,

where S̃ is also the correlation matrix of X. Just like
before, we can solve this problem as a standard eigenvalues
problem S̃B̃ = B̃3̃, with the projections of the observations
as F̃ = X̃B̃.

On another note, bootstrap resampling method is a statis-
tical technique which is based on the idea that if we want to
make an inference from a population in terms of some statistic
whose calculation is known, but its actual distribution is not
easy to obtain analytically, we can resample with replacement
the sample data and make inferences on resamples [3]. This
allows us to check how reliable is the statistic, since we could
estimate the confidence interval (CI) of it [11]. In our case,
we are interested in the CI of each eigenvalue and of each
component of each eigenvector resulting from PCA. To do
this, we first calculate PCA on each bootstrap resample of
the dataset and then we calculate the CI for each eigenvalue
and each component of the eigenvectors.

However, several problems can happen with eigenvectors
in each bootstrap resample [12]. The first one is that the sign
of eigenvectors in PCA is arbitrary, so they could be multi-
plied by−1 (reflection). The second one is that it could be an
inversion in the order of the eigenvectors when two or more
eigenvalues are similar (re-order). To reverse these problems,
we calculate two distancematrices: One is the distancematrix
between the resample eigenvectors and the empirical eigen-
vectors; The other is the distance matrix between the inverted
resample eigenvectors and the empirical eigenvectors. The
order and the sign of the resample eigenvectors is decided
based on the maximum absolute distance position in each of
distance matrix.

In order to illustrate the functioning of this method,
we present a simple example with a synthetic dataset in
Appendix.

D. MCA WITH BOOTSTRAP RESAMPLING
Correspondence Analysis (CA) is a technique for explo-
ration of two categorical variables (with several categories for
each of the two variables) used with a two-way contingency
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table [13]. This technique is also known as Simple CA [14].
As in PCA with metric variables, the key idea in CA is
to reduce the dimensionality of the two-way contingency
table and simplify it in a subspace of low-dimensionality.
Commonly, two or three dimensions are used for visualiza-
tion [15], in a way that the categories of the two variables
are depicted as coordinates, revealing associations between
them [14].

MCA is often seen as an extension of CA which allows
to analyse the relationships of more than two categorical
variables [16]. However, it can also be seen as a form of PCA
applicable to categorical rather than metric variables [17].

In the presence of several categorical variables, there are
two possible ways to organize the data for MCA analysis,
namely, in an indicator (binary) table or in a Burt table [14].
For our case, we use the former representation.

Let us consider an original data table of N×Q dimensions,
where N is the number of observations and Q is the number
of categorical variables. Each categorical variable qn has
Jqn categories, so that total number of categories of all the
variables is J =

∑Q
n=1 Jqn .With this, we are able to transform

the original data table into an indicator matrixX ∈ {0, 1}N×J .
The goal of MCA is to reduce the dimensionality of the

observations (rows) when variables are categorical. To get
this, firstly, we center and normalise the indicator matrix X.
If ¯x = 1

N X
> 1 is a J × 1 vector with the means of each

variable, being 1 a N×1 vector of ones, andD is the diagonal
matrix of these means, the centered and normalised matrix X
is X̃ = (X− 1x̄>)D−

1
2 . Matrix X̃ is the data matrix on which

we want to find the orthogonal matrix B where this data will
be projected. As it is demonstrated in PCA and generalizing
for this case, we can solve this issue as a standard eigenvalues
problem

X̃>X̃B = B3.

To find the projections of X̃ in the lower dimensional space
spanned by B, we perform

F = X̃B.

Thus, MCA can be seen as basically an adaptation of
PCA for categorical data. The only difference is that the data
matrix to which we apply the standard eigenvalues problem
is a binary matrix that is centered and normalised by the
means (rather than by the standard deviation as in PCA).
Therefore, as in the case of PCA, a large component in an
eigenvector (in absolute value) means that the corresponding
original variable has more influence in the creation of the new
variable, given information of which original variables are
most relevant in each new variable. Likewise, a visualization
of the projections gives us an idea of the intrinsic separability
of the dataset.

Also in this case, we are interested in the CI of each
eigenvalue and of each component of each eigenvector as a
result of applyingMCA. The process is similar to that already
explained, i.e., we initially apply MCA to each bootstrap

resample of the dataset and then we calculate the CI for
each eigenvalue and each component of the eigenvectors.
Problems with reflections and with the order of the eigen-
vectors can also appear when MCA is applied to resamples,
solving them using the same method as in PCA. A sim-
ple example of this method on synthetic data is presented
in Appendix.

E. MCAPCA WITH BOOTSTRAP RESAMPLING
After presenting PCA for metric variables and MCA for
categorical variables, we are interested in amethod for feature
extraction that is able to analyse variables of both types at
the same time. Therefore, we propose a new method that we
have called MCAPCA. This method pursues the principal
idea of reducing the dimensionality of a mixed data matrix
with metric and categorical variables, obtaining a subspace of
low-dimensionality. Our proposal here is basically a variant
of MCA (which in turn is a variant of PCA) where the
metric variables have to be properly transformed. Besides,
using the LDA text encoding method based on the probability
distribution over the topics of observations (documents), θ i,
we can encode each observation in a real-valued vector so
that it is possible to analysis text variables together with cat-
egorical and metric variables using MCAPCA. The proposed
procedure is explained next.

Let us consider an original data table of N×Q dimensions,
where N is the number of observations and Q is the sum of
metric (QM ) and categorical (QC ) variables. Each categorical
variable qn has Jqn categories, so that the total number of cat-
egories of all the categorical variables is J =

∑QC
n=1 Jqn . With

this, we transform the categorical variables into an indicator
matrixXC ∈ {0, 1}N×J . We also have to transform the metric
variables. In this case, we use the Escofier transform [18], that
allows the metric variables to be analysed byMCA producing
the exact same results as PCA. After this transformation,
we obtain a metric matrix XM ∈ RN×2QM . Finally, we can
join this matrix XM with the indicator matrix XC obtaining a
data matrix X ∈ RN×(J+2QM ).

To get the goal of reducing the dimensionality of the
observations of this matrix X, we firstly have to center and
normalise it. To center, we simply subtract from each column
its mean. To normalise, we calculate the first singular value of
each variable ofX, this is, eachmetric variable is a sub-matrix
of 2 columns (given by the Escofier transform) and each
categorical variable will be a sub-matrix of Jqn columns. So,
if the number of columns of the sub-matrix of each variable
is ki, and its first eigenvalue is di, we can calculate a factor
αi =

ki
di
[19]. If we define Dα as the diagonal matrix of these

factors, ¯x = 1
N X
> 1 as a J × 1 vector with the means of each

variable, andD as the diagonalmatrix of thesemeans, then the
centered and normalised matrix is X̃ = (X− 1x̄>)(DDα)−

1
2 .

Matrix X̃ is the data matrix on which we have to find the
orthogonal matrix B to project the data, solving this, like in
PCA and MCA, as a standard eigenvalues problem given by

X̃>X̃B = B3.
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Finally, we are able to find the projections of X̃ in the lower
dimensional space extended by B doing

F = X̃B

As in the two previous cases, we are interested in deter-
mining how is the CI of each eigenvalue and each component
of eigenvectors obtained from using MCAPCA. To do this,
we use the bootstrap resampling method as we have done in
PCA and MCA. Same problems of reflection and in the order
of the eigenvectors can also arise when MCAPCA is applied
to resamples, solving them using the same method as in PCA
and MCA.

IV. EXPERIMENTS AND RESULTS
In this section, we apply the methods exposed in the previous
section to analyse the OC dataset. We first explore the text
features of medical comments present in the OC dataset using
BoWmethod and LDA. Then, we analyse the metric features
of the OC dataset applying PCA method, the categorical
features of the OC dataset with MCA method, and the new
MCAPCA method to metric, categorical, and text features of
the dataset together.

A. TEXT ANALYSIS IN OC DATASET
In this part, we analyse text features of medical comments
present in the OC dataset, using BoW method and LDA for
this aim.

Each observation of the genetic part of the OC dataset
has a text feature providing the description of the sequenced
gene (Gene_Description) (Table 2). In the clinical part, there
are more than one text feature per observation which we
analyse jointly, namely, description of the type of cancer
developed by the patient other than ovarian (Oncological_
History_Description), presence of a family history of
gynaecological cancer (Ginecological_Family_History_
Description), and descriptions of the patient’s progress
after each chemotherapy cycles (Attitude_after_1st_Line,
Attitude_after_2nd_Line, others) (Table 1).
Before using BoW or LDA with the above text variables,

a data preprocessing is necessary. In detail, we convert words
to lowercase, we tokenize the text, that is, we represent
the text as a collection of words (also known as tokens),
we remove the stop words that can add noise to data like
‘‘a’’,‘‘and’’, ‘‘to’’, or ‘‘the’’, we erase punctuation symbols,
and we remove words that have do not appear more than
5 times in total. With all this, the clinical part of the OC
dataset has a vocabulary of 64 words and the genetic part has
a vocabulary of 130 words.

For BoW analysis, we calculate, for the text features of
the clinical and genetic part of the OC dataset, the pmf of
each word, wkj , for G1 and G2 groups, namely, P(wkj |G1)
and P(wkj |G2). As we are interested in the analysis of the
disease progression, we separate the OC dataset into two
interest groups based on the PFI feature, an indicator of
disease progression. Concretely, PFI is defined as the time
(in months) between the last cycle of platinum and evidence

of disease progression [20]. In this setting, depending on
the length of platinum drugs sensitivity, patients could be
categorized as platinum resistant (<6 months) or platinum
sensitive (>6 months). In the following, G1 corresponds to
the platinum sensitive group and G2 to the platinum resistant
group. After that, we could calculate an statistic of difference
in conditional pmfs, 1P(wkj ) = P(wkj |G1) − P(wkj |G2). With
this, we propose the following hypothesis test:
• Null hypothesis, H0 : 1P(wkj ) = 0, so that there is no
difference between both groups for the word wkj .

• Alternative hypothesis, HA : 1P(wkj ) 6= 0, so that
there is difference between both groups for the word
wkj . If 1P(w

k
j ) > 0 (if 1P(wkj ) < 0), then the relative

frequency of this word is larger in G1 (G2).
However, when there is some difference between both

groups, we need to establish whether this difference is large
enough to support statistical significance. To deal with this,
we calculate an estimation of the pdf of 1P(wkj ), by employ-
ing a bootstrap resampling method. If the CI over the estima-
tion of the pdf of1P(wkj ) overlaps 0, we do not reject the null
hypothesis, H0. Nevertheless, if the CI over the estimation
of the pdf of 1P(wkj ) does not overlap 0, we reject the null
hypothesis, H0, and accept the alternative hypothesis, HA.
With this, if the CI over the estimation is located at positive
values, this word is a relevant property of G1 (platinum
sensitive group). Conversely, if the CI over the estimation
is located at negative values, this word is relevant for G2
(platinum resistant group).

FIGURE 1. Bootstrap estimation of the pdf of each 1P(wk
j ) in (a) clinical

part and (b) genetic part of the OC dataset.

Results of applying the hypothesis test with a 99% confi-
dence level both in the clinical and genetic part are shown
in Fig. 1. The clinical part, displayed in Panel (a), reveals
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several significant words. Among them, the most relevant
ones are astenia (asthenia in English) and deterioro (dete-
rioration). These words are placed in the negative part of
1pdf , being their frequencies larger in the platinum resis-
tant group, which is consistent with a clinical deterioration
of the OC patients. For the genetic part, results showed in
Panel (b) demonstrated an association with serine proteases,
key enzymes in the extracellular matrix remodeling and con-
sequently in the biological changes adopted by the tumoral
cells to promote their metastatic properties.

Also, we applied the LDA method to the text features of
both the clinical and genetic part of the OC dataset with the
aim of discovering latent topics in the text fields and as a
method to encode each document (each observation of the OC
dataset) as a real-valued vector. This codification enables text
features to be analysed together with categorical and metric
features using multivariate methods like MCAPCA.

Therefore, in our case we consider the text fields of
each observation both in the clinical and in the genetic
part as a document di, following the LDA explanation in
Subsection III-B. In order to discover latent topics in these
text fields of the OC dataset, we fix the number of top-
ics to discover in 5 (K = 5). To choose this number of
topics, we have calculated the corpus topic probabilities of
LDA models with different values of model order K , that
is, the probabilities of observing each topic in the entire
data set used to fit the LDA model for several K . With this,
using bootstrap resampling, we were able to estimate the
distribution for each topic of the corpus topic probabilities for
different K . Using this distribution, we observed that, from
K = 5 and for higher values, the bootstrap distributions of the
last topics exhibit a bimodality with one mode corresponding
to several 0 values (not shown), meaning that the last topics
can be considered as empty.

The latent topics discovered can be shown using the
word distributions per topics, φ(k), which can be used to
create word cloud charts, where the more probability of
occurrence of a specific word, the bigger and bolder it
appears in the word cloud. Results can be seen in Fig. 2.
For the clinical part, where the results are shown in the
Panel (a), some words that stand out for each topic are:
For Topic 1, carboplatino (carboplatin), paclitaxel, ovario
(ovary), or seroso (serous); for Topic 2, caelyx; For Topic 3,
neurotoxicidad (neurotoxicity), naúseas (nausea), alopecia,
or diarrea (diarrhea); For Topic 4, bevacizumab, manten-
imiento (maintenance), or progresión (progression); And
for Topic 5, lesiones (injuries), neuropatía (neuropathy),
or intervalo (interval). Otherwise, Panel (b) shows results
for the genetic part, where some important words are: For
Topic 1, protein, kinase, or strand; For Topic 2, group,
anemia, or Fanconi; For Topic 3, protease or serine; For
Topic 4, DNA, repair, or subunit; And for Topic 5, homolog,
repair, or mismatch. Regarding the previously mentioned
variables, both clinical and genetic factors represent text
features previously described to be associated with the
development of OC. Clinical variables included key terms

FIGURE 2. Word cloud charts of each of the 5 topics corresponding to
(a) clinical part and (b) genetic part of the OC dataset.

related with either the treatment (carboplatin, paclitaxel,
caelyx, bevacizumab) or the adverse effects of such drugs
(alopecia, nauseas, or neurotoxicity, among others). Among
the genetic factors significantly associated to the disease,
we observed concepts linked to genes (BRCA1, BRCA2,
or Fanconi anemia related genes), or DNA-repair path-
ways (HDR, homology directed repair or MR, mismatch
repair) commonly altered in OC. In addition to these widely
OC-related terms, a significant association was observed for
other genes whose role in the development has been studied
to a lesser extent (SLX4 and PMS1). Therefore, the strategies
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considered are able to extract key terms involved in the patho-
genesis of the tumor under study.

Besides, latent topics discovered can be used as a method
to encode text where each observation of the OC dataset,
called a document, is coded as a real-valued vector using the
probability distribution over the topics in this document, θ i.
Thus, with K = 5, each observation in the clinical and
genetic part of the OC dataset is encoded with a vector of real
numbers of size 5.We use this codification to analyse together
text with categorical and metric features using MCAPCA
method. Results are presented in Subsection IV-D.

B. PCA ANALYSIS IN OC DATASET
In this experiment, we focus on the analysis of metric features
of the OC dataset described in Section II. For this purpose,
we use PCAmethod, which creates new uncorrelated features
that are linear combinations of the original ones, providing
an idea of: (1) Which new variables retain more information
(through eigenvalues); And (2) which original variables are
most relevant or influential in the creation of each new vari-
able (through eigenvectors). We check how reliable is this
information by calculating those CI with bootstrap resam-
pling. Also, we can have a representation of the OC dataset
in 3 dimensions, given by the most relevant eigendirections,
thus providing us with information on the presence of natural
and non-supervised patterns in the data.

In Fig. 3, we can see results of applying PCA to metric
features of the clinical part of the OC dataset (Table 1).
In Panel (a), we can see that the first eigenvalue is consid-
erably greater than the others, which means that the direction
of the first eigenvector retains much more variation of the
data. In Panel (b), the first three eigenvectors are shown.
We can see that, in the first eigenvector, all the components
are relevant (none of the them overlap zero), meaning that
original features that correspond to these components are
influentially combined to form this new variable. These are
the age at diagnosis (Age_at_Diagnosis), the progression
free survival (PFS), which represents the time from the first
date of pharmacological treatment until radiological or bio-
chemical progression, the number of cycles of chemotherapy
received in adjuvant therapy (Cycles_of_Adjuvance), and the
overall survival (OS), which estimates the duration of patient
survival from the date of diagnosis or treatment initiation.
In the second eigenvector, the most important component
is the first one, corresponding to the age at diagnosis, and,
in the third eigenvector, the third, which is the cycles of
chemotherapy in adjuvant therapy. This information is sum-
marised in Table 3. In Panel (c), we can observe the pro-
jections, in 3 dimensions, of the clinical observations of
the OC dataset (thick points) and their bootstrap resamples
(thin points). In this case, as we are interested in the PFI
as indicator of disease progression, we split OC dataset into
platinum resistant patients (red points) and platinum sensitive
patients (blue points) to try to find clusters which tell us if
there is separability over the new features. It can be seen that
both groups of OC patients are practically separated. In this

FIGURE 3. Bootstrap estimation of the CI of (a) eigenvalues and
(b) eigenvectors resulting of applying PCA to the clinical metric variables
of the OC dataset. In (c), we can observe the 3-D projections of
observations along with their bootstrap resamples after applying PCA to
the clinical metric variables of the OC dataset.

TABLE 3. Relevant variables in each of the first three eigenvectors
resulting from applying PCA to the clinical part of the OC dataset.

regard, the ability of these variables to differentiate between
responders vs. non responders is consistent with the expected,
since the platinum-free interval positively correlates with
features related to disease progression (overall survival and
progression free survival) and with the number of platinum-
based cycles that OC patients would receive.

In Fig. 4, we can observe, in this case, results of applying
PCA to the metric variables of the genetic part of the OC
dataset (Table 2). In Panel (a), it shows that the first two

58042 VOLUME 9, 2021



L. Bote-Curiel et al.: Text Analytics and Mixed Feature Extraction in OC Clinical and Genetic Data

FIGURE 4. Bootstrap estimation of the CI of (a) eigenvalues and
(b) eigenvectors resulting of applying PCA to the genetic metric variables
of the OC dataset. In (c), we can observe the 3-D projections of
observations along with their bootstrap resamples after applying PCA to
the genetic metric variables of the OC dataset.

eigenvalues can be considered important, and that CI are
much narrower than in the clinical part. In Panel (b), we can
observe that, for the first three eigenvectors, all components
are important, so that original features that correspond to
these components are very influential in these three new vari-
ables. These original variables are: the number of sequencing
reads which contains an specific variant allele (VarDepth);
the conservation of the region under study at an evolutionary
level (Conservation_Score) [21]; feature that reflects how
different are the amino acids that are changed in missense
mutations (Grantham_Distance) [22]; score of the degree
of pathogenicity of the variant according to different in sil-
ico tools (Condel_Prediction_Score, Sift_Prediction_Score
and PolyPhen_Prediction_Score) [23]–[25]. Table 4 exposes
these information. In Panel (c), we can see the genetic obser-
vations of the OC dataset (thick points) and their bootstrap

TABLE 4. Relevant variables in each of the first three eigenvectors
resulting from applying PCA to the genetic part of the OC dataset.

resamples (thin points) projected in 3 dimensions. It can be
seen that platinum sensitive observations (blue points) and
platinum resistant observations (red points) are very mixed.

In this setting, the terms included in these eigenvalues
represent features directly associated with the relevance of
nucleotides, and consequently of their corresponding amino
acids, altered by the mutations under study. The incapacity of
these genetic factors to discern between the two groups estab-
lished on the basis of the response to platinum agents may be
due, however, to the fact that to a great extent these metric
values constitute in silico estimates. Therefore, the biological
effect of these alterations in the endogenous activity of the
protein and the role of such variants in OC pathogenesis have
not been functionally validated. It is also necessary a greater
concretion in the genetic datasets and deeper bioinformatic
studies to obtain more solid results.

C. MCA ANALYSIS IN THE OC DATASET
In a similar way that we use PCA for metric variables,
we useMCA for categorical variables. Likewise, new features
obtained from applying MCA to the OC dataset are linear
combinations of the original ones ranked in order of the
amount of data variation retained. This allows us to know
which original features are most important in each new vari-
able and their reliability calculating the CI with bootstrap
resampling. In addition to this, we can plot the projections
of the OC dataset observations in 3 dimensions to get infor-
mation on the presence of intrinsic patterns.

Results of applying MCA to the categorical features of
the clinical part of the OC dataset (Table 1) are presented
in Fig. 5. In this case, we represent the first 20 eigenval-
ues and the first three eigenvectors. In the first eigenvector,
there are several components that are important (none of
the them overlap zero), meaning that original feature cat-
egories that correspond to these components are combined
in an important way to form this new variable. These are:
In the information about the presence of gynecological cancer
in family medical history (Gynecological_Family_History),
Yes category; In the type of surgery (Surgery), both Inter-
val and Primary categories; In the chemotherapy treat-
ment prior to primary surgery (Neoadjuvance), Yes and
No categories; In the observed response to neoadjuvant
chemotherapy (Response_of_Neoadjuvance), RC category,
meaning absence of all detectable cancer after treatment
administration; In the decision after neoadjuvant treat-
ment (Attitude_of_Interval_Surgery), Yes category, which
implies the logical continuation of the disease treatment in
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FIGURE 5. Bootstrap estimation of the CI of eigenvalues (a) and
eigenvectors (b) resulting of applying MCA to the clinical categorical
variables of the OC dataset. In (c), we can observe the 3-D projections of
observations and their bootstrap resamples after applying MCA to the
clinical categorical variables of the OC dataset.

a two-step procedure (neoadyuvancy plus interval surgery);
In the type of interval surgery (Type_of_Interval_Surgery),
R0 category, which means a complete resection of the
tumor during surgical procedures; In the chemotherapy treat-
ment after the primary surgery Adjuvance), Yes category;
And in the observed response to adjuvant chemotherapy
Response_of_Adjuvance), RC category, as in the neoadjuvant
chemotherapy. The second and third eigenvector do not show
relevant features categories. In this sense, all the terms con-
sidered relevant according to the first eigenvector are related
to the surgical procedures and the type of treatments received
by OC patients, which have been largely correlated with the
duration and degree of response of OC patients to platinum-
based drugs.

Likewise,MCA results of the genetic part of theOC dataset
(Table 2) are displayed in Fig. 6. For the first eigenvector, rel-
evant feature categories are: GPC3, MSH2, and TSC1 genes

FIGURE 6. Bootstrap estimation of the CI of (a) eigenvalues and
(b) eigenvectors resulting of applying MCA to the genetic categorical
variables of the OC dataset. In (c), we can observe the 3-D projections of
observations and their bootstrap resamples after applying MCA to the
genetic categorical variables of the OC dataset.

(HGNC_Symbol); In genotype (Genotype), P_Homo_ref, and
UNC_Hetero categories; Neutral or tolerated categories for
in silico tools predicting the pathogenicity of the con-
sidered variants (Condel_Prediction, Sift_Prediction, and
PolyPhen_Prediction) [23]–[25]. For the second eigenvec-
tor, we find these relevant feature categories: chr5 chromo-
some (Chr); Deleterious and Neutral in Condel_Prediction;
Deleterious and Tolerated in Sift_Prediction; And Benign
and Probably damaging in PolyPhen_Prediction. For the
third eigenvector, the following features categories stand out:
MSH6 gene; Chr2 chromosome; Genetic changes from the
reference allele to the variant allele (Genetic_Change) repre-
sented byAC>A,GTAAAAAAA>GAAAA, and T> TTCTC;
And Low category in IMPACT. Both Table 5 and Table 6
expose each one of these features categories for clinical and
genetic, respectively.
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TABLE 5. Relevant categories of variables in each of the first three
eigenvectors resulting from applying MCA to the clinical part of the OC
dataset.

TABLE 6. Relevant categories of variables in each of the first three
eigenvectors resulting from applying MCA to the genetic part of the OC
dataset.

In Panel (c) of both Fig. 5 and Fig. 6, we can observe
the clinical and genetic projections of the OC dataset obser-
vations in 3 dimensions (thick points) and their bootstrap
resamples (thin points) for platinum sensitive (blue points)
and platinum resistant (red points) groups. For the clinical
part, a certain separability between groups can be observed.
However, for the genetic part, there is not a apparent pattern
of segregation. Interestingly, some of the categorical genetic
features included genes involved in tumor, either in general,
or in ovarian carcinoma progression (for example,MSH2 and
MSH6), as well as certain categories of several in silico tools
(Sift, PolyPhen, or Condel) able to predict the pathogenicity
of single nucleotide variants. In addition, our strategy allowed
us to detect significant association with less-studied genetic
variables, as it is the case of GPC3 gene, which has been
suggested to modulate the clinical response of ovarian clear
cell carcinomas to standard therapies.

However, it seems recommendable to establish new analyt-
ical tools and to expand to better consolidated genetic datasets
in order to continue in this path and to identify new variables
behaving as efficient predictive or prognosis biomarkers.

D. MCAPCA ANALYSIS IN OC DATASET
Likewise we use PCA in metric variables and MCA in cat-
egorical variables, we use the new method MCAPCA in
both types of variables. Furthermore, we can analyse text
variables together with categorical and metric using the LDA
text encoding method in which each observation is encoded,
in our case, in a real-valued vector of dimension 5 (number
of latent topics), using the probability distribution over the
topics in this document, θ i, calculated in Subsection IV-A.
Results obtained after applying MCAPCA to the clinical

part of the OC dataset (Table 1) are shown in Fig. 7. We show
the first 20 eigenvalues and the first three eigenvectors.

FIGURE 7. Bootstrap estimation of the CI of (a) eigenvalues and
(b) eigenvectors resulting of applying MCAPCA to the clinical metric and
categorical variables of the OC dataset. In (c), we can observe the 3-D
projections of observations and their bootstrap resamples after applying
MCAPCA to the clinical metric and categorical variables of the OC dataset.

In the clinical part, results are the same as those obtained
with MCA. The only difference is that, for the first eigenvec-
tor, the numerical variables selected with PCA also appear.
In this case, the MCAPCA method behaves as the union
of PCA and MCA, which is just what we want to achieve,
since this could facilitate an analysis of relationships between
numerical and categorical variables.

In the same way, MCAPCA results of the genetic part of
the OC dataset (Table 2) are displayed in Fig. 8. As in the
clinical part, the method behaves like the union of MCA and
PCA, since the results are the same as each of the PCA and
MCA methods separately. These results are listed in Table 7
and Table 8.

In Panel (c) of Fig. 7 and Fig. 8, we can observe the clinical
and genetic projections of the OC dataset observations in
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FIGURE 8. Bootstrap estimation of the CI of (a) eigenvalues and
(b) eigenvectors resulting of applying MCAPCA to the genetic metric and
categorical variables of the OC dataset. In (c), we can observe the 3-D
projections of observations and their bootstrap resamples after applying
MCAPCA to the genetic metric and categorical variables of the OC dataset.

TABLE 7. Relevant categories of variables in each of the first three
eigenvectors resulting from applying MCAPCA to the clinical part of the
OC dataset.

3 dimensions (thick points) and their bootstrap resamples
(thin points) for platinum sensitive (blue points) and platinum
resistant (red points) groups. As was the case for PCA and

TABLE 8. Relevant categories of variables in each of the first three
eigenvectors resulting from applying MCAPCA to the genetic part of the
OC dataset.

MCA, a certain pattern of separability can be seen for the
clinical part, something that does not happen in the genetic
part.

V. DISCUSSION AND CONCLUSION
OC represents a serious health problem since is the second
most common gynecological neoplasm, with an estimated
annual incidence of 225 000 women worldwide [26]. It is also
the fifth cause of cancer associated mortality and the gyneco-
logical tumor with the worst prognosis (140 000 deaths per
year), with a 5-year overall survival close to 15%. This prob-
lem is marked by the lack of robust predictive and prognostic
molecular biomarkers underpining a priori knowledge of the
evolution of the disease [2].

The most well-known genetic factors associated to the
development of OC is the presence of pathogenic mutations
in genes involved in the DNA damage repair by homologous
recombination (HR;>60% of high grade serous OC patients)
and more specifically, BRCA1 and BRCA2 loci. It is worth
highlighting that loss of function alterations in both genes
significantly correlates with a better therapeutic response
to conventional chemotherapies (platinum-based agents) and
personalized treatments which cause increased cell DNA
damage (poly ADP ribose polymerase (PARP) inhibitors).
These findings led to the definition of aBRCAness phenotype,
which include patients presenting uncommon pathogenic
variants in other HR-related genes different than BRCA1 and
BRCA2, but developing a clinical course similar to cases
carrying alterations in these BRCA genes. As a consequence,
multiple experimental approaches (loss of heterozigosity,
genomic scars of MyChoice platform (Myriad), mutational
signature 3, among others) [27]–[29] have been implemented
in recent years to indirectly estimate the cellular activity of
the HR pathway and therefore define subsets of OC patients
who could respond more efficiently to the current therapies.
Despite its applicability, limited genetics-clinical correlations
have been described on basis to HR pathway activity since
clinical benefit is observed regardless of the BRCA status.
Therefore, it is highly desirable the adoption of experimental
approaches that include the integration of -omics data mas-
sively obtained from tumor samples under study with clinical
information of interest.

58046 VOLUME 9, 2021



L. Bote-Curiel et al.: Text Analytics and Mixed Feature Extraction in OC Clinical and Genetic Data

FIGURE 9. Bootstrap estimation of the CI of (a) eigenvalues and (b) the first three eigenvectors resulting of applying PCA to a
simple example with synthetic data. In (c) and (d), we can observe the 3-D projections of observations and variables along
with their resamples after applying PCA to simple example with synthetic data.

In the text analysis, a method for text type applying boot-
strap resampling to BoW has been used in order to inspect
the free-text fields present in the clinical and genetic datasets
available for our OC cohort. In parallel, LDA method has
been applied to discover latent topics in the text fields of
such dataset. Given that both strategies were able to detect
both clinical and genetic differences according to the degree
of therapeutic response to platinum drugs (PFI resistant,
<6 months vs. PFI sensitive, >6 months), we strongly con-
sider that our OC datasets are discriminatory for text features.
As expected, these methods showed significant association
with topics widely associated to the development of OC, such
as key terms related with the treatment, the adverse effects
of such therapies and the most frequently mutated genes
and altered molecular pathways (BRCA loci, DNA-repair
pathways, or Mismatch Repair, among others). In addition,
significant associations were detected with other variables
whose role in the etiology of ovarian cancer has been studied
to a much lesser extent, such as the presence of alterations
in the SLX4 and PMS1 genes. Regarding SLX4, rare loss-
of-fuction variants have been described to contribute to the
development of non BRCA mutated gynecologycal carcino-
mas, both ovarian and breast tumors [30], [31]. Significant
association detected for PMS1 locus could be explained by
the role of this factor in the DNA mismatch repair pathway
and its involvement in the pathogenesis of hereditary tumors.
Consequently, these methods were able to extract both well
known OC-related terms as well as low-risk OC concepts
involved in the ethiology of the tumor under study, reinforc-
ing the fortress of our approach.

In the linear multidimensional analyses, we have pre-
sented a framework consisting of the application of bootstrap
resampling to PCA and MCA, and we have also contributed
with MCAPCA, a new method that we propose to analyse
mixed features. This framework has helped us to explore
both the clinical part and the genetic part of the available
OC dataset. In detail, we have used this framework as a
feature extraction method to create a new set of features
that captures most of the useful information contained in
the initial set of variables of the OC dataset. Interpreting
this new set of features, we have an idea of which orig-
inal variables are most relevant. In addition, representa-
tion of these new features in 2 or 3 dimensions provides us
with information about the presence of patterns in the data.
Therefore, in this work we do not use feature selection or
supervised methods, since our idea is to perform a linear
multivariate exploration of the OC dataset just to try to
understand the features and their interactions in relation to
the OC disease progression in the feature extraction stage.
This type of data interpretability analysis is often ignored,
and researchers often move directly to a supervised analysis,
which could result in missing relevant information provided
by existing multivariate and nonsupervised feature extraction
methods. The results obtained showed us that the clinical
data has a certain pattern of separability for platinum resis-
tant and platinum sensitive groups in the three methods.
There results are in line with the predictive and prognostic
value of certain widely studied clinical variables (family
history of gynecological cancer, presence of residual disease
after surgery, or degree of response to adjuvant therapy).
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Additionally, this may be a indicator of success in using
the new set of features obtained for each method to predict
disease progression.

Despite that such pattern of separability does not appear
so evident for the genetic part, different terms were sug-
gested to behave as potential predictors of the response to
platinum-drugs. This is the case of different mismatch repair
genes (MSH2 and MSH6) and the scores/categories of in
silico pathogenicity predictors. Worth of mention, GPC3
gene, which has been described to modulate the therapeutic
response of clear cell ovarian carcinomas [32], [33]), showed
significant association despite of the reduced frequency of
such histology in our cohort. The lack of power to detect addi-
tional correlations could be explained by the fact of having an
over-stratified genetic dataset, which prevents the extraction
by the analytical methods used in this study of terms relevant
for the development of OC.

Clearly, these analytical tools should be able to recog-
nize genetic factors widely described to participate in OC
oncogenesis, such as BRCA1 and BRCA2 genes. It should
also be noted that ovarian cancer is an aetiologically com-
plex disease, whose development is also determined by other
molecular alterations studied by other -omics approaches
(methylation or proteomic profilings, among others). There-
fore, the integration of results obtained by multiple -omics
molecular profiling could be the ideal scenario for an efficient
discrimination of OC cases with the most favorable progno-
sis. Finally, it is also necessary to subsequently explore the
prediction information provided by existing non-linear and
supervised methods to fully evaluate the information coveyed
by the analyzed dataset.

APPENDIX
SYNTHETIC EXAMPLES
A. PCA SYNTHETIC EXAMPLE
To show how PCA works with bootstrap resampling,
we implement a simple example.We first generate a synthetic
dataset composed of 500 individuals and 9 metric variables,
in which there are 2 groups of 3 variables that are dependent
on each other, and 3 variables that are completely inde-
pendent. We apply PCA on this dataset, and also on each
bootstrap resample. In this way, we can estimate the CI of
eigenvalues and each component of eigenvectors, and make
an analysis of them.

Results of the simple example with synthetic data pre-
sented above are shown in Fig. 9. In Panel (a) are represented
the CI of eigenvalues in gray, the mean value depicted with a
red line, and the empirical value with a blue line. We can see
that the first two eigenvalues are much greater than the others,
meaning that the direction of the corresponding eigenvectors
retains much more variation of the data. In Panel (b) are
shown the CI of each component of the first three eigenvec-
tors in gray, the mean value with a red line, and the empir-
ical value with a blue line. We can check that, for the first
eigenvector (which represents the first new variable), com-
ponents that have most importance are all except the seventh,

eighth, and ninth, meaning that these original variables are the
ones that provide the most information for this new variable.
In the second eigenvector (which represents the second new
variable), the most important components are also the first
six, which means that these are the original variables which
provide the most information to this new variable. In the same
way, in the third eigenvector (which represents the third new
variable), there are no important variables. In Panel (c) are
depicted, in 3 dimensions, the projections of each observation
of the dataset (big blue points) and its resamples (small blue
points). Also, in Panel (d) are plotted the original variables in
3 dimensions.

B. MCA SYNTHETIC EXAMPLE
We present a simple example with the aim of enlightening
the functioning of MCA method with bootstrap resampling.
We create a synthetic dataset of 500 individuals and 6 cate-
gorical variables, each with 2 categories. This generates an
indicator matrix of 500× 12 dimensions. These variables are
2 groups of 2 dependent variables, and 2 completely indepen-
dent variables. With this synthetic dataset, we calculate MCA
on it and also on each resample of it. Thus, we can estimate
the CI of eigenvalues and eigenvectors.

The simple example described above has the results shown
in Fig. 10. We can see in Panel (a) how eigenvalues from the
sixth position have values of zero, meaning that the direction
of the corresponding eigenvectors do not retain any variation
of the data, and therefore any information, and they could
be dispensed with. In Panel (b) are presented the first three
eigenvectors with their CI. In the first eigenvector, which
represents the first new variable, components that have most
importance are the first four and the seventh and eighth,
so these original variables are the ones that provide the most
information for this new variable. In the second eigenvector,
the most important component is the sixth, and in the third
eigenvector, the ninth. In Panel (c) are plotted the projec-
tions of each observation of the dataset (big blue points) and
its resamples (small blue points). Additionally, in Panel (d)
are displayed the representations of the original variables
in 3 dimensions.

C. MCAPCA SYNTHETIC EXAMPLE
We develop a simple example in order to show how
MCAPCA works with bootstrap resampling. To this effect,
we generate a synthetic dataset of 500 individuals and
6 mixed variables. There are one group of 2 dependent metric
variables, another group of 2 dependent categorical variables
with 2 categories each one, and 2 completely independent
variables, one metric and one categorical (with 2 categories,
too). With this synthetic dataset, we apply MCAPCA on it
and also on each resample of it, being able to estimate the CI
of eigenvalues and eigenvectors.

Results obtained in the simple example described are dis-
played in Fig. 11. In Panel (a), we can observed how eigen-
values from the seventh position have values of zero, so we
can get rid of them due to the direction of the corresponding
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FIGURE 10. Bootstrap estimation of the CI of (a) eigenvalues and the (b) first three eigenvectors resulting of applying MCA to a
simple example with synthetic data. In (c) and (d), we can observe the 3-D projections of observations and variables along
with their resamples after applying MCA to simple example with synthetic data.

FIGURE 11. Bootstrap estimation of the CI of (a) eigenvalues and (b) the first three eigenvectors resulting of applying MCAPCA
to a simple example with synthetic data. In (c) and (d), we can observe the 3-D projections of observations and variables along
with their resamples after applying MCAPCA to simple example with synthetic data.

eigenvectors do not retain any variation of the data.
In Panel (b) are presented the CI of each component of
the first three eigenvectors. In the first eigenvector, the first
four components and the eighth have importance, so these
original variables are the ones that provide the most infor-
mation for this new variable. In the second eigenvector,
the most influential components are sixth, seventh, and

eighth, and in the third eigenvector, the last two components.
In Panel (c) are represented the projections of each observa-
tion of the dataset (big blue points) and its resamples (small
blue points) using the first three new variables generated
with MCAPCA as coordinates. Moreover, representations
of the original variables in 3 dimensions are displayed in
Panel (d).
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