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ABSTRACT Vehicular Ad Hoc Network (VANET) emerges to ameliorate road accident, traffic congestion,
and infotainment. Cognitive radio (CR) is integrated with VANET (termed as CR-VANET) to deal with the
spectrum scarcity problems. For better data transmission, routing is very important in a highly dynamic CR-
VANET environment. Routing in CR-VANET has several challenges due to vehicles’ high-speedmovements
and channel accessibility issues. This paper proposes a 2-Hop routing algorithm based on theMulti-Objective
Harris Hawks Optimization (2HMO-HHO) algorithm that chooses the optimal forwarders between the
source and destination vehicles. Selecting 2-hops instead of multiple hops or the entire route increases the
selected route’s stability and assures successful data transmission. The simulations performed in OMNeT++
with SUMO show that the proposed algorithm achieves promising results on throughput, delay, packet
delivery ratio, packet loss rate and communication overhead.

INDEX TERMS VANET, Routing algorithm, 2-hop routing, Harris Hawks Optimization, cognitive radio,
throughput, packet delivery ratio, delay, packet loss rate, communication overhead.

I. INTRODUCTION
Because of the rapid population increase and the prolifera-
tion of automobiles, traffic jam and road safety create exas-
perating and complicated challenges in many metropolitan
areas. About 1.25 million individuals worldwide die from
road collisions every year [1]. On the other hand, traffic jam
reasons costly delays, anxiety, noise, and unnecessary natural
resources usage such as fuels. A smart and effective transport
system, which increases economic productivity, can provide
efficient road traffic, minimize accidents and an eco-friendly
atmosphere. The vehicular ad hoc network (VANET) is
emerged to enhance road safety and decrease traffic conges-
tion. These provide improved safety and reduced travel time
of commuters, especially in busy hours. However, the fast
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development of wireless equipment creates the need for a
large spectrum to facilitate high-volume data transfer.

The two VANET wireless access standards are dedicated
short-range communication (DSRC) and wireless access in
vehicle environments (WAVE). The Federal Communica-
tions Commission (FCC) has allocated 75 MHz bandwidth
within the frequency range of 5.85–5.925 GHz to DSRC.
DSRC is based on the IEEE802.11 (wireless local area
networks) specification developed in 2003. Because of the
vehicles’ high speed and the complex shift in network topol-
ogy, DSRC produces significant overhead and high latency.
Therefore, DSRC is not suited for high-speed VANET. A new
updated DSRC version, called WAVE, was introduced to
make it adaptable, suitable and consists of two protocol
suits, IEEE802.11p and IEEE 1609 [2]. DSRC’s dedicated
75MHz for VANET is insufficient to handle VANET’s gigan-
tic data transfer [1]. That means spectrum shortage (inad-
equate allocation relative to demand) has impeded VANET
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FIGURE 1. Routing in CR-VANET.

implementation. There are other access standards or V2X
(vehicle to everything) protocols for VANETs are Wi-Fi [3],
LTE-V [4], Visible light communication (VLC) [5], 5G
(Cellular-V2X or C-V2X) [6], Millimeter wave (mmWave)
communications [7], Bluetooth [8], etc. These access stan-
dards can be used as an alternative solution of DSRC when
overcrowding occurs (i.e., excess bandwidth is needed for
massive data communication, and DSRC alone is insufficient
to handle). The cognitive radio (CR) technique is used to
switch between the access techniques when is DSRC is fully
occupied.

CR, implemented by Mitola textitet al. [9], is a key
spectrum sharing technology that enables wireless nodes
to dynamically sense and utilize underused licensed chan-
nels (for example, television channels) in an adaptable way.
It also allows users to vacate licensed channels when it is
re-occupied by licensed users. In resolving VANET’s spec-
trum scarcity problem, CR may play a crucial role [10].
Therefore, CR-based VANET or CR-VANET is a promis-
ing technology for addressing road safety, traffic jam, and
entertainment issues. It can serve as a fundamental building
block for the next generation’s transport systems, particularly
autonomous driving vehicles.

Routing for VANET is applied to select the best route
between the sending vehicle and the receiving vehicle via a
set of other elements of VANET (e.g., other vehicles, roadside
units (RSU)). The communication must ensure the best qual-
ity of service (QoS), including the least delay, higher through-
put, etc. In specific, to exchange vehicle safety messages,
such routing is required in which the overall delay must be
shorter than the predefined value. Also, the reliability of the
communication must be high. In short, to facilitate successful
data transfer, optimum route selection matters [11].

As the mobility of vehicles is high, the VANET is often
modified quickly. This frequent change of topology reasons
a delay in message transmission and also data loss. The
basic routing protocol cannot deal well with the dynamics
of VANETs. Hence, stable and intelligent routing protocols

are required [12]. CR-VANET routing depends heavily on the
whole CR loop and primary users (PUs) activities. QoS met-
rics, channel bandwidth, throughput, latency also influence
this routing. If PU activity, for example, is low, the topology
of secondary users (SUs) is comparatively static. Vehicles in
CR-VANET are the SUs.

Conversely, the abrupt emergence or re-appearance of
PUs creates unintended path loss. Instant alternate-routing
is essential for smooth communication. That is why
CR-VANET routing should be versatile and adaptable [10].
Figure 1 illustrates CR-VANET’s routing situation.

For example, the source vehicle (SU1) selects a route
SU1-SU2-SU4-SU6-SU9-SU10 as the best route using a
routing algorithm. This is because the route has high band-
width and reliability, low latency, and low PU activity. While
there are a limited number of hops with high throughput on
the route SU1-SU3-SU8-SU10, this route would be avoided
as the route is vulnerable to PU involvement.

On the other hand, because of high-speed mobility,
SU4 could be beyond the range of SU2. Therefore, the best
route mentioned above might fail. In this situation, the best
alternative route for seamless communication would be
selected immediately. For example, the SU1-SU2-SU5-SU8-
SU10 route may be the best alternate route. In short, the rout-
ing of CR-VANET differs from the conventional routing of
VANET or CR, and this is not very easy to handle.

In routing, it is critical to select the entire route in VANET
as the vehicle moves faster. If the vehicles move far along
the route, frequent route selection is required, and hence
retransmission increases. Although the forwarder is selected,
channel and vehicle features need to be considered.

This paper proposes a 2-hop routing algorithm. Here, the
route is selected by considering multiple objectives: direc-
tion, mobility, vehicle state, channel availability. The com-
putation of significant vehicle-based characteristics leads to
choosing an optimal route. The source transmits the data to
the sequentially selected 2-hop neighbors towards the des-
tination. Here, the nearest 1-hop neighbors will receive the
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source node packet and hence the packet loss is mitigated.
The proposed 2-Hop Multi-Objective Harris Hawks Opti-
mization (2HMO-HHO) algorithm is constructed upon the
Harris Hawks Optimization (HHO) algorithm, which is a
new bio-inspired algorithm that comprises the cooperative
hunting behavior of Harris Hawks [13]. It is found better than
the conventional algorithms in optimization problems [13].
Thus, we have formulated our 2-hop forwarder selection as an
optimization problem and resolved it using the 2HMO-HHO
algorithm.

The rest of the paper is structured as follows: Major
research works carried out on CR-VANET routing are stud-
ied in Section II. The proposed algorithm is detailed in
Section III. Section IV discusses the simulation setup, while
section V analyses the results with the comparative analysis.
Finally, the paper is concluded in section VI.

II. RELATED WORKS
This section reviews the current research works and summa-
rizes the research gap that needs to be focused on improving
routing efficiency in CR-VANET.

The authors in [14] proposed a routing, message schedul-
ing scheme and buffer management policy. For scheduling,
an optimized binary tree replication algorithm is introduced.
In routing, the forwarding set is selected by determining
the channel availability and transmission range. Then the
vehicles with a high priority will transmit the data first
from the forwarding set. The vehicle at the farthest hop dis-
tance is given higher priority. Each message from the nodes
is assigned with tags as fast-forward and reliable forward.
Based on these tags, buffer management is performed by
deleting the arrived message. For optimal route selection,
spectrum availability is considered a significant metric. Here,
the Markov model’s channel availability detection is inac-
curate due to inappropriate detection and the lack of adapt-
ability to the signals’ covariance, which leads to non-optimal
forwarder selection. Here, the priority of vehicles is defined
based on their hop count. Still, in vehicular communication,
the nodes at 1-hop could also have higher mobility whichmay
leave the route, then occurs packet loss. Here the 1-hop and
2-hop nodes will have lesser priority than the farthest vehicle.

In [15], the authors proposed a modified cognitive tree
routing protocol (MCTRP) that combines a genetic whale
optimization algorithm (GWOA). In the proposed MCTRP
handles three steps as (i) route discovery are performed and
then (ii) channel is selected for the route, and (iii) data
transmission. The node with maximum node identity and a
sequence number is chosen as a root node. Once the root
node advertises, it joins all the child nodes and forms a tree.
Using GWOA, an optimal root is selected by estimating the
cost, the node with minimum cost is chosen for transmission.
In GWOA, crossover and mutation operation are performed
to update the position. In route selection, the objective func-
tion is used to select a route with a minimum cost; here,
it does not consider channel capacity and other significant
constraints, so the route chosen is inefficient. The use of

hybrid optimization consumes time to select a transmission
route due to the operators used in a genetic algorithm. Also,
selecting a complete route leads to higher packet loss since
the vehicles move faster, but those vehicle characteristics
were not considered. Also, the vehicular nodes are dynamic,
so the construction and maintenance of vehicles’ tree-based
structure are tedious.

Self-decision vehicle control with cognitive framework
stores routes in the memory is proposed in [16]. For the
maintenance of routes in the memory, it uses a fuzzy model in
the system. The inputs are route, route profile, infrastructure
information, error probability, previous behavior, uncertainty,
protocol, etc. Based on the fuzzy rule, the desired route
information is obtained. Route storage and maintenance in
each vehicle increase overhead and complexity. Fuzzy-rule
based optimal relay selection is enabled among vehicles [17].
Here, an evaluation index set is computed from the absolute
values of speed, driving direction, hop count and connection
time. The degree of satisfaction is determined, and the index
weight vector is computed from the analytical hierarchy
process (AHP). As a result, an optimal forwarder is selected
from this process for data transmission. Execution of fuzzy
and AHP sequentially for each relay selection increases time
consumption.

The relay selection method estimates message delivery
time between source and destination [18]. Once the vehicle
receives a response, it then checks the idle channel, and if a
channel is not available, it performs the store-carry and for-
ward method. If the channel is inactive, it computes the mes-
sage delivery time and transmits the packet to the destination.
Here, store-carry and forward are subjected to higher delay
due to switching in this method. The delay in increased data
forwarding is not suitable for a high dynamic vehicle network.
For video streaming, routing is enabled by taking into account
two main constraints: link efficiency and quality of experi-
ence (QoE) [19]. The reinforcement learning of Q-learning
is used to validate the predicted distance, and then it selects
the next forwarder. This work collects vehicle information
as mean opinion score, position, direction, link quality, link
lifetime, density, and buffer-level. The Q-value in the rein-
forcement learning updates this value in the Table. Generally,
the Q-learning approach can learn a single environment by a
single agent, which is insufficient for large-scale networks.

An improved distance-based ant colony optimization rout-
ing (IDBACOR) is introduced in a VANET environment [20].
The modified ant colony optimization (ACO) algorithm per-
forms the following steps: pheromone deposit, pheromone
update, probabilistic model, decision-making, and data trans-
fer. On the performance of these steps, it selects an optimal
shortest path. Distance is one of the keymetrics that is consid-
ered for route selection. It also includes location, velocity, and
propagation delay in the vehicle’s node for route selection.
The ACO algorithm is not aware of convergence, and hence
it takes time to select a route between source and destination.

The authors in [21] formulated the data offloading prob-
lem as an optimization problem considering the delay
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FIGURE 2. System model.

constraint of different applications. The optimization prob-
lem is modeled as a nonlinear integer programming problem.
Two low-complexity methods: The Greedy Winner Selection
Method (GWSM) and the Dynamic Programming Winner
Selection Method (DPWSM), were proposed to solve the
problem.

Cao et al. in [22] examined the viability of using the nature
of delay/disruptive tolerant networking (DTN) in VANET’s
opportunistic vehicle to vehicle (V2V) communications. This
is because of its flexibility and cost-efficiency in VANETs.
According to the authors, the store-carry-forward (SCF)
mechanism in DTNs makes routing feasible in VANETs
as it must deal with the frequent intermittent connectivity
due to the high mobility of the vehicles. For DTN routing,
the encounter prediction is important when the utility metric
is defined differently to determine whether a node found is a
good relay. They proposed Electric vehicles’ charging station
selection scheme to minimize the charging waiting time.

A social-aware routing scheme is presented in cognitive
radio vehicular ad hoc networks [23]. The SUs are catego-
rized into intra-community and inter-community. A graph is
constructed for PUs, since their locations are static in the
network; it measured node centrality from the graph. Further,
the shortest path is selected based on the hop count. This work
also proposes an optimized binary tree as a replication policy
to mitigate copies of the same packet. The selection of route
using minimum hop counts fails to assure the route’s stability
since the intermediate hop can also have higher mobility and
moving in the opposite direction.

This paper proposes a CR-VANET routing algorithm that
can perform routing without any breakage and improve the
delivery ratio and other QoS parameters. Unlike end-to-end
route selection (since it is affected by vehicle speed and
direction that leads to high data loss), we presented a novel
2-hop route selection methodology. The proposed 2-hop rout-
ing selects optimal 2-hop forwarders by the 2HMO-HHO
algorithm.

III. PROPOSED ROUTING ALGORITHM
In this section, we explain the proposed work in detail with
the proposed algorithm.

Figure 2 shows the system model of our proposed algo-
rithm. The proposed CR-VANETmodel comprises ofN num-
ber of vehicles as v1, v2, . . . , vN . From here, SUs and vehicles
represent the same since the vehicles are the SUs in our work.
The SUs sense the licensed spectrum of PUs if DSRC is fully
occupied. The network model also consists of RSUs or CR
based RSU (CR-RSU). RSU is responsible for allocating the
vacant spectrum to the SUs. Here, we have considered the
road as a single segment.

SU does the spectrum sensing (finding out the presence
or absence of any PU) [24]. At the same time, segment
management and channel allocation management are carried
by RSUs. Finally, on the assigned channel, data is transmitted
through optimal 2-hop neighbors.

Once the vehicle has a channel (after CR processes) for
data transmission, the next step is to perform 2-hop routing.
In this work, we have focused on optimal 2-hop forwarder
selection rather than entire path selection. The selected entire
path can be affected by several environmental factors such
as vehicle speed and direction, channel availability etc. Thus,
we have intended to perform optimal 2-hop forwarder selec-
tion. For this purpose, we proposed a novel 2HMO-HHO
algorithm. HHO is a nature-inspired population-based meta-
heuristic algorithm. It mimics the cooperative hunting behav-
ior of Harris Hawks for the preys like rabbits.

Figure 3 shows the proposed concept of the proposed
routing in CR-VANET. Here, the optimal 2-hop forwarders
are selected for data transmission. After 2-hop forwarders
selection, the data is transmitted up to 2-hops, and the 2nd hop
forwarder again selects optimal 2-hops forwarders until the
data reaches destination. The involvement of 2-hop routing
improves data transmission.

Table 1 includes the notations and their definitions used in
our 2HMO-HHO algorithm.

VOLUME 9, 2021 58233



M. A. Hossain et al.: Multi-Objective Harris Hawks Optimization Algorithm Based 2-Hop Routing Algorithm for CR-VANET

FIGURE 3. Proposed 2-hop routing.

TABLE 1. Notation and their definitions.

The proposed 2HMO-HHO algorithm involves the follow-
ing steps,

a) Initialization Phase –
This phase initializes all solutions as the initial hawks’

populations. Here, the population comprises the multiple (N
number of) neighboring vehicles (v1, v2, . . . , vN ). Here, N is
the number of populations. The algorithm is executed by the
source vehicle (vso). Here, the source vehicle and the neigh-
boring vehicles are considered ‘hawks’, and the destination
vehicle is considered prey (rabbit). In this phase, the fitness
function is computed for all vehicles. For instance, the fitness
of ith vehicle (f (vi)) is computed as follows,

f (vi) =
{∑

D,M, S,C
}

(1)

The fitness is formulated as the function of direction (D),
mobility (M), state of the vehicle (S), and spectrum or channel
availability (C). Here, the vehicle’s direction is represented

FIGURE 4. Different phases of HHO [13].

as binary values [0] and [1]. If the direction of the candidate
vehicle and destination vehicle is the same, then D = 1.
Otherwise, it is 0. If the destination and candidate vehicles
are in the same direction, the vehicle’s fitness will increase.
Similarly, the mobility value is also mapped to [0] and [1] to
enrich the fitness computation method. If the mobility of vi is
higher than the average mobility of the segment, thenM = 0
else M = 1. If vi has the available channel (either DSRC or
CR channel) for the data transmission, thenC = 1, otherwise
C = 0. In contrast, S is formulated as the function of multiple
metrics as follows,

S =
T + DR

D
(2)

For vi, S is the function of throughput of the vi (T ), data
rate of vi (DR) and delay (D). The S is the deciding factor of
fitness computation since the effective channel utilization can
only be achieved using an optimal path for data transmission.
In this way, the f (vi) is computed for all vehicles in the
population.

The HHO algorithm includes phases of exploration,
transformation, and exploitation, like other meta-heuristic
algorithms. The Hawks will be found randomly at different
locations during the exploration phase to observe and catch
the rabbit. The hawks take surprise pounce or teams of rapid
dives to exploit the expected presence neighborhood at the
exploitation phase. Hawks’ positions are regarded as candi-
date solutions. The best position is the expected position for
the rabbit. Figure 4 shows those different phases of HHO. The
details of these phases are described below:

b) Exploration phase –
This phase executes the process of wait, search, and detec-

tion of prey. The position of a hawk is represented as follows,

vi (U + 1) =


virand (U)− r1

∣∣virand (U)− 2r2vi
(U)| if n ≥ 0.5

vip (U)− via (U)− r3 (lb + r4

(ub − lb)) if n < 0.5

(3)
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Here, U represents the current iteration, and U + 1 repre-
sents the next iteration. Besides, r1, r2, r3 and r4 represent
the location vectors of the hawks, while y is the random
number selected in the range of [0,1]. The average location
of the hawks (via ) is formulated as,

via (U) =
1
N

∑N

j=1
vi(U ) (4)

c) Transformation Phase –
This phase transfers from the exploration phase to the

exploitation phase. The energy of prey is decayed during
evading behavior. It can be estimated as,

εPrey = 2ε0

(
1−

U
Umax

)
(5)

Here, ε0 is the initial energy state of the prey, U is the
number of the current iteration and Um is the maximum
number of iterations.

D) Exploitation Phase –
In this phase, the hawks attack the selected prey estimated

in the previous phase. In this phase, four different strate-
gies have been utilized, such as soft besiege, hard besiege,
soft besiege with progressive rapid dives, and hard besiege
with progressive rapid dives. The occurrence of soft and
hard besiege relies on energy level (i.e.)

∣∣εprey∣∣ ≥ 0.5
and

∣∣εprey∣∣ < 0.5.
Soft Besiege:
If r ≥ 0.5 and

∣∣εprey∣∣ ≥ 0.5, then soft besiege strategy has
been selected. It can be modeled as follows,

vi (U + 1) = 1vi (U)− εprey |Bvi(U − vi (U))| (6)

where B us the jump intensity of evading process
that can be represented as B = 2(1 − r5) and
1vi (U) = vprey (U)− vi(U ).
Hard Besiege:
r ≥ 0.5 and

∣∣εprey∣∣ < 0.5, then soft besiege strategy has
been selected. It can be modeled as follows,

vi (U + 1) = vprey (U)− εPrrey |1vi(U )| (7)

Soft Besiege with Progressive Rapid Dives:
If r < 0.5 and

∣∣εprey∣∣ ≥ 0.5, then soft besiege strategy has
been selected. It can be modeled as follows,

S = vi (M)− εprey
∣∣Bvprey(U − vi (U))

∣∣ (8)

The above model computes the next moving step (S) of
the hawks. Also, the hawks dive to attack the prey based on
the following equation,

Di = S+ B ∗ LF(d) (9)

Here, B is the random vector and LF(d) is the levy flight
with the dimension d . In this phase, the location is updated
as,

vi (U + 1) =

{
S if f (S) < f (vi (U))
Di if f (Di) < f (vi (U))

(10)

Hard Besiege with Progressive Rapid Dives:

Algorithm 1 2HMO-HHO Routing Algorithm
Inputs: The population size N and maximum number
of iterations Um
Outputs: The location of the rabbit and fitness value
Begin
Initialize Populationv1, v2, . . . , vN
while ((U ≤ Um) do
For all vi ∈ N
Compute f (vi) % here, consider the fitness values of

hawks%
Setting vprey (U) as the best location of the rabbit
for (each hawk vi) do

Update
initial energy εi = 2rand()
Jump strength, J = 2(1− rand())
Estimate εPrey using Eq. (5)
if (
∣∣εprey∣∣ ≥ 1) then %Exploration phase%
Update vi (U + 1) by Eq. (3)

if (
∣∣εprey∣∣ < 1) then %Exploitation phase%

if (
∣∣εprey∣∣ ≥ 0.5 && r ≥ 0.5) then% Soft

besiege%
Update vi (U + 1) by Eq. (6)

else if (
∣∣εprey∣∣ < 0.5 && r ≥ 0.5) then%

Hard besiege%
Update vi (U+ 1) vi (U+ 1) by Eq. (7)

else if (
∣∣εprey∣∣ ≥ 0.5 && r < 0.5) then%

Soft besiege with progressive rapid
dives%
Update vi (U+ 1) vi (U+ 1) by
Eq. (10)

else if (
∣∣εprey∣∣ < 0.5 && r < 0.5) then%

Hard besiege with progressive rapid
dives%
Update vi (U+ 1) vi (U+ 1) by
Eq. (11)

Return the best location of vprey % global optimal
solution or 2_hop_forwarders%
End

If r < 0.5 and
∣∣εprey∣∣ < 0.5, then soft besiege strategy has

been selected. Here, the location is updated as follows,

vi (U + 1) =

{
S if f (S) < f (vi (U))
Di if f (Di) < f (vi (U))

(11)

From here, S is estimated by the following equation,

S = xprey (U)− εPrey
∣∣∣∣Bvprey(U − via (U))

∣∣∣∣ (12)

Based on the above rules, the 2HMO-HHO algorithm
updates the preys’ location in the population based on a
fitness function. Over a given iteration, the optimal solution
is returned from the 2HMO-HHO algorithm. In this work,
the optimal solution denotes optimal 2-hop forwarders from
the source node towards the destination.

VOLUME 9, 2021 58235



M. A. Hossain et al.: Multi-Objective Harris Hawks Optimization Algorithm Based 2-Hop Routing Algorithm for CR-VANET

FIGURE 5. Flowchart of proposed 2HMO-HHO routing algorithm.

Algorithm 1 shows the proposed 2HMO-HHO routing
algorithm.

Figure 5 shows the flowchart of the proposed 2HMO-HHO
routing algorithm for CR-VANET. Here, the Harris Hawks
are aligned with the source vehicles and the forwarding vehi-
cles and the rabbit (the prey) is aligned with the destination
vehicle.

IV. SIMULATION SETUP
This section first discusses the simulation’s parameter set-
ting and later discusses the real-life simulation application
scenario.

A. PARAMETERS SETTINGS
To evaluate the proposed algorithm, we designed our pro-
posed vehicle network using a network simulation tool,
namely OMNeT++ [25] with the SUMO framework[26].
OMNeT++ is a C++ oriented simulation platform that
facilitates the efficient simulation of vehicle-based net-
works and many other network protocols. We have used the

Veins [27], INET [28], and CrSimulator frameworks [29] on
the OMNeT++ platform. The type of mobility of vehicles
is considered based on the Veins’ submodule TraCIMobility.
Rayleigh multipath propagation model is considered in this
work. The channel vector is modeled as a zero-mean and
complex random Gaussian vector. Some physical layer char-
acteristics, such as shadowing, Doppler fast fading effects,
etc., have been skipped for simplicity. Detailed simulation
parameters are shown in Table 2.

We first create a CR-VANET environment with the above
configuration. Then, we perform data transmission to test the
proposed work performance. To measure the performance,
we then implement spectrum sensing, decision making and
route selection processes on the created environment. The
performance is measured in terms of performance metrics.

B. APPLICATION SCENARIO
We have tested our proposed work on the internet of vehi-
cles (IoV) environment. In IoV, the vehicle mainly relies on
sharing safety information such as parking slot availability,
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TABLE 2. Simulation settings.

accident warning, traffic density etc. and entertainment infor-
mation such as video, multimedia files etc. Involvement of
large file sharing and safety information sharing demands
huge bandwidth. Thus, the integration of CR-VANET assists
in provisioning IoV applications.

In Figure 6, the application scenario of the proposed rout-
ing algorithm is illustrated for IoV applications. Here, vehicle
v1 needs to transmit a video to v2. For that, it first performs
spectrum sensing based on the current network situation.
If the spectrum is found available, RSU assigns the available
channel to the v1. At last, the video is transmitted to v2
through optimal 2-hop neighbors. Here, we have illustrated
an application for video transmission. Similarly, the proposed
work is applicable for any kind of data or file sharing among
intelligent vehicles in the IoV.

Here, PUs are considered static, and they follow a sim-
ple ON/OFF PU activity [24]. SUs are equipped with two
antennas, one for DSRC and another for CR usage. Then,
we perform data transmission to test the proposed work
performance.

V. RESULTS AND DISCUSSIONS
This section provides a comparative analysis with the pre-
vious works. The section also discusses the results obtained
from the simulation with the comparison of the previous
works.

FIGURE 6. Application of scenario of Seg-CR-VANET in IoV.

A. COMPARATIVE ANALYSIS
This sub-section evaluates the proposed work with existing
works to prove our proposed approach’s efficacy. We com-
pared our work with existing works such as Markov rout-
ing [14] and GWOA-GA [15]. These two algorithms have
been discussed in detail in section II.

In [14], they used an optimized binary tree replication algo-
rithm. The route is selected based on the channel availability
and transmission range. They set the priority of vehicles
based on their hop count. We have chosen this algorithm
for comparison to show that selecting 2-hops is better than
selecting the entire route. Moreover, according to their algo-
rithm, the vehicle at the farthest hop distance is given higher
priority. That means the 1-hop and 2-hop nodes will have
lesser priority than the farthest vehicle. This phenomenon
is the opposite of our proposed algorithm. Therefore, this is
another reason to choose this algorithm for comparison.

We have used the bio-inspired optimization algorithm (i.e.
HHO algorithm), while [15] also used a bio-inspired opti-
mization algorithm (i.e. GWOA). We have chosen this latest
work to compare with our work as they are in the same cate-
gory. However, they used two algorithms (tree-based routing
algorithm and genetic whale optimization algorithm) instead
of using a single algorithm. We have used a single algorithm
and found better results. This is another reason (using a
single algorithm is better than using multiple algorithms) to
choose [15] for the comparison.

A detailed comparison of the existing works is presented
in Table 3.

The theoretical comparison shows that each existing work
has some limitations and drawback. In contrast, the proposed
2HMO-HHO algorithm focuses on the improvement of the
overall network performance. It can be tested through brief
performance measures as in the following sub-sections.

B. PERFORMANCE ANALYSIS
1) ANALYSIS OF THROUGHPUT
Throughput is defined as the amount of data transmitted
over the network over the given time slot. In the case of
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TABLE 3. Comparison on existing works.

FIGURE 7. Throughput analysis.

CR-VANET, it much depends upon the channel availability
and the proper routing.

In Figure 7, throughput comparison is shown concerning
the number of vehicles. The analysis shows that all works
decrease the throughput with an increase in the number of
vehicles. Throughput is decreased as the number of vehicles
are increased. This is because when more vehicles are in the
VANET, it needs to sense for the spectrum hole as DSRC’s
dedicated spectrum is exhausted. It needs to sense for the
free or vacant spectrum. For the spectrum sensing purpose,
the vehicle gives lesser time for data transmission. In other
words, as the time slot is fixed, if a vehicle spends more time
on spectrum sensing, it can get less time for the data trans-
mission; as a result, the throughput is decreased. The time
needed for the spectrum sensing influences the secondary
network’s channel bandwidth throughput. Long sensing time

provides an effective sensing result. However, this comes
at the expense of the throughput when more time is spent
on sensing and less time is left for data transmission to the
required channel for a given frame. A time slot or a frame
consists of spectrum sensing and data transmission.

On the other hand, here, throughput is not decreased dra-
matically. This because a vehicle gets more forwarders to
forward its data. In general, more vehicle in the network
increases the throughput, but due to the shortages of the spec-
trum, and it must go for the spectrum sensing, the expected
throughput is not achieved.

Our work maintains a better throughput, which is relatively
greater than prior works. When the number of vehicles is 10,
it achieves the maximum throughput of 18 Mbps. With the
vehicle’s increase, the throughput falls to 14 Mbps (when the
number of vehicles is 100). Simultaneously, Markov rout-
ing drops from 15 Mbps to 9 Mbps and GWOA-GA from
14Mbps to 8Mbps. This achievement’s primary reason is that
the proposed work considered several significant parameters
such as vehicle direction and speed, an average speed of the
segment, average delay, data rate etc. Selecting 2-hop instead
of the whole route provides stable routing. For these reasons,
we have obtained good throughput compared to the previous
works.

2) ANALYSIS OF PACKET DELIVERY RATIO
Packet delivery ratio (PDR) is defined as the ratio between the
total number of packets generated to the number of packets
successfully transmitted to the destination. In Figure 8, PDR
is compared with a varying number of vehicles.

The PDR is decreased with a varying number of vehicles.
This is due to contention in the wireless channel as the
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FIGURE 8. Comparison on PDR.

number of nodes is raised. Consequently, several packets are
lost due to collision. We have achieved PDR 90-98%, while
previous works achieved 75-83% and 74-81%, respectively.
Our works achieved around 15% better result compared to
those prior works. Though PDR is decreased as the number of
vehicles is increased, our work maintains a good PDR. This
is due to the stable routing and re-routing. Here, the packet
drop is lesser as it does not go for selecting the whole route.
Selecting the entire route and maintaining the same route in
the dynamic CR-VANET environment is very troublesome
due to the vehicle’s high-speedmobility and frequent network
changes. 2-hop selection alleviates such problems. This is the
primary reason to achieve a better PDR. Improper routing
leads to a large packet loss and hence lower PDR.

3) ANALYSIS OF AVERAGE DELAY
Delay is defined as the time taken by a data packet to reach
the destination from the source. The delay is measured as the
function of propagation time, waiting time and transmission
time.

In Figure 9, the delay is compared concerning the num-
ber of vehicles. Delay is an important performance measure
that shows the efficacy of the proposed routing and data
transmission approach. In the proposed work, the delay is
minimized to 6 ms since the available spectrum is utilized by
a 2-hop routing algorithm effectually though the number of
vehicles is increased. In the proposed work, the optimal route
is selected by the 2HMO-HHO algorithm by considering
multiple metrics. In the prior research, the delay is increased
up to 17 ms due to a lack of optimal routing.

4) ANALYSIS OF PACKET LOSS RATE
Packet loss rate (PLR) is defined as the ratio between the
number of packets lost and the total amount of packets trans-
mitted over the network. Packets are dropped or lost if the
TTL (time-to-live) reaches zero or if the connection fails to
deliver. In Figure 10, PLR is compared based on the number
of vehicles.

In this work, PLR is nearly 13% when the vehicle number
is 100, which is relatively lower than previous research. In the

FIGURE 9. Comparison on delay.

FIGURE 10. Comparison on PLR.

FIGURE 11. Comparison on communication overhead.

proposed work, the optimal 2-hop route is selected for data
transmission. Thus, the PLR is lower even with an increase
in the number of vehicles. On the other hand, in the Markov
routing approach, 28% of packets are lost. In the GWOA
algorithm, the entire route is selected in which the vehicles
can be dynamic, and the route can be unstable. Thus, the PLR
is increased up to 25%. From this analysis, the proposed
work improves the PLR by transmitting most of the packets
successfully. The packet drop is lower than it does when
selecting the entire path.
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TABLE 4. Numerical comparison on obtained results.

5) ANALYSIS OF COMMUNICATION OVERHEAD
Communication overhead is the number of control messages
sent to construct and manage the routes by routing pro-
tocols. We have again compared our work with two pre-
vious works, Markov routing [14] and GWOA-GA [15].
Figure 11 represents a communication overhead for a vari-
able number of nodes. The communication overheads of all
routing protocols grow as the number of vehicles increases.
Since Markov routing and GWOA-GA routing protocols do
not forecast a reliable path, it generates more communica-
tion overhead due to frequent route reconstruction. Stable
routes are determined by the 2HMO-HHO routing algorithm
instead of Markov routing and GWOA-GA routing algo-
rithms. Hence, there is less communication overhead associ-
ated with it. For example, when the number of vehicles is 60,
2HMO-HHO needs to exchange around 7 Kbytes of a con-
trol message or communication overhead, while GWOA-GA
needs 15 and Markov routing needs 16 Kbytes of data. That
means more than 50% lesser communication overheads are
required for our routing scheme. 2HMO-HHO routing algo-
rithm selects the best 2-hops as the forwarders instead of
selecting the entire route from source to destination. It does
not need to communicate with all available vehicles for rout-
ing process. Therefore, the overall communication overhead
is comparatively lesser than those of the previous works.

C. DISCUSSION
Table 4 summarizes the numerical results obtained by the
proposed and existing works.

The obtained results are summarized with mean and stan-
dard deviation (SD) values. It can be noted that the proposed
2HMO-HHO achieves better results in all metrics due to
optimum route management involvement. Proposed 2-hop
routing improves data trans-mission performance effectually.
Optimal 2-hop forwarders are selected using the MO-HHO
algorithm that takes multiple metrics for forwarder selec-
tion to enable optimal data transmission from the source to
destination.

D. COMPUTATIONAL COMPLEXITY
Three basic components characterize the computational com-
plexity of HHO: population size N , problem dimensions D,

and the number of iterations U . On the other hand, the com-
putational complexity of HHO depends on three processes:
i) initialization, ii) evaluating fitness function, and iii) updat-
ing the position of the hawks (vehicles). The computational
complexity of these three processes can be written as:

i The computational complexity of the initialization
process: O(N )

ii The computational complexity of the fitness function
evaluation: O(N × U )

iii The computational complexity of the Hawks location
update (including searching for the best location and
updating the location vector of all hawks):O(N×U )+
O(N × U × D)

Therefore, the computational complexity of 2HMO-HHO can
be written as,

O(HHO) = O(N )+ O(N × U )+ O(N × U )

+O(N × U × D)

Markov-routing [14] ’s computational complexity is
O(K ×N ), where N is the number of nodes in CR-VANETs,
and K is the number of road segments. GWOA-GA rout-
ing algorithm [15] used a whale optimization algorithm,
a tree-based routing protocol, and an optimal link-state rout-
ing protocol (OLSR). Therefore, the total computational
complexity of the GWOA-GA routing algorithm is O(N ×
U )+O(E log N )+O(N ). Here, N represents the population
size (nodes),U represents themaximumnumber of iterations,
and E is the number of links between the nodes.

VI. CONCLUSION
This paper has proposed a routing protocol for the cognitive
radio-based vehicular ad hoc network (CR-VANET). After
the spectrum sensing, the vehicle would find the vacant
spectrum. The roadside unit (RSU) would then assign that
empty channel to the vehicles. Data transmission is car-
ried through the optimal 2-hop neighbors on the assigned
channel selected by the bio-inspired 2-Hop Multi-Objective
Harris Hawks Optimization (2HMO-HHO) algorithm. The
proposed algorithm has been implemented through simula-
tion in OMNet++ and with SUMO. We have found better
results compared to the previous works. We have achieved
better throughput, higher packet delivery ratio, lesser packet
loss rate, lower delay, and lower network overhead.

In future, we will intend to perform predictive 2-hop neigh-
bor selection tominimize the packet loss further and to reduce
the computational complexity. We will incorporate several
physical layer characteristics such as shadowing, Doppler fast
fading, etc., to make the algorithm more realistic and robust.
We will also integrate an optimal resource allocation scheme
for vehicles by considering multiple parameters.
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