
Received March 15, 2021, accepted March 26, 2021, date of publication April 13, 2021, date of current version May 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072944

Adaptive Polynomial Method for Solving
Third-Order ODE With Application in
Thin Film Flow
MOHAMMAD T. HAWEEL 1,2, O. ZAHRAN2, AND FATHI E. ABD EL-SAMIE 2,3, (Member, IEEE)
1Department of Electrical Engineering, Shaqra University, Riyadh 11911, Saudi Arabia
2Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32951, Egypt
3Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University,
Riyadh 21974, Saudi Arabia

Corresponding author: Mohammad T. Haweel (mhwail@su.edu.sa)

ABSTRACT Differential equations are commonly used tomodel several engineering, science, and biological
applications. Unfortunately, finding analytical solutions for solving higher-order Ordinary Differential
Equations (ODEs) is a challenge. Numerical methods represent a leading candidate for solving such ODEs.
This work presents an innovated adaptive technique that uses polynomials to solve linear or nonlinear
third-order ODEs. The proposed technique adapts the coefficients of the polynomial to obtain an explicit
analytical solution. A signed least mean square algorithm is exploited to enhance the adaptation process and
decrease both computational requirements and time. The efficiency of the proposed Adaptive Polynomial
Method (APM) is illustrated through six well-known examples. The proposed technique is compared with
recent analytical and numerical methods to validate its effectiveness in terms of Mean Square Error (MSE)
and computation time. An application in a thin film flow system is modeled to a third-order ODE. The
proposed technique is compared with recent numerical and analytical methods in solving the thin film
flow equation, and it achieves better results. Furthermore, the proposed technique provides an analytical
solution with an increased dynamic range and much lower computational time than those of the conventional
numerical methods.

INDEX TERMS Adaptive algorithms, analytical solution, numerical solution, ordinary differential equa-
tions, polynomials.

I. INTRODUCTION
Several engineering, chemical, science, and biological appli-
cations can be modeled, analyzed and/or solved using ordi-
nary differential equations (ODEs). Simple first-order ODEs
or more complex higher-order ODEs can be used to solve
several problems in robotics, nuclearmagnetic response, fluid
equations, analysis of electrical circuits, and other applica-
tions [1]–[3]. The ODEs can be found in different forms
including partial and algebraic forms [4], [5]. Fractional-
order differential equations have been proposed for modeling
of modern and classical dynamical systems [6].

The absence of exact solutions is a challenging problem in
most of these applications. Consequently, numerical methods
represent the best way in solving such problem. Unfortu-
nately, finding an analytical solution to solve such problem is
a very difficult task, which calls for the need to find effective
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solutions for the ODEs. Euler, Runge-Kutta, Kepler, and
Laplace transform are well-known numerical solution meth-
ods for ODEs [7]. Increasing the accuracy of such methods
in finding analytical solutions triggers the interest of several
researchers.

Recently, the predictor corrector method has been found to
be inefficient because of the time-expensive process of devel-
oping separate predictors. In addition, the predictor order
of accuracy is low [8]. A block method was proposed later
to solve some problems of the predictor corrector method.
However, the main drawback of the block method is the
requirement of a large number of points to get a reasonable
solution [9].

Initial Value Problems (IVPs) are solved using a hybrid
block method, which has shown better stability proper-
ties [10]. In order to solve the general third-order ODEs,
variable-step and modified Runge-Kutta methods were pre-
sented [11], [24]. Although these methods have shown
reasonable approximations for such solutions, the required
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computational time is large and the mathematical modeling
is complicated.

Recently, semi-explicit and semi-implicit multi-step inte-
gration methods have been addressed. Although, these
methods provided good convergence properties with less
computational cost, they suffer from a decrease of the numer-
ical stability with the increase of the accuracy order of
the applied scheme. A semi-implicit multi-step extrapolation
scheme was used to solve the stability problems with less
computational cost [12].

Geometric integrators can be considered as a class of
numerical integrators that are designed for Hamiltonian
ordinary differential equations, and numerical schemes are
designed to preserve the geometric properties. Possible appli-
cations might include dynamical systems, energy and phase
space preservation, angular momentum, symplectic structure
and symmetries [13].

One of the commonmethods in geometric integrators is the
composition method [14]. It is based on the composition of
several simpler integrators of the problem in order to increase
the degree of accuracy of the ODE solver. Fourth-order
composition methods for the numerical integration of IVPs
defined by ODEs for dynamical systems were proposed [14].

Some other analytical tools were proposed such as the
Differential Transform Method (DTM). The advantage of
such tools is the ability of application to linear and nonlinear
ODEs without linearization or discretization [15]. Further-
more, a Domain DecompositionMethod (ADM)was recently
proposed in [16].

Artificial Neural Networks (ANNs) have been effec-
tively used as a strong tool to deal with the differential
equations. The ANNs have been used for solving ordi-
nary and partial differential equations. Different ANN types
such as Chebyshev neural networks and Legendre neu-
ral networks were introduced in [17], [18]. Power series
analysis has been recently presented as an important tool
to find the analytical solutions of differential algebraic
equations [19].

In this paper, an adaptive analytical solution for solving
IVPs of the third-order ODEs is proposed. Such solution has
the advantages of minimizing the drawbacks that occur with
the majority of both analytical and numerical solutions, and
providing closed-form solutions that are closer to the exact
solution in a shorter time. Furthermore, the proposed tech-
nique adapts the coefficients of polynomials using an efficient
adaptive algorithm. The limitation of the proposed technique
is the lower accuracy obtained at the first few epochs due
to the fact that the first four weights are not adapted in
the APM.

The structure of this paper is as follows. The analysis of
the proposed APM is presented in Section II. The simulation
and numerical results are reported in Section III for compar-
ison purposes. The effectiveness of providing an analytical
solution in solving thin film flow equation is discussed in
Section IV. Finally, conclusions are given in Section V.

II. PROPOSED ADAPTIVE POLYNOMIAL METHOD
The third-order IVP ODE can be considered as:

S ′′′(x) = f (x, S(x), S ′(x), S ′′(x))

S(0) = C0, S ′(0) = C1, S ′′(0) = C2

0 ≤ x ≤ X , f : [x0,X ]×<n→ <n (1)

where the constants C0, C1, and C2 represent the initial
values. In the proposed APM, the estimated solution of the
third-order ODE, Ŝ(x), can be presented with the M th order
polynomial as follows:

Ŝ(x) =
M−1∑
j=0

wjx j (2)

After differentiation, the estimated solution is then given
by:

Ŝ ′(x) =
M−1∑
j=1

jwjx j−1 (3)

Ŝ ′′(x) =
M−1∑
j=2

j(j− 1)wjx j−2 (4)

Ŝ ′′′(x) =
M−1∑
j=3

j(j− 1)(j− 2)wjx j−3 (5)

From (2) and (5), the initial values are directly given by:

Ŝ(0) = w0; Ŝ ′(0) = w1; Ŝ ′′(0) = 2w2 (6)

It can be noted from (6) that the initial conditions are
easily defined. The proposed APM uses adaptive Least Mean
Square (LMS) algorithm to find the analytical solution. The
domain [x0, X ] is then discretized. In order to update the
adaptive system equation, the error function associated with
the discrete step, xk , is expressed, using (1), as:

e(xk ) = Ŝ ′′′(x)− f
(
x, Ŝ(x), Ŝ ′(x), Ŝ ′′(x)

)
(7)

Using (5), (7) can be rewritten as:

e(xk )=
M−1∑
j=3

j(j−1)(j−2)wjx j−3−f
(
x, Ŝ(x), Ŝ ′(x), Ŝ ′′(x)

)
(8)

In the proposedAPM, for each training step xk , a weightwk
is adapted. However, the first three weights (k = 0, 1, 2) are
freezed (not adapted) at the boundary conditions according to
(6). The proposed performance index J is:

J =
1
2

L−1∑
k=3

e2(xk ) (9)

where L is the number of discrete steps involved in the
adaptation. The k th weight adjustment factor is:

1wk = −µ
∂J
∂wk

(10)
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FIGURE 1. Schematic diagram for the proposed APM.

where the adaptation constant is µ. The time-consuming
multiplication has been replaced by the low-cost sign change
operation using the signed LMS [20]–[22]. In the APM,
the update equation for the k th weight is:

wk (m+ 1) = wk (m)− µ e(k) sign
{
∂e(xk )
∂wk

}
(11)

where the iteration cycle index ism, and k ∈ [3, L − 1].When
all training steps are fully utilized, an iteration cycle is com-
pleted. The convergence is obtained, when the calculations
reach a minimum MSE, which is accomplished via repeated
cycles. The MSE of the iteration cycle, m, is computed as:

MSE(m) =
1
L

L−1∑
k=3

e2(xk ) (12)

Signum function is known and formulated as [20]–[22]:

sign(U ) =


1 U > 0
0 U = 0
−1 U < 0

(13)

For several problems, {∂e(xk )/∂wk} in (11) is positive
definite. Consequently, the weight update equation can be

expressed as follows:

wk (m+ 1) = wk (m)− µ e(xk ) (14)

The schematic diagram that represents the proposed APM
is shown in Fig. 1.

III. SIMULATION AND NUMERICAL RESULTS
An infinitesimal step of 0.1 is adopted for the discretization
of the domain. The proposed APM employs the seventh-
order polynomial. The assigned weights associated with the
null, the first, and the second powers of the variable x, i.e.
1, x and x2, have been freezed (not adapted) at the initial
conditions equivalent to S(0), S ′(0), and S ′′(0)/2, according
to (6). In the same sequence, the assigned weight associated
with x3 is freezed at S ′′′(0)/6 using (5). Consequently, The
APM estimated solution is derived by:

Ŝ(x)=S(0)+ S ′(0)x +
S ′′(0)
2

x2 +
S ′′′(0)
6

x3 +
7∑

k=4

wkxk

(15)

The first four epochs 0.0, 0.1, 0.2, and 0.3 are not con-
sidered within the adaptation process due to their high
dependence on the freezed weights. Hence, for each of the
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TABLE 1. Comparison between the absolute errors in both the LS-SVM method and the proposed APM for the first example.

FIGURE 2. Absolute error values using APM compared to the exact solution for the first example.

discretized steps of 0.4, 0.5, 0.6 and 0.7, a one-to-one weight
is adapted. This is one of the major advantages of the pro-
posed APM over other methods mandating the employment
of all discrete values in the domain. Such adapted weights
are initially set to zero. Therefore, it is easy to prove that
{∂e(xk )/∂wk} has a positive definite value, and consequently,
(14) is directly utilized.

In order to prove the efficiency of the proposed APM,
the following six well-known examples are
introduced.

A. FIRST EXAMPLE
The first example is the nonlinear ODE problem reported
in [23], [24], which can be summarized as follows:

S ′′′ = −S2 − cos(x)+ sin2(x), x ∈ [0, 1] ;

S(0) = 0, S ′(0) = 1, S ′′(0) = 0 (16)

It can be mentioned that the exact or analytical solution for
this problem can be obtained by:

Sexact (x) = sin(x), x ∈ [0, 1] (17)
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FIGURE 3. Exact and estimated solution using APM in the first example.

The estimated APM analytical solution, after convergence,
can be obtained using (15) with S ′′′(0) = −1, as follows:

SAPM (x)=x − 0.1667 x3 + 0.0084 x5 + 0.0002 x7 (18)

The norms of the computed errors between the exact and
the estimated solutions using both the Least Square Support
Vector Machines (LS-SVMs) [23] and the proposed APM,
at the discretized points of interest, are tabulated in Table 1.

The absolute error values between the estimated solution
using the proposed APM and the exact solution at all dis-
cretized points of the first example are shown in Fig. 2.

The obtained MSE values for the proposed APM after
convergence and the LS-SVM are 2.5312× 10−8 and 4.3564
× 10−7, respectively, which indicates the good performance
of the proposed method. Moreover, the CPU time is only
1.6406 s. The same problem has been solved numerically
using a fourth-order improved Runge–Kutta technique [24],
but the analytical APM solution has proved sufficient
results.

Fig. 3 shows excellent agreement between the APM esti-
mated solution and the exact solution of the ODE, with better
precision than that of the LS-SVM.

B. SECOND EXAMPLE
The second example is the nonlinear ODE problem reported
in [10], and [25], which can be summarized as follows:

S ′′′ = S ′(2xS ′′ + S ′), : x ∈ [0, 1] ;

S(0) = 1, S ′(0) = 1/2, S ′′(0) = 0 (19)

It can be mentioned that the exact or analytical solution for
this problem can be obtained by:

Sexact (x) = 1+
1
2
ln(

2+ x
2− x

), x < 2 (20)

The same conditions of the first example have been under-
taken. Using (15), the APM estimated analytical solution,
after convergence, is:

SAPM (x)= 1+ 0.5x + 0.04167 x3−0.00160 x4

+ 0. 010626 x5−0.005215 x6+0.003657 x7

(21)

Fig. 4 shows that the APM estimated solution is very close
to the exact solution of the ODE compared to that of the
hybrid method with block extension reported in [10].
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TABLE 2. Comparison between the absolute errors in both the 2-step 4-point hybrid method and the proposed APM for the second example.

FIGURE 4. Exact and estimated solutions using APM and the hybrid method with block extension.

This example has a solution using the 2-step 4-point hybrid
method addressed in [25]. The absolute values of the com-
puted errors between the exact and the estimated solutions
using the proposed APM and the method in [25], at the
discretized points of interest, are tabulated in Table 2.

Fig. 5 shows a comparison of the absolute error values
for the estimated solutions using the 2-step 4-point hybrid
method, the proposed APM, and the exact solutions at all
discretized points. As shown, the proposed APM achieves
better accuracy with lower absolute error values, except for

the first two discrete points, where the weights are freezed.
Moreover, the CPU time is only 1.75 s.

C. THIRD EXAMPLE
The ODE problem in [15] is reproduced in the third example.
It can be summarized as follows:

S ′′′ = ex x ∈ [0, 1] ;

S(0) = 3, S ′(0) = 1, S ′′(0) = 5 (22)
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FIGURE 5. Absolute error values using the APM and the 2-Step 4-point hybrid method compared to the exact solution for
the second example.

TABLE 3. Comparison between the absolute errors in both the DTMELZ method and the proposed APM for the third example.

It can be mentioned that the exact or analytical solution for
this problem is obtained by:

Sexact (x) = 2+ 2x2 + ex x ∈ [0, 1] (23)

The same conditions of the previous examples have
been considered. Using (15), the APM estimated analytical
solution, after convergence, is:

SAPM (x) = 3+ x + 2.5 x3 + 0.1667 x4

+ 0. 0085 x5 + 0.0012 x6 + 0.0003 x7 (24)

Fig. 6 shows that the APM estimated solution is more close
to the exact solution of the ODE than that of the Differential
Transform and Elzaki (DTMELZ) method [15].

The norms of the computed errors between the exact and
estimated solutions, using both the DTMELZ method [15]
and the proposed APM, at the discretized points of interest,
are tabulated in Table 3. Moreover, the CPU time is only
0.8438 s.

D. FOURTH EXAMPLE
The ODE problem in [26] is reproduced in the fourth exam-
ple. It can be summarized as follows:

S ′′′ = −S, x ∈ [0, 2] ;
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FIGURE 6. Exact and estimated solutions using APM and DTMELZ method.

S(0) = 1, S ′(0) = −1, S ′′(0) = 1 (25)

It can be mentioned that the exact solution for such ODE
can be obtained as follows:

Sexact (x) = e−x x ∈ [0, 2] (26)

Considering S ′′′(0) = 1, the converged APM analytical
solution can be estimated as follows:

SAPM (x) = 1− x + 0.5 x2 − 0.1667 x3 + 0. 0416 x4

− 0.00832 x5 + 0.0013 x6 − 0.0001x7 (27)

The estimated analytical solution using the DTMELZ
method has the following form [26]:

SDTM (x)=1− x +
x2

2
−
x3

6
+
x4

24
−

x5

120
+

x6

720
−

x7

5040
(28)

The norms of the computed errors between the exact
solution and the estimated solution using the DTMELZ
method [26] and the proposed APM, at the discretized points
of interest, are shown in Fig. 7.

In general, the proposed APM solution shows relatively
small absolute errors compared to those of the DTMELZ
methodwith a higher accuracy and 1.6094 s CPU time. On the

other hand, the lower accuracy obtained at the first few epochs
is attributed to the first four weights that are not adapted in the
APM.

Considering the same example, the absolute values of the
computed errors between the estimated solutions using both
the ADM [27] for x ∈ [0.2, 1] and the proposed APM, at the
discretized points of interest, and the closed-form solution
are shown in Fig. 8. Additionally, the proposed APM shows
relatively small absolute errors compared to the ADM with
higher accuracy and a 1.5894 s CPU time.

E. FIFTH EXAMPLE
The ODE problem in [27] is reproduced in the fifth example.
It can be summarized as follows:

S ′′′ + 2S ′′ − S ′ − 2S = ex , x ∈ [0, 3]

S(0) = 1, S ′(0) = 2, S ′′(0) = 0 (29)

It can be mentioned that the exact solution for such ODE
can be obtained as follows:

Sexact (x) =
43
36
ex +

1
4
e−x −

4
9
e−2x +

1
6
xex (30)
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FIGURE 7. Absolute errors using the APM and the DTMELZ method for the fourth example.

Using (15) with S ′′′(0)= 5, the converged APM analytical
solution can be estimated as follows:

SAPM (x) = 1+ 2x + 0.8333 x3 − 0.2070 x4

+ 0.1287 x5 − 0.0288x6 + 0.0055 x7 (31)

The estimated analytical solution using the DTMELZ
method has the following form [27]:

SDTMELZ (x) = 1+ 2x +
5
6
x3 −

5
24
x4

+
2
15
x5 −

13
360

x6 +
59
5040

x7 (32)

Fig. 9 shows the absolute error values between the esti-
mated solutions using both the DTMELZ method [27] and
the proposed APM compared to the exact solutions, at all
the discretized points. As shown, the proposed APM has
lower absolute error values, which indicates better accuracy
except for the first few discrete points, where the weights are
freezed.

The proposed APM achieves an excellent agreement with
the ODE exact solution in (30), compared with the DTMELZ
method, with higher accuracy as shown in Fig. 10 with a
1.8802 s CPU time.

F. SIXTH EXAMPLE
The ODE problem in [28] is reproduced in the sixth example.
It can be summarized as follows:

S ′′′ − 4S ′′ + S ′ + 6x = 6, x ∈ [0, 1]

S(0) = 3, S ′(0) = 5, S ′′(0) = 13 (33)

The domain of this example was discretized using a step
of 1/8. Using (15) and considering that S ′′′(0) = 35, the APM
analytical solution, after convergence, can be estimated as
follows:

SAPM (x) = 3+ 5x + 6.5 x2 + 5.8333 x3 + 3.4040 x4

+ 4.4607 x5 − 1.7489 x6 + 2.0198 x7 (34)

Table 4 summarizes the exact solution, the numerical solu-
tion using the fourth-order Runge-Kutta method, the numer-
ical solution using the method thoroughly explained in [28],
and the proposed APM solution, which can be obtained by
(34) at the discretized intervals.

The absolute error values between the numerical solutions
and the exact solutions are illustrated in Fig. 11, which shows
that the proposed APM is better than the hybrid-domain
one-shot integration matrices method [28]. It is well-known
that the fourth-order Runge-Kutta solution is very close to the
exact solution, and consequently, thismethod outperforms the
proposed APM.
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FIGURE 8. Absolute errors using APM and ADM for the fourth example.

TABLE 4. Exact, numerical and proposed APM solutions for the sixth example.

However, the advantage of the proposed APM is that it
provides both analytical and numerical solutions, while the
Runge-Kutta method provides only the numerical solution.
Moreover, the CPU time is only 2.3906 s.

IV. APPLICATION OF APM TO THE THIN FILM FLOW
PROBLEM
In this section, the APM performance is tested on a well-
known application in engineering and physics (Thin Film
Flow). The problem of thin film flow of a liquid on a certain
solid surface has received a lot of attention [29], [30].

Commonly, most discussions related to this matter are
about a viscous fluid flowing over a certain solid surface. Sev-

eral parameters are taken into consideration, such as gravity,
viscosity, and tension.

The flow of thin films of viscous fluid over a free surface
can be modeled as a third-order ODE, which describes the
shape of the free surface of the fluid and takes into consider-
ation the surface tension effect.

One of the ODEs that deal with a fluid dynamic problem
can be expressed as follows:

S ′′′ = f (X ) (35)

where
f1(X ) = −1+ S−2

f2(X ) = −1+ (1+ δ + δ2)S−2 − (δ + δ2)S−3
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FIGURE 9. Absolute error values using the APM and the DTMELZ method [27] compared to the exact solution for the
fifth example.

TABLE 5. Exact, proposed APM and other numerical solutions for the case of k = 3.

TABLE 6. Exact, proposed APM, and domian decomposition method solutions [16] for the case of k = 2.

f3(X ) = S−2 − S−3

f4(X ) = S−2 (36)

Generally, (36) represents the draining of a thin film down
on a dry wall, while f1(X ) represents the drainage dry surface,
and f2(X ) is a prewetted surface by a thin film with a very
small thickness δ > 0.

Various numerical methods have been devoted to solve the
thin film flow problem as a third-order ODE in a famous form
as follows:

S ′′′ = S−k (37)
with S(0) = x1, S ′(0) = x2, S ′′(0) = x3

where the initial conditions x1, x2 and x3 are constants. In a
thin fluid layer, the importance of such constants is that they
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FIGURE 10. Exact and estimated solutions using APM and DTMELZ [27].

describe the dynamic balance between viscous forces and
surface in the absence of gravity.

Considering the cases, where x1 = x2 = x3 = 1, k = 2,
and k = 3, the proposed APM is also applied to analytically
solve (37). The results are summarized in Table 5 and Table 6
and compared with the results of all other numerical meth-
ods in [29], [30], for the case of k = 3, and the analytical
method in [16] for the case of k = 2.
From the aforementioned comparison results, it can be

noticed that the APM provides a better and closer solution
to the exact one. In addition, it can produce an analytical
solution valid for all values of x.

For the case of k = 3, the analytical solution by the
proposed APM can be found as:

SAPM (x) = 1+ x +
1
2
x2 + 0.166x3 − 0.108317x4

+ 0.035086x5 − 0.00482x6 − 0.00558x7 (38)

The absolute values of the computed errors between the
best-estimated numerical solutions [29], [30] and those of the
proposed APM, at the discretized points of interest, compared
to the closed-form solution are shown in Fig. 12. The CPU
time is only 0.6527 s.

For the second case of k = 2, an analytical solution was
found to solve the thin filmflowproblem in terms of the initial
values using the ADM [16]. The comparison between the
APM and the ADM confirms the efficiency of the proposed
APM compared to both numerical and analytical methods.

The absolute values of the estimated errors of the pro-
posed APM solution and the estimated analytical solution
in [16], at the discretized points of interest, compared to the
closed-form solution are shown in Fig. 13.

It can be noticed that the proposed APM produces rela-
tively smaller absolute errors compared to the ADM. The
CPU time is only 1.4843 s.

After convergence, the analytical solution by the proposed
APM, for the case of k = 2, can be found as:

SAPM (x) = 1+ x +
1
2
x2 + 0.166x3 − 0.08224x4

+ 0.03045x5 − 0.00725x6 + 0.000762x7 (39)

Using the seventh-order ADM in [16] with the same initial
conditions, the solution can be expressed as:

SADM (x) = 1+ x +
1
2
x2 + 0.1667x3 − 0.0833x4

+ 0.0333x5 − 0.00694x6 + 0.00833x7 (40)
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FIGURE 11. Absolute errors for the APM, the fourth-order Runge-Kutta and the hybrid domain one-shot
integration matrices method solutions.

FIGURE 12. Absolute errors using the APM compared to solutions 3 and 4, for k = 3.
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FIGURE 13. Absolute errors using the APM compared to the ADM, for k = 2.

The efficiency of the proposed APM in the thin film flow
problem has been emphasized with both numerical and ana-
lytical solutions.

V. CONCLUSION
An efficient adaptive polynomial method (APM), which
can provide an analytical solution for linear and nonlin-
ear third-order ODEs, has been presented. By employing
this APM, analytical solutions could be derived, even when
only numerical solutions may be available. The APM adapts
the coefficients of polynomials using the efficient adaptive
SLMS algorithm. Low computational complexity can be
achieved by employing the adaptive SLMS algorithm due to
the simple update equation. Moreover, regarding the APM
analytical solution, the initial conditions can be easily found.
The improved performance of the APM is demonstrated
through the comparison with some powerful conventional
analytical and numerical methods through six famous exam-
ples, and tested in an application of a thin film flow problem
as well.

In the first example, the proposed APM outperforms the
LS-SVM method, where the mean square error has dramati-
cally dropped one order of magnitude, from 4.3564× 10−7 to
2.531 × 10−8. The obtained results for the second example

are similar; the overall mean square error has dropped one
order ofmagnitude, from 4.65853× 10−8 to 6.35539× 10−9.

The third example has definitely confirmed the high effi-
ciency of the proposed APM by severely dropping mean
square error twelve orders of magnitude, from 1.5833125 to
2.69154 × 10−12.

Regarding the fourth and the fifth examples, although the
obtained results of the proposed APM show higher absolute
error values only at the few epochs where the weights are
freezed, lower absolute error values are obtained everywhere
else, which indicates a better accuracy of the proposed APM.

Regarding the sixth example, although the proposed APM
shows the same order of magnitude of the fourth-order
Runge-Kutta method, its results are superior, where the order
of magnitude dropps, approximately five orders of magni-
tude, from 4.007939979 to 3.2115× 10−5. Moreover, all uti-
lized methods for computing the results of the sixth example
show a semi-identical mean square error that has an average
of 0.004852099 and a standard deviation of 0.000128587,
while the proposed APM shows a slightly smaller mean
square error of 0.004347715.

Similarly, in the application to the thin film flow problem,
the proposed APM shows one order of magnitude smaller
mean square error of −3.50099× 10−5 compared to that of
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the solution using the analytical ADMof 0.002366344 for the
case of k = 2. For k = 3, the proposed APM shows slightly
better results for all epochs.

The detailed explanation of all six examples and the appli-
cation to the thin film flow problem and their corresponding
results, definitely, illustrate and confirm the superiority of the
proposed APM in terms of accuracy, simplicity and process-
ing time.

Future work of this research could involve testing the per-
formance of the APM in 2-dimensional nonlinear problems,
differential algebraic equations and fractional-order ODEs.
Different adaptive algorithms could be tested to increase the
accuracy of the results. Comparison between the proposed
method and other methods in solving higher-order ODEs will
be studied. Finally, more practical applications could be used
to test the performance of the APM.
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