
Received March 12, 2021, accepted April 7, 2021, date of publication April 13, 2021, date of current version April 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073090

Seismic Data Compression Using Deep Learning
EMAD B. HELAL 1,OMAR M. SAAD 1,2, ALI G. HAFEZ 1,3,4,
YANGKANG CHEN 2, (Member, IEEE), AND
GAMAL M. DOUSOKY 3,5,6, (Senior Member, IEEE)
1Department of Seismology, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11421, Egypt
2School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
3Department of Communication and Computer Engineering, Faculty of Engineering, Nahda University, Beni Suef 65211, Egypt
4Research and Development Division, LTLab Inc., Fukuoka 814-0155, Japan
5Department of Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
6Electrical Engineering Department, Minia University, Minia 61517, Egypt

Corresponding author: Emad B. Helal (emad.helal@nriag.sci.eg)

This work was supported by the Egyptian Science and Technology Development Fund (STDF) under Project 25681.

ABSTRACT The exponential growth of the size of seismic data recorded in seismic surveys and real time data
monitoring makes seismic data compression strongly demanded. Furthermore, compression will lead to an
efficient use of the bandwidth assigned for the communication link between the seismic stations and the main
center. In this paper, two convolutional autoencoders (CAEs) are proposed for seismic data compression. The
two algorithms are mainly based on the convolutional neural network (CNN), which has the capability to
compress the seismic data into feature representations, thereby allowing the decoder to perfectly reconstruct
the input seismic data. The results show that the first model is efficient at low compression ratios (CRs),
while the second model improves the signal-to-noise ratio (SNR) from about 3 dB to 12 dB compared to the
other benchmark algorithms at moderate and high CRs.

INDEX TERMS Convolutional autoencoders (CAE), deep learning, seismic data compression.

I. INTRODUCTION
Seismic data are collected for many purposes, e.g., crustal
earth structure studies, earthquake parameter calculations,
and oil and gas explorations. The huge amount of data records
require a large storage and bandwidth for both site archiving
and transmission to the main database center. Thus, it is
beneficial to compress seismic data to save a huge amount
of resources that are reserved for transmission and storage of
data.

Seismic data compression methods are categorized into
two groups: lossy and lossless compression. In the latter
group of methods, there are no losses or noise added to the
original data after reconstruction, which, is only applicable
at low compression ratios (CRs).While in lossy compression,
reasonable losses exist in the reconstructed data, thus allow-
ing high data compression. In this work, we only consider the
lossy compression. Among transformation techniques, dis-
crete cosine transform (DCT) achieves robust performance,
especially when the original input data rate was decreased
by one-third [1]. Wavelet transform approaches [2]–[4] are
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considered popular transformation methods for compressing
seismic data because of their effective data representation and
direct data reconstruction. However, the common cosine and
wavelet methods are non adaptive and cannot cope with the
high oscillation nature of seismic waves [5]. In order to solve
these issues, an improvement of wavelet transform method is
proposed by using M-channel uniform filter banks [6]. More-
over, a hybrid compression method between wavelet and the
local cosine method is proposed to handle the oscillatory
behavior of seismic wave [7].

Numerous methods of data compression have been pro-
posed recently. Liu et al. propose a distributed principal com-
ponent analysis (DPCA) [8] to compress seismic traces by
collecting seismic traces from different sensors and produces
orthogonal global PCs based on a combination of probabil-
ity density functions. Despite the low computational cost,
the DPCA method has relatively low performance at high
compression ratios. Compressive Sensing (CS) has recently
been used in data compression. Contrary to the traditional
compression methods, CS theory assumes that compression
can be implemented before data digitization [9]. Thus, it is
no longer limited by Shannon’s sampling theory. CS crite-
rion proves that from a small number of samples, the signal
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can be recovered if and only if it achieves two conditions:
(1) sparseness, and (2) incoherence. Regarding seismic data
compression, CS achieved high compression ratios while
ensuring high accuracy of the reconstructed data [10], [11].
However, seismic compression based on CS methods mainly
depends on theoretical analysis and mathematical tests which
is time consuming and still faces several limitations. Learning
from data or dictionary learning (DL) methods has recently
been used in seismic data compression. In Payani et al. [12]
two approaches are proposed: (1) sparse-incremental online
DL (SIODL) is faster than the ordinary DL method, and
(2) rate-optimized DL achieves good performance. However,
these algorithms suffer from high communication cost in
data acquisition. Recently, multiscale sparse dictionary learn-
ing has been proposed for data compression [13]. In this
method the dictionary learning process is integrated with
wavelet transform. This method achieves acceptable perfor-
mance with the existence of noise. However, the calcula-
tion process of sub-band weights needs to be modified to
achieve better results. Deep learning methods are widely
used to solve the seismic compression problem. Restricted
Boltzmann machine (RBM) [14] with single layer neural
network is proposed in Nuha et al. [15]. Although being
computationally efficient, a single layer cannot capture all
data features and the reconstruction error is high. Using mul-
tiple hidden layers, Nuha et al. [16] integrates the extreme
learning machine technique [17] with deep neural networks
autoencoder. This method is considered a fast method due to
the analytically calculated encoder/decoder weights without
any iterations. However, this method is not a generalized
method because the feature representation is not generated
from different attributes of input traces. A 3D deep learning
technique is proposed in Schiavon et al. [18] to compress seis-
mic data with low bit rate. This technique is less sensitive to
noise and can reconstruct the seismic data with high quality.
However, this model concentrates on high compression rather
than high bit rates.

In contrary to the most machine learning methods, deep
learning deals with the raw data directly without the need
of extra processing operations of the input data [19]–[21].
In addition, deep learning extracts the significant features
by dividing the input data via multiple abstraction levels in
unsupervised manners [21]. One of the most powerful deep
learning architectures is the autoencoder which encodes the
input data using hidden layers then enables the decoder to
reconstruct the input data efficiently [14]. AE is widely used
in dimensionality reduction applications, e.g., image process-
ing [22], feature extraction [23], and semantic hashing [24].
In the seismology field, Saad et al. use the autoencoder in
automatic earthquake arrival time detection [25] and denois-
ing [26].

Convolutional autoencoder (CAE) is one of themost robust
AE architectures. CAE is based on convolutional neural
network (CNN), which is a powerful tool in classification
and feature extraction applications. Unlike other deep AE
methods, CNN uses convolutional filters rather than neurons

to extract the required feature map. Recently, CAE is uti-
lized in many applications, e.g., radar-based activity clas-
sification [27], denoising of speech signals [28], and fault
detection in aircraft engine [29]. In the geophysical com-
munity, CAE solves enormous problems, such as, lithology
prediction [30], arrival picking [31], seismic data interpo-
lation [32], simultaneous-source separation [33], earthquake
parameters classification [34], and waveform-based source-
location imaging [35]. Although CAE has been used for
compression in many scientific domains such as biomedical
context [36], [37], to the best of our knowledge, it is the
first time to be used for 1D seismic data compression. In this
paper, two CAE models have been proposed to characterize
the high oscillation nature of seismic waves. Applications
to real earthquake data show that the proposed CAE mod-
els can compress the input samples at different CRs. Then,
the original data is reconstructed successfully with a high
signal-to-noise ratio (SNR). Both models introduce an inte-
grated solution for low and high data compression. Model-II
achieves a higher SNR than other state-of-the-art methods
at high and moderate compression ratios, while model-I
achieves reasonable performance at low compression ratios.
The proposed models are robust and have a strong general-
ization ability.

II. PROPOSED COMPRESSION ALGORITHMS
Seismic data compression is important for all components of
the seismic network: from the size of the memory of the in-
site transmitter, to the bandwidth of the communication link,
to traffic at the central node and finally to the storage media
at the data center. Therefore, it is significant to compress the
transmitted records as small as possible, while preserving the
important information required for reconstruction purpose.
Unlike handwritten digits in image processing, seismic data
have different wave characteristics that should not be changed
after reconstruction. We propose two deep learning models
based on the convolutional neural network (CNN). Note that,
the first model (model-I) and the second model (model-II)
complement each other. The first model is preferable for
low CRs, while the second model is more suitable for high
and moderate CRs.

A. DATASET
The dataset from the East Texas, USA, has been used in this
work [38]. For 594 seismic traces, 70% of the data are utilized
for training, 10% are used for validation, and the remaining
(20%) are used for testing. The record length for each trace is
3 seconds and the sampling rate is 500 Hz. Thus, the number
of acquired samples is 1500 samples. The magnitude of the
data is normalized in the range [0-1]. The CNN network
models are built using Keras with TensorFlow backend [39].
The performance of the deep learning models is executed
using the GPU enabled by Google COLAB.

B. PROPOSED MODEL-I
The first convolutional autoencoder (CAE) (model-I)
depends on the dimensional reduction of the input data to
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FIGURE 1. The proposed model-I example when CR = 15.

compress the seismic data during the transmission process.
The CAE model consists of two stages: encoder and decoder.
The encoder extracts the significant features from the input
data and compresses the input data into smaller dimensions.
The encoder stage consists of several layers, e.g., 1D con-
volutional and pooling layers to encode the input data. The
last encoder layer (coded layer or bottleneck layer) contains
the least feature map to represent the input data. The required
CR is determined by the number of features transmitted in the
coded layer. The decoder reconstructs the input data using the
extracted features from the coded layer. The decoder utilizes
successive deconvolutional and upsampling layers. Assuming
that the encoder part will be executed at the seismic station
and the decoder will be executed at the main center.

The encoder extracts several feature maps using the con-
volutional layer with several kernels. For an input data x,
the output of the i−th kernel, hi, can be determined as follows:

hi = σ (x ∗ K i
+ bi), (1)

where ∗ refers to 1D convolution, K is the ith convolution
filter, bi is a bias of ith feature map, and σ is the activation
function. The activation function in the convolutional layers
is the exponential linear unit (ELU) with α > 0 shown as
follows:

σ =

{
z, for z > 0
α · (ez − 1), for z ≤ 0,

(2)

where, α, controls the scale of the negative inputs. Afterward,
the maxpooling layer is used to reduce the size of the data by
a rate of p, where p is the downsampling rate [40]. The output
of the coded layer has a size of li

CR , where li is the input data
size.

Then, the original value of the input samples are recon-
structed using the symmetrical decoding architecture but with

inverse operations to the encoder. The reconstruction is deter-
mined using the following formula:

y = σ (
∑
i∈H

hi ∗
∼

K
i
+ c), (3)

where
∼

K is the inverse operator that transposes the weights,
H denotes the feature maps, and c is the bias per input
channel. The hidden layers in the decoder side use the ELU
activation function for fast training and achieving better per-
formance. Afterward, up-sampling layer is used to compen-
sate the effect of the pooling layer, i.e., to increases the size of
the data with a rate of p [41]. The final decoder layer is a 1D
convolution layer with one convolution filter to reconstruct
the input signal with the same size. The loss function can be
determined as follows:

min
θ
.||F(x; θ )−x||22, (4)

where F is the proposed network, x is the network input,2 =

{K ,
∼

K , b, c} is the network parameters, F(x; θ) denotes the
network output, andN represents the number of data samples.

The architecture of the first model is illustrated in Fig.1,
e.g., when CR = 15, the input data is compressed from
1500 samples to 100 samples. First, the input data with
size of 1500 × 1 are input to the 1D convolutionl layer with
16 convolution filters (1500 × 16). To decrease the network
complexity, the maxpolling layer is utilized to reduce the
feature map size to be (500× 16). Then, two consecutive 1D
convolutional layers having twice the number of filters are
used to obtain the final feature maps (500 × 64). In order to
obtain the required rate, the maxpolling layer is utilized with
an order of 5 to produce featuremaps (100×64), and for better
signal resolution a 1D convolutional (100 × 128) is added
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FIGURE 2. The proposed model-II example when CR = 30.

before the final encoder layer (100 × 1). The feature map in
the bottleneck layer (100 × 1) is considered as the decoder
input. The same topology is repeated on the decoder side with
an inverse operation, e.g., up-sampling layer is opposed to the
pooling layer to increase the size of samples at the required
rate. Finally, the (100× 1) encoded features are transformed
into 1500× 1 at the output layer that has the same size of the
input data.

C. PROPOSED MODEL-II
The secondmodel is also based on CNN. However, the net-

work architecture is different. The encoder comprises three
stages: 1D convoltional (Conv1D), flatten, and dense layers.
The convolutional filter slides with a stride of s, where the
stride is the number of shift samples. This represents the same
role of maxpooling with a rate of s [42]. First, the input
layer reads and stores the input samples as a 1D tensor
before transmission to the next layer. Then, the compression
process is accomplished using a number of consecutive 1D
convolutional layers with a gradual increase of the feature
maps. Each convolutional layer obtains the key features and
decreases the dimensions of data samples to reduce the net-
work complexity. All convolutional hidden layers use the
ELU activation function. The output of each layer has two
paths. One path is directed to the next convolutional layer to
extract more features, and the other path is directed to the
flatten layer, which converts the data into a 1D array to be
fed into a dense layer. Each dense layer separates out some
of the required feature maps. The dropout layer is utilized
after each convolutional layer to avoid overfitting. Unlike the
first model, this model does not have the bottleneck layer
because the features are encoded and distributed along the
dense layers before transmission to the decoder.

The decoder in this model is very simple, compared to the
first model. Because, it only integrates the incoming encoded
features using a small number of concatenated layers. Finally,
the dense layer maps the original input signal using the
sigmoid function. This model is inspired from UNet [43],
since the network architecture between the encoder and the
decoder has a U-shape. Fig.2 describes the proposed seismic
data compression process at CR = 30.

III. APPLICATION AND RESULTS
A. EVALUATION CRITERIA
The evaluationmetricsmeasure the reconstructed signal qual-
ity of the proposed seismic data compression approaches.
Those widely known metrics are defined as follows:
(1) normalized mean-squared error (NMSE), (2) normalized
rootmean-squared error (NRMSE), and (3) SNR. These crite-
ria compare the reconstructed output signals with the original
seismic input signal as follows:

1) Normalized mean-squared error (NMSE)

NMSE =

∑K
i=1 ‖xi − x̂i‖

2∑K
i=1 ‖xi‖

2
, (5)

whereK is the seismic signal index in the dataset. x and
x̂ refer to the instantaneous values of the original trace
and its related output after reconstruction, respectively.

2) Normalized root mean-squared error (NRMSE)

NRMSE =

√
mean{(x− x̂)2}

max(x)−min(x)
, (6)

where x is the data vector and x̂ is the recovered signal
vector. NRMSE is used to measure the distortion level
resulted from the lossy compression [44].

3) SNR is the evaluation metric used to measure the signal
quality after compression. The SNR is correlated to
NMSE as follows:

SNR(dB) = − log10NMSE (7)

B. NETWORK ARCHITECTURES
The network architectures of the two proposed models are
chosen to maximize the SNR. The number of layers and
feature maps for each layer of the CAE are changed, while
the other network parameters are constant. The feature maps
inside each layer is incremented gradually with 2, 4, 8 and 16.
To illustrates, Fig. 3 shows the effect of changing the number
of layers versus the network featuremaps on the performance,
when CR = 30. Fig. 3a shows the SNR-performance for
model-I, where the best SNR has been achieved using five
layers. While, two layers are sufficient to achieve the best
SNR for model-II as shown in Fig. 3b. The feature maps
of both models should start from 8 features and increase
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FIGURE 3. The number of layers effect versus network feature maps on the SNR for (a) Model-I and (b) Model-II when CR = 30.

TABLE 1. Performance of model-I for 475 training and 119 test traces at different compression ratios. The performance metrics: NMSE, NRMSE, and SNR
are calculated for test data.

gradually according to the optimal number of layers. For
example, when CR= 30, the CAE encoder in model-I should
consist of five layers with 8, 16, 32, 64 and 128 feature maps,
respectively, and 128, 64, 32, 16 and 8, in the decoder part,
respectively. However, for model-II, the optimal number of
layers when CR = 30 is equal to two layers using 8, and
16 feature maps, respectively. Each feature map, for model-
II, has a filter size of 3 × 1, and the stride is equal to 2.
While, the dropout rate is 0.1. Similarly, the same procedure
is done for different CRs for the two models to choose the
best architecture that perfectly reconstructs the input seismic
signal as illustrated in Table 1 and 2.

Adam optimizer with a learning rate equal to 0.001 is used
for training the two models [45]. The first model is trained
using 100 epochs and the number of epochs is doubled for
the second model, with the same batch size of 10 for the two
models.

Table 1 summarizes the experimental results of the first
model (model-I) for various CRs. The encoder hidden lay-
ers optimal architecture is illustrated in the first column,
e.g., the layer size l1 − l2 − l3-l corresponds to the con-
volutional auto-encoder architecture of l1 − l2 − l3 −
l − l3 − l2 − l1. The compression ratio is obtained

by dividing the number of input samples by the number
of features at the layer l (bottleneck layer). For exam-
ple, model-I with architecture (1500,16)-(1500,32)-(300,32)-
(300,64)-(300,128)-(300,1) uses 300 units in the coded layer,
then the compression ratio of this architecture is equal to 5:1
( 1500300 ). In addition, it is evident that the training time mainly
depends on the number of feature maps in each hidden layer.
Therefore, the larger number of hidden layers is, the longer
training time is needed.

The optimal architectures have been investigated versus
different CRs, as presented in Table 2. All model-II archi-
tectures finish the training within less than 1min except when
the CR is less than or equal to 5.

The NMSE behavior in Table 1 partially differs from
Table 2. In the first model, the NMSE value increases as
the compression ratio increases, while this phenomenon only
appears in the model-II starting from CR = 10 to 100. When
CR = 2 to 5, the NMSE becomes almost constant. These
results can be explained by the fact that the higher the com-
pression, the higher the distortion in the signal. However, the
performance of model II depends on the extracted feature
maps. Starting from CR = 10 to 100, the second model can
generate the features (150 to 15 consecutively) that accurately
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TABLE 2. Performance of model-II for 475 training and 119 test traces at
different compression ratios. The performance metrics: NMSE, NRMSE,
and SNR are calculated for test data.

reconstruct the original signal. However, when CR = 300,
500, and 750, model-II fails to represent the input signal
from the produced feature maps since the feature maps are
saturated. Table 1 and Table 2 reveal that the NRMSE values
highly correlate with NMSE values and reflect the same
attributes. The pseudo code summarizing the two proposed
algorithms is shown in Algorithm 1.

Instead of using random data splitting, the K -fold
cross-validation method is used to evaluate the proposed
models. This method split data into K groups. One group is
used for testing the data set and the remaining (K-1) groups
are used for training. This process is repeated by K times
while changing the dataset each time. Finally, the mean value
of the performance, for all K test cases, is calculated. The K
value is set equal to 10 for the two proposed models, and the
mean of SNR values is calculated for 10-fold cross validation
for different CR values as shown in Table 3. From CR =
2 to 5, for model-I, the SNR values are improved by at least
1dB. However, for the other CR cases in models I and II,
the performance is almost the same in case of random data
set splitting. Thus, the proposed models are robust and have
a strong generalization ability.

C. RESULTS COMPARISON
We compare the two models (model-I and model-II) with the
stacked auto-encoder ELM (ELM) method [16] that is used
in seismic data compression recently. The best results of the
ELMmethod are used for comparison. Also, the state-of-the-
art method, discrete wavelet transform (DWT) method [2] is
used to show the effectiveness of the proposed compression
methods with varying CRs. The discrete wavelet transform
(DWT) [46] is used as a state-of-the-art method. We tune the
DWT parameters to reach the best performance. Accordingly,

Algorithm 1 Proposed Algorithms for Seismic Data Com-
pression
Input: X (training data set), CR (compression ratio)
Output: Y (reconstructed input data)
1: Select a model and its optimal network architecture

according to Tables 1 and 2.
2: Calculate the output of the encoder according to equa-

tion (1) and then get the decoder output Y according to
equation (2).

3: Calculate the loss value between X and Y .
4: Use Adam optimizer to optimize model weights and

biases.
5: Repeat step 2 to 4 until the loss value is saturated.

TABLE 3. Performance of model-I and model-II using 10-fold cross
validation at different compression ratios.

the best results for the DWT method are obtained using the
Daubechies: ‘db2’ filter type and 4 levels of decomposition.
Furthermore, the absolute values of wavelet coefficients are
sorted in the ascending order, and the number of coefficients
is determined corresponding to the required CR.

A sample of time series of the original and the recon-
structed seismic traces from the first and the second mod-
els are compared with the ELM and DWT methods when
CR = 10, 15, 30, and 50 as shown in Fig.4. Overall, model-
II achieves obviously the highest quality of the reconstructed
signal in comparison with the other methods at the selected
CRs. For instance, in the zoomed time frame from 590 sec
to 670 sec, model-II successfully reconstructs the original
signal, while the reconstructed signal from the other three
methods suffer from some distortions. Also, for the four
models, the quality of the reconstructed signal decreases as
the CR increases.

Fig.5 shows the SNR values of the proposed models (I
and II), the ELM, and the DWT methods in decibel (dB)
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FIGURE 4. Reconstructed time sample at (a) CR = 10, (b) CR = 15, (c) CR = 30, and (d) CR = 50..

for different CRs. DWT achieves the highest SNR values for
lower CR values. For example, from CR = 2 to 3 the values
of SNR are equal to 53.0194 dB and 44.0675 dB, respec-
tively. DWT is an effective method for data compression at
low CRs because the DWT filter coefficients can represent
the signal with high accuracy. However, the wavelet method
consumes 0.0184 seconds to compress and reconstruct the
1500-samples seismic window, while model-I consumes only
0.0010 seconds to perform the same task. Afterward, the per-
formance of ELM and DWT methods when CR = 5 is the
same, approximately equal 35 dB. In contrast, DWT perfor-
mance degrades dramatically as CR increases. DWT begins
to behave poorly when CR becomes larger than 15. The SNR
of the DWT is 21 dB and 7.4 dB when CR is 15 and 100,
respectively. These results rely on the fact that the number
of coefficients for signal representation decreases when the
CR increases. Consequently, the reconstructed signal suffers
from a high level of distortion. Regarding to the ELMmethod,
the performance is limited to about 21 dB when CR is greater
than or equal to 30. While, at low CRs, ELM achieves better
performance than the two proposed models, contrary to the
performance of the two proposed models at high CRs. It is
obvious that, model-II achieves the maximum SNR values
compared to other methods when CR increases from 10 to
100. For example, when CR= 30:1 and 50:1, model-II shows
an improvement in SNR over the ELM by 3 dB for the two
CRs, outperforming model-I by 5 dB and 3 dB, respectively,
and the DWT method by at least 12 dB. However, the SNR
for the second model is constant at almost 31 dB from
CR= 2 to 5. This implies the limited performance ofmodel-II
at low CRs as opposed to the other methods. However, from
CR = 2 to 5, the performance is saturated at almost 31 dB as

FIGURE 5. SNR as a function of compression ratios for all methods.

the extracted features cannot well represent the original data.
For model-I, the SNR does not increase remarkably for high
CRs. Since model-I at high CRs requires a lot of convolution
filters and maxpolling layers, which causes significant losses
of data details. Nonetheless, model-I outperforms model-II
from CR = 2 to 3 by about 9 dB and 2 dB, respectively.
In conclusion, the first model achieves higher SNR at low
CRs, while the second model achieves better performance at
moderate to high CRs.

IV. CONCLUSION AND FUTURE WORK
This study introduces two convolutional autoencoders for
seismic data compression. The first model consists of sym-
metrical encoder-decoder parts that have the same number of
hidden layers in each side. There is a bottleneck layer between
the encoder and decoder stages, which contains the least
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feature maps to represent the input data. Despite that the sec-
ond model does not have a coded feature layer, the encoder
extracts the significant features using a certain number of
successive 1D convolutional layers. The decoder of the sec-
ond model is fast and simple compared to the decoder of the
first model. Model-II achieves the highest SNR at moderate
to high compression ratios with about 3 dB increase in SNR
compared to the ELM method, and by at least 12 dB in com-
parison with the discrete wavelet transform (DWT) method.
While model-I achieves reasonable and fast performance at
low compression ratios, it is recommended to use the DWT
method for better performance. The proposed models are
proved to be robust and have a strong generalization ability
using the 10-fold cross validation method. For future work,
the authors are going to use a bigger dataset from different
seismic areas to further generalize the proposed models.
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