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ABSTRACT The penetration of plug-in electric vehicles (PEVs) has increased in the transportation sector in
the last few years and it has increased the uncertain load in the power sector. In order to analyze the impact on
the power grid and plan infrastructure, modeling of PEV load profiles is required. Determining realistic PEV
load profiles is challenging due to the involvement of serval uncertainties and complex interdependencies
among different factors and to date, there are no benchmark load profiles of PEVs. In this paper, realistic and
ready-to-use load profiles for PEVs are developed by considering vehicle mobility, charging infrastructure,
and the market share of PEVs. Firstly, the U.S. National Household Travel Survey (NHTS) data is filtered
to remove vehicles with unrealistic, duplicate, and missing data. Secondly, a set of relevant parameters is
extracted to estimate different features of PEVs, such as arrival time, departure time, and daily mileage.
Then, all the commercially available PEVs are grouped into four clusters using the K-means algorithm.
Finally, the per unit (per PEV) load profiles are estimated using the information of the available PEVs in
the market, charging levels in the residential sector, and features extracted in the previous step. A large
set of scenarios are considered for each PEV cluster in determining the load profiles. The pre-unit profiles
estimated in this study are ready-to-use for researchers and planners in the PEV industry and are realistic
due to consideration of different relevant factors and a large traveling database of vehicles. The developed
per-unit load profiles are used to estimate and analyze the PEV load profiles of the top four countries with
the highest penetration percentage of PEVs.

INDEX TERMS Load profile, peak demand estimation, PEV demand estimation, PEV load, PEV policy-
makers, plug-in electric vehicles, test data.

I. INTRODUCTION
A. CHALLENGES AND OPPORTUNITIES IN
TRANSPORTATION ELECTRIFICATION
Transportation electrification is considered a viable solution
to reduce the emissions of greenhouse gases and enhance
energy security simultaneously. The former can be achieved
by reducing the reliance on fossil fuels while the latter can
be achieved by shifting demand to locally available renew-
able energy sources [1]. The penetration of plug-in electric
vehicles (PEVs) has seen a dramatic increase in the last few
years due to advances in battery technologies, interest in
sustainable energy, and reduction in the costs of PEVs [2], [3].
The global PEV ownership has increased by 64% in 2018 as
compared to the previous year, 2017 and the global PEV
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fleet has reached 2,264,400 in 2019 [4]. However, there are
still several technical and social barriers, which need to be
addressed for the widespread adoption of PEVs [5].

Various studies can be found in the literature about the
potential problems due to PEVs [6] and technical chal-
lenges associated with PEVs [7]. Among several other issues,
the uncertain load introduced by PEVs is considered a major
problem, which may result in power quality and reliability
issues in distribution systems [8]. Therefore, several studies
have proposed smart charging methods, including demand
response (DR) programs, to mitigate the peak load introduced
by PEVs [9]–[11].

An interesting finding regarding the resilient growth of
PEVs during the COVID-19 pandemic has been reported by
IEA [12]. It has been reported that despite the 15% decline in
the purchase of vehicles during the year 2020, the purchase
of PEVs has increased in 2020 as compared to the previous
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year. This further emphasizes that a unified model for PEV
load estimation is required.

B. RELATED WORK
Load modeling is required to achieve the aforementioned
targets. Several studies have been conducted on the modeling
of EV loads, such as agent-based modeling [13], [14], neural
network-based modeling [15], [16], and stochastic model-
ing [17]. In addition, several studies have modeled loads for
analyzing specific objectives such as the impact on grid-
loading [18], [19], the impact of ownership changes [20],
impact of drivers [21], and impact on the system reliabil-
ity [22]. Several studies have also emphasized the impor-
tance of coordinated and controlled charging techniques, i.e.
enhancement of power quality via coordinated charging is
discussed in [23], [24], and impact assessment of controlled
and uncontrolled charging on user waiting time is carried out
in [25]. Similarly, a mechanism for sharing power among
PEVs during system outages is proposed in [26], where
probabilistic load models of EVs based on historical data are
utilized.

All of these studies discussed in the previous paragraph
have used different models, data sets, and complexity levels
for estimating EV loads. This diversification results in the
inability to reproduce the results effectively and hence makes
it difficult for the researchers to verify/validate a proposed
method or to compare different approaches. It can also be
observed that PEV load profiles are modeled in all of the
studies related to PEVs, i.e. planning of charging stations [3],
assessment of grid impacts [18], [19], and future aspects of
PEV penetration [20]. Therefore, a comprehensive yet easy
and ready-to-use profile modeling of PEVs is required to save
the time and efforts of researchers and planners related to the
PEVs industry.

In addition, estimation of EV load is a non-trivial task.
The difficulty in estimation of PEV load profiles arises from
several complex factors involved in the process such as
the preferences of customers, different product types, social
dynamics, and policy factors [13]. In order to capture all these
aspects, a huge data set is required and all the underlying
uncertainties and stochastic processes need to be captured.
The U.S. National Household Travel Survey (NHTS) [27]
data is considered reliable and useful in determining the
behavior of different vehicle owners. This survey data com-
prises 1,048,576 households and 309,164 vehicles and pro-
vides information on the driving pattern of different vehicle
owners. Similarly, different commercially available charging
stations, their charging ratings, and other technical aspects
need to be incorporated. None of the existing studies have
considered the modeling of PEV loads with an objective of
reusability and availability for other researchers or policy-
makers. Instead, the objective of most of these studies to
emphasize the impact of PEVs on different aspects of power
systems, such as system overload, peak load, and system
contingency. In addition, the load estimation procedure and
per-unit load profiles are not readily available.

C. RESEARCH GAPS AND CONTRIBUTIONS
It can be observed from the literature survey that plenty of lit-
erature is available on the estimation/forecasting of the PEV
load profiles. However, different methods are used in differ-
ent studies and a unified benchmark model is missing. Real-
istic, generalized, and ready-to-use load profiles of PEVs are
required to plan different aspects of PEVs and they are also
required by the researcher in analyzing any newly developed
model for PEVs. In addition, the different aspects of EVs
analyzed in these studies generally have different underlying
assumptions, thus the load profiles themselves need to be as
realistic as possible. Therefore, a comprehensive yet easy and
ready-to-use profile modeling of PEVs is required to save the
time and efforts of researchers and planners related to the
PEVs industry. Specifically, realistic load profiles of PEVs
are required upon which the research community, planners,
and operators can rely on and utilize them without the need
of knowing the inside details of the model. To the best of the
authors’ knowledge, there is no such study on the modeling
of benchmark PEV load profiles using comprehensive data
focusing on reusability.

Given the above needs, this paper developed benchmark
PEV load profiles to save the time of researchers, policymak-
ers, and planners associated with the PEV industry. A prob-
abilistic model for PEV charging loads is developed which
includes realistic estimates of the elements characterizing the
charging process and explicitly takes into account the under-
lying uncertainties of the random variables. The research data
are drawn and analyzed from four main sources: 1) Vehicle
mobility data to precisely capture driver behaviors that are
essential in characterizing the charging process (e.g., mileage
driven, arrival times, and departure times); 2) market sales
data to extract information pertinent to PEV types and their
market share; 3) manufacturers’ data to obtain data pertinent
to battery technologies in terms of capacities and PEV ranges;
4) SAE J1772 standards to obtain data pertinent to charging
levels. A Monte Carlo simulation-based probabilistic method
is developed to simulate the input variables needed to gener-
ate the PEV charging loads given the underlying uncertainty
of the random variables. Themajor contributions of this study
are as follows.

• Per-unit load profiles of PEVs are estimated considering
different realistic factors and underlying uncertainties.

• The developed profiles are utilized to analyze the PEV
peak load in four countries with the highest percentage
of PEVs.

• The obtained PEV load profiles are ready-to-use and
compact for analysis and planning of PEVs across dif-
ferent time horizons for researchers and policymakers.

II. ESTIMATION OF PEV LOAD PROFILES
In this section, the proposed method for determining the load
profile of PEVs is discussed. The proposedmethod comprises
three steps, which are feature extraction, pre-processing, and
estimation of PEV load profiles. Determining realistic PEV
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TABLE 1. Extracted relevant features from NHTS data.

load profiles is challenging due to the involvement of serval
uncertainties and complex interdependencies among different
factors [28]–[30]. In order to estimate realistic PEV load
profiles, a set of reliable and real data is required. The
NHTS data is considered reliable and useful in determining
the behavior of different vehicle owners. This survey data
comprises 1,048,576 households and 309,164 vehicles and
provides information on the driving pattern of different vehi-
cle owners [27]. This study also uses the NHTS data for
estimating the load profile of PEVs. However, the data need
to be preprocessed before using it to avoid erroneous results.
Although this study has utilized the NHTS data (large and
reliable set of data), per-unit profiles of other localities can
also be obtained by using the proposed model, if such data is
available.

A. FEATURE EXTRACTION AND PRE-PROCESSING
The NHTS data contains several parameters and several types
of vehicles were considered in the survey. After careful anal-
ysis, ten features from the data were selected for this study,
which are listed in Table 1. These features are used to calcu-
late different parameters for estimating power density func-
tions for arrival time, departure time, and mileage of PEVs,
which are discussed in the following paragraph. Similarly,
the most commonly used four classes of vehicles, such as
passenger cars, pickup trucks, sport utility vehicles, and vans
are considered in this study. Motorcycle, bicycle, and public
transit vehicles were removed from the data set. Besides, code
was developed to remove duplicate trips and other unrealistic
data. The following are a few examples of data filtering.
1) Removal of PEVs with unrealistic traveling profiles by
comparing the trip duration and the distance reported to cover
in that time; 2) removal of PEVs with at least one of the
features missing (unreported); 3) removal of the duplicate
trips, if same data were reported for all the features of two
or more trips.

After the selection of different relevant parameters and fil-
tering of irrelevant/erroneous data, the data is pre-processed
to determine useful parameters for determining the load
profiles of PEVs, as shown in Algorithm I. The first step
in Algorithm I is to determine the total number of PEVs
with useable data. The total number of PEVs is determined
using the information of household ID and vehicle ID. Then,

Algorithm 1: Pre-Processing of Extracted Data

1: Count total number of PEVs (NV) using extracted data:
(#1 household ID and #2 vehicles ID).

2: for all v ∈ NV do
3: Count total number of trips (NT): (#4 number of

trips)
4: for all tr ∈ NT do
5: Accumulate daily driven mileage: (#6 trip

mileage)
6: If tr = 1 then
7: Record first departure time (FDT): (#7 trip

start time)
8: else If tr = NT then
9: Analyze the destination: (#10 type of

destination)
10: If destination is home then
11: Record last arrival time (LAT): (#8 trip

end time)
12: end if
13: end if
14: end for
15: end for

the total number of trips traveled by each PEV are determined
and assigned to the number of trip feature. The number of
miles traveled by each PEV is recorded for each trip and the
nature of the trip is examined for detailed feature estimation.
For example, the first departure time (FDT) is then computed
from the first trip of each PEV. Similarly, the last arrival
time (LAT) is determined from the last trip of the PEV, where
the destination of the PEV was set to home. The information
of each PEV extracted in this step is utilized to estimate the
load profiles, which is discussed in the next section.

B. ESTIMATION OF PEV LOAD PROFILE
The input data utilized for determining the PEV load is
divided into two types, i.e. data related to PEV driver behavior
and data related to PEVs themselves. The data related to PEV
driver behavior are the probability density functions (PDFs)
of arrival time, departure time, and daily mileage. The data
related to PEVs are the capacity and efficiency of the PEV

VOLUME 9, 2021 59639



A. Almutairi, S. Alyami: Load Profile Modeling of Plug-In Electric Vehicles: Realistic and Ready-to-Use Benchmark Test Data

TABLE 2. Data related to four clusters of PEVs.

TABLE 3. Parameters of centroids determined by the algorithm for different clusters.

FIGURE 1. Information of battery size vs distance travelled by
commercially available PEVs.

battery, the operation range of SoC, the driving range, and
the total number of PEVs. Besides, data related to the market
share of PEVs and the charging level of the charging stations
are also considered. Information about currently available
PEV at the commercial level [31], [32] is utilized and there
were about 101 PEVs available, as of September 2020. It is
not possible to analyze individual PEVs. Besides, several
PEVs share similar features in terms of battery size and
energy required to drive a distance of 1km (mileage per km),
as shown in Fig. 1. After analyzing the data of Fig. 1, it can be
concluded that four clusters will be sufficient to group differ-
ent PEVs without losing the generality. Therefore, the PEVs
are divided into four clusters (C1, C2, C3, and C4) using the
K-means clustering algorithm. The data generated using the
K-means algorithm for each cluster are shown in Table 2. A
summary of the K-means algorithm is presented as following,
details can be found in [33].

• A target number k is decided, which refers to the number
of centroids in the dataset and is also equal to the number
of desired clusters.

• The sumof squares (distance) is calculated for every data
point and is allocated to each of the clusters in such away
that the distance is minimized.

• The K-means algorithm allocates every data point to the
nearest cluster while keeping the centroids as small as
possible.

The two variables used for the clustering of PEVs are the
energy of the PEV battery (kWh) and themileage of the PEVs
(km). The centroids of the four clusters and the grand cluster
for these two variables are shown in Table 3.

It has been noted in [34]–[36] that majority of the vehicle
owners prefer to charge their PEVs in the home rather than
in public charging stations. In the residential sector, gen-
erally, level 1 and level 2 charging stations are used (SAE
J1772 standard). Therefore, in this study also, these two
charging levels are considered to estimate the load profiles of
PEVs, details about power, voltage, and current of each level
are given in [35]. An overview of the proposed scheme for
determining the per unit PEV load profiles is shown in Fig. 2.

After receiving the input data related to PEV owners and
data related to PEVs, load profiles of individual PEVs are
determined, according to Algorithm II, which is discussed in
the next paragraph. Using the load profile of individual PEVs
(Pvt ), the load demand of the PEV fleet (Pfleett ) is determined
using the following equation. This equation can be used to
compute the hourly load of the entire PEV fleet.

Pfleett =

∑
v∈NV

Pvt ∀t ∈ T (1)

This process is repeated for each scenario (s) and
convergence in the load profile is computed using the
recorded (stored) profile of PEVs till scenario s. If the addi-
tion of a new scenario does not change the estimated pro-
file (the error is lesser than a pre-defined threshold (ε)),
the process is terminated and the final profile for unit PEV
is determined. Otherwise, the process is repeated by adding a
new scenario.

The load profile of individual PEVs is determined as
explained in Algorithm II. After getting the information on
the total number of PEVs, a random number in the range
of 0 and 1 is generated and daily mileage is determined
using the driven mileage cumulative distribution function
(CDF). The SoC of vth PEV (SoCv) is determined using
Equation (2). Where (Rv) is the range of vth vehicle and (M v)
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FIGURE 2. Flowchart for estimation of unit (per PEV) load profile.

is the daily miles driven by each PEV. It implies that SoC
linearly decreases with an increase in the daily miles driven
by the vehicle.

SoCv
=

 20%(
Rv −M v

M v

)
· 100

∀v ∈ NV (2)

If the SoC is within the defined bounds, the required
charging energy (Ev) and charging duration (Dv) of PEV is
determined using Equations (3) and (4), respectively. Initially,
the required energy is computed using (3) and then based
on the required energy, the number of intervals required for
charging that energy is computed using (4).

In Equation (3), Bcap is the capacity of the PEV battery in
kWh. In Equation (4), ηv is the efficiency of the PEV battery
and Lch is the charging level of the charging station.

Ev =
(
SoCmax

− SoCv)
· Bcap ∀v ∈ NV (3)

Dv =
Ev

ηv · Lch
∀v ∈ NV, ch ∈ [1,2] (4)

Then, two random numbers in the range of 0 and 1 are
generated, one each for the arrival and departure time of
PEV. Arrival time is estimated using the arrival time CDF
and departure time is estimated using the departure time CDF.
By using the arrival and departure time information, the stay
duration (SD) of PEV is computed in the next step.

If stay time is longer than the charging duration, the PEV is
charged until its SoC reaches the upper limit at the charging
rate of the charging station, as given by (5). If the stay time
is lesser than the charging duration, PEV is charged until its
departure, as given by (6). In these equations AT represents
arrival time, DT represents departure time, and DV represents
the total number of intervals required for fully charging the

EV.

Pvt = Lch ∀t ∈ [AT,... AT+ Dv-1] (5)

Pvt = Lch ∀t ∈ [AT,... AT+ DT -1] (6)

III. RESULTS AND ANALYSIS
A. TEST DATA
The input data utilized for determining the PEV load in
this study is the NHTS survey data [27], which comprises
1,048,576 households and 309,164 vehicles and provide
information on the driving pattern of different vehicle owners.
The data is pre-processed to remove erroneous and unrealistic
results by filtering PEVs with incomplete information or
duplicate results. Similarly, the data were filtered to include
only four classes of vehicles: passenger cars (light, compact,
medium, heavy); sport utility vehicles; pickup trucks; and
vans. Hence, the resulting data group comprises approxi-
mately 350,000 usable households and 150,000 vehicles. The
two commonly used charging levels used in the residential
sector, i.e. level 1 (120V, 12A, 1.44kW) and level 2 (240V,
30A, 7.2kW) are used in this study. Similarly, the four clusters
of PEVs, as described in section II, are considered in this
study for simulations.

B. ESTIMATION OF TRAVELING PARAMETERS
In this section, parameters related to the daily traveling of
PEVs are estimated using the filtered data of NHTS, as dis-
cussed in the previous section. The parameters discussed in
this section are the arrival time, departure time, and the daily
mileage traveled by PEVs. These parameters are used to esti-
mate the per unit load profile of PEVs considering different
charging levels and different types of vehicles, which are
discussed in the next section.
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FIGURE 3. The probability density function of PEVs: a) first departure time; b) last arrival time.

Algorithm 2: Load Profile Estimation for Each Scenario

1: Get information on the total number of PEVs (NV).
2: for all v ∈ NV do
3: Generate a random number in the range [0,1]
4: Estimate daily mileage using driven mileage CDF
5: Compute SoC using (2)
6: If SoCmin

≤ SoCv
≤ SoCmax then

7: Compute charging energy (Ev) using (3)
8: Compute charging duration (Dv) using (4)
9: Generate a random number [0,1] and estimate

arrival
time of PEV using arrival time CDF

10: Generate a random number [0,1] and estimate
the departure time of PEV using departure time
CDF

11: Calculate stay duration (SD): arrival & departure
time

12: If SD ≥ CD then 1
13: Estimate load profile using (5)
14: else
15: Estimate load profile using (6)
16: end if
17: Send load profile information of PEV to figure 2
18: else
19: v=v+1, repeat from step 3.
20: end if
21: end for

1) ESTIMATION OF ARRIVAL AND DEPARTURE TIMES
Fig. 3 shows the probability density functions of FDT and
LAT of PEVs on weekdays (WD) and weekends (WE). It can
be observed from Fig. 3a that the first departure time of PEVs
from home is concentrated around 7 am, which is reasonable
since most of the vehicles leave home at that time for work.
Similarly, the FDT for weekends is shifted towards 10 am,
which is also realistic, as most people tend to go out late
on weekends as compared to the weekdays. Fig. 3b shows
that most of the vehicles return home around 4 to 7 pm

FIGURE 4. The cumulative density function of PEVs arrival and departure
times.

on weekdays while return time on weekends is dispersed
between 12 pm to 9 pm. This result is also realistic since most
of the people start arriving home from work between 4 pm
to 7 pm on weekdays. Similarly, on weekends some people
tend to stay outside till late while others tend to come back
home early. In order to assure the reproducibility of results,
the numerical data related to LAT and FDT of vehicles during
weekdays and weekends are tabulated in Appendix (Table 6).

The CDF of all four parameters is shown in Fig. 4 and it
can be observed that about 80% of the vehicles leave their
homes till 11 am on weekdays and a steep increase can be
observed between 7 am and 9 am. In the case of weekends,
the steepness of the departure curve is lower as compared
to the weekdays and the rise starts later and reaches 80%
around 1 pm. In the case of arrival time, the steepness of the
weekend curve is higher than the weekdays between 11 am
and 5 pm. The lower steepness of the weekdays’ curve is due
to the lesser number of people returning home during noon or
afternoon on weekdays as compared to the weekends. From
6 pm onwards, both the curves follow a similar pattern and
80% of the vehicles return to their home around 9 pm.

2) ESTIMATION OF DAILY MILEAGE
Fig. 5 shows the histograms of daily mileages (in percentage)
traveled by PEVs during weekdays and weekends. It can be
observed that most of the vehicles travel in the range of 5 to
30km and is the same for both weekdays and weekends. It is
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FIGURE 5. Daily mileage histograms of PEVs: a) weekdays; b) weekends.

FIGURE 6. Cumulative density function of PEVs daily mileage: a) total range; b) truncated range.

interesting to note that on weekends a larger fraction of vehi-
cles travels lesser than 20km as compared to weekdays. This
might be due to the traveling of more commercial vehicles
during weekdays, which tend to travel more as compared to
private vehicles. Similarly, in both cases, a minute number of
vehicles travel more than 70km, which implies that most of
the vehicles do not need a recharge during the same day. Since
the size of the batteries in most of the PEVs is sufficient to
travel up to 100kmwith a full recharge. This also supports the
fact that most vehicle owners prefer to recharge their PEV at
their homes as compared to commercial charging stations.

Fig. 6 shows the cumulative distribution of daily distance
covered by vehicles during a day. It can be observed from
Fig. 6a that less than 1% of the vehicles travel more than
100km in a day. In order to show the difference in traveling
patterns duringweekdays andweekends, the lower range (0 to
60km) is truncated and shown in Fig. 6b. Fig. 6b shows that
more than 85% of the vehicles travel lesser than 60km per
day. The average mileage of PEVs is about 189W/km [33]
considering different PEV models available in the market
in 2020. It implies that PEVs with a useable energy capacity
of 11.34kWh could fall into 85% of PEVs that travel less than
60km and still do not need a second recharge on the same day.
Similarly, PEVs with a usable energy capacity of 18.9kWh
or higher can travel about 100km a day without a second
recharge, which comprises 99% of the vehicles, according
to the data of NHTS. In order to assure the reproducibility

of results, the numerical data related to the daily traveling
distance of vehicles during weekdays and weekends are tab-
ulated in Appendix (Table 7).

3) ESTIMATION OF PER-UNIT LOAD PROFILES
The load profiles of all the four clusters of PEVs (C1, C2,
C3, C4) considered in this study with different charging
levels (level 1 (L1) and level 2 (L2)) are shown in Table 4
and Table 5. It can be observed from Table 4 that the load
increases from noon onwards and reaches a peak around 6 pm
to 9 pm for all the vehicles during weekdays while the peak
on weekends is around 7 pm to 10 pm. This behavior is
reasonable since most of the PEVs return home early evening
on weekdays and the return time tends to be elongated on
weekends. In the case of level 1 charging, PEVs keep charg-
ing for several hours due to the lower power rating of the
charger. Therefore, the load profiles in this case (Table 4) are
more flattened, and charging continues till early morning on
the following day.

Table 5 shows the load profiles of all the four clusters (C1,
C2, C3, C4), considered in this study, with level 2 charg-
ing stations. It can be observed from Table 5 that the load
increases from 3 pm onwards and reaches a peak around
6 pm weekdays while the peak on weekends is between
2 pm to 10 pm. In contrast to the level 1 charging profiles,
the level 2 charging profiles are more concentrated in the late
evening hours and the load during early morning hours is
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TABLE 4. Per unit load profiles of PEVs with level 1 charging stations in kW.

FIGURE 7. Per unit load profile of C1 vehicles with different day types: a) weekday1; b) weekend 2.

negligible. The same effect can be observed for both week-
days and weekends and this is due to the higher rating of level
2 chargers. Due to the higher rating of level 2 chargers, PEVs
are charged just after they arrive and require lesser time as
compared to the level 1 charging stations.

It is interesting to notice that in both the cases (L1 and L2),
the total daily load of C3 vehicles is higher than the C2 vehi-
cles, even though the battery size of C2 vehicles is higher
than the C3 vehicles. This difference is due to the mileage
efficiency of PEVs, i.e. the energy required to travel one km
of distance in C2 (0.197) is higher than that of C3 (0.187).
Due to this difference, the amount of energy consumed by

C3 vehicles is higher than those of C2 vehicles and thus
needs more energy. In addition, as it is evident from the daily
mileage profile that most of the PEVs do not travel more than
60km daily. Therefore, the energy required by PEVs (on daily
basis) will be more influenced by per km mileage efficiency.
It implies that only battery size is not the deciding factor in
determining the load, which could be general thinking.

In the following section, the estimated per-unit PEV load
profiles are utilized to estimate the peak PEV load of the
top four countries with the highest penetration of PEVs. The
peak load is estimated for both weekdays and weekends
considering the future outlook of PEV penetration.
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TABLE 5. Per unit load profiles of PEVs with level 2 charging stations in kW.

In order to visualize the per unit load profile of PEVs,
the profile of the C1 is shown in Fig. 7 as an example for
both level 1 and level 2 chargers. It can be observed from
Fig. 7 that the load profile starts increasing from 11 am and
also that the load profile starts increasing from 11 am and
also the load from the previous day can be seen in the early
hours (1 am to 5 am) for level 1 charger. In the case of the
level 2 charger, the load profiles resemble the arrival time
PDF, which is shown in Fig. 7a for weekdays and Fig. 7b
for weekends. Due to the higher power rating of the charger,
the load profiles in the case of level 2 follow the vehicle arrival
time for both weekdays and weekends. However, in the case
of level 1 charging, the load is distributed throughout different
intervals of the day due to the requirement of more time for
charging.

The per-unit (per PEV) load profiles estimated in this study
are realistic and ready-to-use for researchers, policymakers,
and planners related to PEVs. The profile data for the PEV
fleet can be computed by multiplying the number of PEVs of
that category with the corresponding PEV’s load profile and
by summing different clusters of PEVs. For example, if a fleet
contains a number of C1, b number of C2, and c number of
C3 vehicles, then the load profile of the fleet can be computed
by using the following equation. Where, Pfleett is the load of
the PEV fleet while PC1t ,PC2t ,PC3t are the per PEV profiles
of C1, C2, and C3, respectively as given in Tables IV and V.

Pfleett = a.PC1t + b.P
C2
t + c.P

C3
t (7)

FIGURE 8. Top four counties with highest percentage of PEVs.

IV. LOAD ESTIMATION AND ANALYSIS
The developed per unit PEV load profiles can be utilized to
estimate the daily loads of different countries/regions. These
estimated load profiles can show the PEV peak load hours
and system operators can prepare/manage the system accord-
ingly. In this section, four countries, based on maximum
PEV penetration percentages, are selected for analyzing their
PEV peak loads using the PEV penetration outlook data. The
top four countries with the highest penetration percentage
(relative to the total number of vehicles) are Norway, Iceland,
Netherlands, and Sweden [37]. The percentage of PEVs from
the year 2015 to 2019 for these four counties is shown in
Fig. 8. The historic data can be used to estimate the future
penetration levels of PEVs in these countries.
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FIGURE 9. Estimated load profile of PEV load during weekdays: a) Norway; b) Iceland; c) Netherlands; d) Sweden.

Equation (7) can be utilized to estimate the hourly load
of PEVs in each country during different hours of the day
on weekdays and weekends. The data on the total number
of PEVs in each country is taken from [12] and [37] and
projections are based on the history data. The total number
of PEVs is divided into four clusters as described in Table 3.
For example, 1% of EVs in cluster 1, 5% in cluster 2, 60% in
cluster 3, and 34% in cluster 4. It also assumed that 50% of the
residential charging stations in each country are level 1 and
50% are level 2. Based on these considerations, the daily PEV
load is estimated for the next 4 years for both weekdays and
weekends.

Figure 9 shows the estimated load profile of PEVs in the
four selected countries where data of 2019 is real load while
remaining is projected load, based on the history data. It can
be observed that the overall trend for all the countries is
similar due to consideration of similar factors such as the
percentage of EVs in different clusters and the percentage
of level 1 and level 2 chargers. However, the magnitude of
load in different countries is different. For example, the peak
load of Norway in 2023 is projected around 430MWh while
that of Iceland and Sweden is around 150MWh. It can be
observed that the peak in Norway and Netherlands are similar
despite a higher percentage of PEVs in Norway, which is due
to the higher number of total vehicles (PEVs and internal
combustion engine vehicles) in the Netherlands. The same is
the case with Iceland and Sweden, where Iceland has a higher
penetration of PEVs while Sweden has a higher number of
total vehicles.

Figure 10 shows the daily PEV load profiles of the four
selected countries. Similar to Fig. 9 the magnitude of peak
load in each country is different although the overall load

TABLE 6. Arrival and departure time PDFs of vehicles.

profile is similar, primarily due to consideration of the same
factors for all four countries. It can be observed that the
peak load of the weekends is lower than the peak load of
weekdays in all the cases, which aligns with the normal
traveling behavior of PEVs.
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FIGURE 10. Estimated load profile of PEV load during weekends: a) Norway; b) Iceland; c) Netherlands; d) Sweden.

TABLE 7. Percentage of vehicles with corresponding daily traveling distance.

This is an example of how the estimated per-unit PEV
load profiles can be utilized to analyze the present and
future peak loads of PEVs in different countries and regions.
Researchers and policymakers can use the local parameters
to estimate more realistic load profiles. In addition, these
estimates can be utilized for planning the future infrastructure
related to PEVs, i.e. location, size, and type of charging
stations along with up-gradation of transmission/distribution
lines and transformers.

V. CONCLUSION
Per-unit PEV load profiles are estimated in this study consid-
ering different realistic factors and underlying uncertainties.
The developed profiles are based on different parameters
related to PEVs, charging infrastructure, and traveling pattern
of vehicle drivers and a huge database (NHTS) has been
utilized. The estimated load profiles are utilized to estimate

the peak PEV load in the top four countries with the highest
penetration percentage of PEVs. PEV future outlook data
is utilized to estimate the future PEV peak loads in the
four selected countries during both weekdays and weekends.
Simulation results have shown that developed profiles can be
easily utilized for estimating load profiles of PEV in different
countries and regions with current and future penetration
levels of PEVS.

It can be concluded that the developed ready-to-use load
profile of PEVs estimated in this study can save the time
and efforts of researchers and planners in the PEV industry.
Researchers and planners can take the developed profiles and
estimate the load of the whole PEV fleet by considering the
number of PEVs in each category. It was observed that most
of the vehicles (about 85%) travel less than 60km daily and
most of the PEVs do not need a second recharge on the same
day. Similarly, the per-unit hourly load profiles of all the four
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PEV clusters, considered in this study, are tabulated to make
them ready-to-use for researchers and planners.

APPENDIX RESULTS OF TRAVELING PARAMETERS
See Tables 6 and 7.
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