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ABSTRACT Vehicles are equipped with Electronic Control Units (ECUs) to increase their overall system
functionality and connectivity. However, the rising connectivity exposes a defenseless internal Controller
Area Network (CAN) to cyberattacks. An Intrusion Detection System (IDS) is a supervisory module,
proposed for identifying CAN network malicious messages, without modifying legacy ECUs and causing
high traffic overhead. The traditional IDS approaches rely on time and frequency thresholding, leading to
high false alarm rates, whereas state-of-the-art solutions may suffer from vehicle dependency. This paper
presents a wavelet-based approach to locating the behavior change in the CAN traffic by analyzing the CAN
network’s transmission pattern. The proposedWavelet-based Intrusion Detection System (WINDS) is tested
on various attack scenarios, using real vehicle traffic from two independent research centers, while being
expanded toward more comprehensive attack scenarios using synthetic attacks. The technique is evaluated
and compared against the state-of-the-art solutions and the baseline frequency method. Experimental results
show that WINDS offers a vehicle-independent solution applicable for various vehicles through a unique
approach while generating low false alarms.

INDEX TERMS Controller area network, intrusion detection, in-vehicle network, wavelet analysis.

I. INTRODUCTION
Vehicles are getting more connected and autonomous year by
year due to communication between Electronic Control Units
(ECUs), which control one or more vehicle functions such
as engine control, telematics control, and airbag deployment.
There are various established in-vehicle communication stan-
dards, such as Controller Area Network (CAN), FlexRay,
Local Interconnect Network (LIN), and Media Oriented Sys-
tems Transport (MOST) [1]. Among these, CAN is the most
widely used in-vehicle communication protocol [2] because
of its recognized advantages in robustness, suitability for
real-time networks, easy maintenance, and low-cost imple-
mentation. However, it does not have any intrinsic security
features for protecting it against cyberattacks. The vulnerabil-
ities of CAN were presented for the first time by Hoppe et al.
[3], [4]; since then, researchers have demonstrated a variety
of physical and remote access attacks [5]–[7]. The increasing
number of attacks shows that the protocol is defenseless to
cyberattacks. Overcoming such security shortcomings relies
on developing efficient prevention mechanisms, which with
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the current state of the art fall into four categories: encryp-
tion, authentication, network segmentation, and Intrusion
Detection Systems (IDSs).

Lack of encryption and authentication is the leading root
cause of CAN vulnerability. Although cryptographic tech-
niques are the direct solution, implementation of such algo-
rithms is not feasible for CAN in automotive applications
because of limited resources (bandwidth and computational
power), the need for long service life, and time constraints.
Researchers [8] have shown that current cryptographic meth-
ods are not suitable for commercial vehicles due to significant
overhead or backward incompatibility.

Network segmentation, which limits access to the critical
ECUs by separating them from the user-accessible network
via a gateway, is not secure enough to stop adversaries. There
are successful attacks that pass the gateway ECU and intrude
to the in-vehicle network [9].

IDS can provide adaptable protection by monitoring the
CAN network and labeling the malicious messages without
modifying the legacy ECUs. Different IDS approaches are
applied to mitigate the security problem of the CAN network.
Some of these solutions are developed based on promis-
ing machine learning techniques like Hierarchical Temporal
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Memory (HTM) [10], Generative Adversarial Nets (GAN)
[11], Long Short-term Memory (LSTM) [12], and other deep
neural networks [13], [14]. However, such methods suffer
from high computational power. Additionally, these methods
are heavily vehicle dependent and require specific training for
different vehicle makes and models. Similarly, entropy-based
IDSs [15]–[17] need training to detect anomalies. They are
also highly vulnerable to attacks that do not change the
entropy, for instance, replay attacks. Other researchers have
applied specification-based IDS solutions [18], [19] by cre-
ating rules based on the protocol specification. However,
these solutions are protocol depended and can fail if an
attacker mimics the message flow sequence. Although IDS
is a promising path to address CAN vulnerability, by labeling
malicious messages despite the limited resources, available
IDSs have major weaknesses [20] such as high false-positive
rate, vulnerability to certain attack types, and vehicle depen-
dency. Many IDS solutions do not even consider the detection
time, which has an enormous impact on real-time systems.

The proposed vision to address this problem is to explore
techniques that speed up attack detection time and reduce
the IDS’ decision-maker unit’s dependency on prior knowl-
edge, intending to reduce the rate of false alarms, which
ultimately increases attack detection accuracy. In this regard,
the paper contributes to identifying malicious messages by
analyzing network traffic behavior rather than its frequency,
using wavelet analysis. The main contributions of the paper
are:
• A novel, fast detection wavelet-based IDS for in-vehicle
networks

• Avehicle independent IDS approach for attack detection
without prior knowledge

• Evaluation of the proposed method on real vehicle data
and comparison with state-of-the-art methods

The remainder of this paper is divided into the following
five sections. Section II provides background information
on the CAN network, wavelet analysis, intrusion detection
systems, along with related works and CAN bus attacks. The
WINDS algorithm and experimental setup are presented in
Section III and Section IV, respectively. Section V shows
the results along with the discussion. Finally, Section VI
presents future directions, and Section VII concludes the
paper.

II. BACKGROUND
A. CAN PROTOCOL
The CAN bus is a multi-master broadcast communica-
tion interface designed for in-vehicle communication. The
traditional CAN standard’s speed is limited to 1 Mbps with
8-byte payload transmission in a frame, while the newer
version CAN FD (Flexible Data-rate) reaches 64-byte pay-
load transmission [21]. The protocol hasmessage-based com-
munication via frames, consisting of a message identifier
field, data field, control bits, and Cyclic Redundancy Check-
sum (CRC) [21]. Every node listens to each broadcasted
frame and processes the relevant ones based on the message

identifier field. This field is also used for the arbitrationmech-
anism allowing the higher-priority node to transmit without
collision when two or more nodes transmit simultaneously.
The lower message identifier has a higher priority.

The protocol utilizes differential signaling lines, known as
CAN high and CAN low, on the twisted wire. Hence the data
is presented by voltage difference; the network is resilient to
electrical noises. The signals are logically presented by the
recessive ‘‘one’’ and dominant ‘‘zero’’ bits. The dominant bit
can overwrite the recessive one, whichmeans the bus signal is
dominant if nodes transmit the complement signals simulta-
neously. The standard also protects the bus from an unhealthy
ECU by Error Confinement Mechanism (ECM) [21]. ECM
includes two error counters that their values increase by the
relevant transmitting or receiving errors, respectively. If any
of the counter values exceed the limit, the node goes to the
buss-off state and will not transmit data.

B. WAVELET TRANSFORM
Wavelet analysis provides a frequency analysis of the signal
and gives information about breakpoints, trends, and self-
similarity. It is used in various fields, including information
security, oceanography, medicine, and finance. Unlike the
Fourier Transform, it gives frequency analysis on the time
domain. ContinuousWavelet Transform (CWT) converts sig-
nal f (t) into wavelet coefficients F (a, b) which is a function
of scale a and position b as defined below:

F (a, b) =
1
√
a

∫
∞

−∞

f (t)ψ∗
(
t − b
a

)
dt (1) [22]

where ψ is called mother wavelet, which is any function that
satisfies: ∫

∞

−∞

ψ (t) dt = 0 (2) [22]∫
∞

−∞

ψ2 (t) dt = 1 (3) [22]

Scaling means compressing or stretching the mother
wavelet. While the compressed wavelet provides rapidly
changing high-frequency information, the stretched one gives
details of slow changes. The scaling feature offers local and
global details of the signal. Unlike Discrete Wavelet Trans-
form (DWT), which has a decreasing number of coefficients
with increasing scaling factor, CWT has the same number of
coefficients at each scale. This redundancy (i.e. has the exact
time resolution as the original data) of CWT provides a more
accurate time-frequency spectrum.

C. INTRUSION DETECTION AND RELATED WORK
An IDS can be categorized as signature-based and anomaly-
based. Signature-based IDS, as shown in Figure 1.a, has an
attack (signature) database and works similar to anti-virus
software. If an attack from the database occurs, it can
identify the attack. On the other side, anomaly-based IDS,
as shown in Figure 1.b, characterizes the system’s behavior
and compares it with baseline and alerts if the deviation
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TABLE 1. Summary of recent intrusion detection systems for CAN bus.

FIGURE 1. (a) Flowchart of signature-based and (b) anomaly-based
intrusion detection systems.

from the baseline exceeds a certain threshold. Although
signature-based IDS is quite successful for known attacks,
it cannot detect unknown attacks and requires a regular update
of the database. Hence, it is impossible to know that all the
attacks and regular updates can be a hassle; anomaly-based
IDS solutions have advantages over signature-based ones.

The current IDS solutions, as summarized in Table 1, use
various parameters to analyze the CAN network. Research
in [23]–[25] take advantage of the physical characteristic of
the network. Thanks to random manufacturing variations,
cabling, and aging, each transceiver has a slightly different
signature on the signal even though they transmit the same
data. Analyzing these signatures gives the means to identify
authentic messages. Although these methods are highly reli-
able in a controlled environment, their performance changes
significantly based on environmental change like tempera-
ture. They are also vulnerable to detect malicious messages
from the software layer, as explained in [5].

Müter et al. [26] identify eight anomaly detection sensors
that provide the essential input to structure an in-vehicle
network. These are frequency, formality, location, range, cor-
relation, protocol, plausibility, and consistency. These are
not necessarily physical sensors but are signal processing
boxes/tools that process the CAN bus’s network traffic to
observe and monitor changes as for such parameters. Any
IDS solutions use one or multiple of these sensors. As many
ECUs broadcast CAN frames regularly, frequency is one of
the most critical anomaly detection sensors to characterize
the automotive network, if not the best. An intrusion into the
CAN network will disrupt the regularity of the transmissions
and the system’s frequency. Although time thresholding is
a simple technique to detect attacks, it can generate a high
false-positive rate. On the contrary, frequency analysis gives
more stable information [27]. Therefore, the CAN network’s
frequency analysis is a simple but effective IDS solution for
resource-constrained vehicles.

There are multiple pieces of research to assess the time
interval and frequency of the CAN messages. Some of
these use basic statistical analysis [28], [29], but they are
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highly vehicle-dependent. Machine learning algorithms like
One-Class Support Vector Machine (OCSVM) [30], Gaus-
sian mixture model [31] also proposed to detect anomalies
via frame timing analysis; however, they require a compre-
hensive training data set for each vehicle model. ARIMA and
Z-score were proposed [35] to minimize the training phase
and vehicle dependency, but a successful result requires a
long window size, which will increase the detection time.
Lee et al. [33] analyzed the response time of the ECUs
by sending them remote frames. Their method requires low
computational power and is successful in detecting attacks.
The downside of the technique is that it increases bus traffic
by sending remote frames.

On the other hand, wavelet analysis has outstanding per-
formance, mainly due to its simple procedure, easy com-
putation, and reconstructable decomposition. This motivated
researchers from the IT security domain to benefit [36]–[38].
Spicer et al. [24] proposed wavelet analysis for CAN bus
to complement his noise-content-based multilayer perceptron
IDSwith frequency analysis. His implementation was limited
to the signal level and analyzed the electrical characteristic
to identify different signatures. By fingerprinting ECUs, it is
possible to identify the sender ECU; therefore, the work
can also be regarded as an authentication method. The work
presented in this paper moves beyond Spicer’s research and
intends to develop the entire IDS based on wavelet analysis.
The WINDS is applied to message level and analyses behav-
ior of message frequency, facilitating low-latency frequency
analysis for the CAN network without increasing the network
traffic and training data requirement.

D. CAN BUS ATTACKS
There are multiple attack types applied to the in-vehicle net-
works. Suppose an attacker has direct access to the CAN bus.
In that case, she/he can read and write to the CAN network,
proceed with overwriting and invalidating legitimate mes-
sages, and further disable a CAN node. In this circumstance,
the following attacks are possible to implement:

1) DENIAL OF SERVICE (DOS)
An attacker can send high-priority CAN messages and holds
the bus in busy condition; therefore, other low-priority nodes
cannot access the network. This flooding attack will sub-
stantially increase the frequency of the messages. Murvay
presented an example of this attack in [7].

2) DROP/SUSPENSION
An attacker can disable a node and suspend the message
transmission. It is a subcategory of the DoS attack; hence,
it is impossible to get service from the suspended node.
Palanca et al. took advantage of the CAN protocol’s error
confinement mechanism and disabled an ECU by transmit-
ting dominant bits over the recessive ones [39].

3) FUZZING
An attacker can send random values without any in-depth
knowledge and confuse the network. This attack does not

FIGURE 2. Message count of the CAN traffic (top) during a DoS attack and
its wavelet analysis (bottom).

require reverse engineering. Inserting fuzzing messages will
increase the frequency of the CAN message like the one
in [40].

4) REPLAY
An attacker can read the CAN messages and send them back
to the network later on, such as [41]. Hence, there is no
freshness check on the protocol; other nodes will accept the
replayed message. The authentic node sends messages at a
particular frequency, but the attacker overwrites the original
command by replaying CANmessages at a higher frequency.

All these attacks disrupt the system’s behavior and result in
frequency deviation. The attack detection mechanism of the
WINDS and other frequency/time-based IDS solutions rely
on identifying these variations.

III. SECURING THE CAN NETWORK VIA WAVELET
ANALYSIS
The frequency profile contains essential information about
the authenticity of CAN messages when obtained by the
Continuous Wavelet Transform (CWT). CWT is a powerful
tool for the precise localization of frequency components
on the time axis, useful for identifying irregularities in the
CAN network’s traffic pattern. In order to find the signal’s
behavior change, WINDS benefits from CWT for dividing
the network pattern, which is a continuous time-series signal,
into different scale components. Then the analysis is further
carried out on the scale domain. Figure 2 visualizes the
CAN traffic and its wavelet representation. The figure depicts
a set of large CWT coefficients located vertically around
t = 6.318(s) where the change (attack) occurs in the signal.
The area of large coefficient values, which is called the
cone of influence, spreads with rising scale but still centered
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FIGURE 3. The flowchart of wavelet-based intrusion detection system for in-vehicle communication.

at t = 6.318s. It presents us which CWT coefficients are
affected by the signal at that point. Therefore, the proposed
WINDS algorithm can detect both long-time and sudden
short-time duration attacks by analyzing scales.

The WINDS algorithm can be split into four stages,
as shown in Figure 3: data collection and preprocess-
ing, behavior profiling with CWT, anomaly decision, and
parameter initialization.

A. DATA COLLECTION AND PREPROCESSING
The first stage is to monitor the CAN traffic under various
no-attack and attack scenarios. This is a time-consuming
data creation task and requires multiple resources and tools.
Several research centers lead such experiments and data col-
lection steps, providing researchers with valuable datasets.
Although open-access datasets might be limited to specific
cases, they can be well extended to comprehensive data by
considering various attack models and understanding the
CAN bus system’s technical details and the vehicle’s per-
formance. This usually turns in populating the initial experi-
mentally collected dataset with several synthetic attacks that
mimic attacks presented in Section II.D.

The preprocessing step starts with windowing the dataset,
proceeded with a feature extraction step, which is usually
conducted by the signal-processing tool. Assuming a wid-
owed data asw(t), it is a collection ofmessages,M,while each
has a time interval of sampling time ts as in (4), representing
traces of the message counted over the previous n samples:

w (t) = {Mt−(n−1) ∗ ts),Mt−(n−2) ∗ ts), . . . ,Mt } (4)

The WINDS benefits from message count Nw in the CAN
traffic in window w within a specified time interval between
t and t − ts, where ts is the period of the interval. Hence,
we specify a message frequency, Sf , with the following equa-
tion, applied on ith window wi, to account the frequency of
message in that window:

Ni = Sf
(
Mwi

)
=

nmax∑
k=1

Mk (5)

where nmax is the maximum number of messages that a
window may have, andMk represents the existence of the k th

message within the ith window (wi) that is one if a message
exists; otherwise, it is zero. The window is stretched from
the current time to the past, and the analysis is processed
frequently. This results in the featured ith window by the fre-
quency conversion Sf , represented by wSi , as in the following
equation:

wSi =
{
N ∈ Z : ∃N1, . . . ,Nn−max ∈ w with N = Sf

(
Mwi

)}
(6)

B. BEHAVIOR PROFILING
The second stage is generating the behavior profile from the
preprocessed traffic signal using the wavelet transform in (1).
It transforms wSi to a set of wavelet coefficients W (a, b),
which is a two-dimension matrix of n x k where k is the
highest wavelet scale and n is the window size. To decrease
the complexity and get meaningful data out of all wavelet
scales, Mean Absolute Deviation (MAD) is used, as in (7),
where L is the length of scale for the chosen wSi after wavelet
transformation, j and q denotes a specific component of the
scale as an index, and AMADi projects the results after applying
a MAD function on the scaled component for the ithwSi .
Therefore, MAD provides the absolute deviations from the
mean point and gives information about the wavelet scale
changes in each sample. Figure 4 demonstrates an example
of MAD transformation from the wavelet coefficients during
a replay attack.

AMADi =
1
L

L∑
j=1

∣∣∣∣∣∣aj − 1
L

L∑
q=1

aq

∣∣∣∣∣∣ (7)

C. ANOMALY DECISION
This is the step for interpreting the wavelet coeffi-
cients, which leads to change point detection, needed for
exploring anomalies’ symptoms caused by an attack. The
core of anomaly detection is assessing each window to
find behavior deviations using a thresholding technique.
Donoho and Johnstone [42] proposed a universal
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FIGURE 4. The wavelet transform of the windowed signal w
(
t
)

for single
ID during replay attack (top) and median absolute deviation of W(a, b)
(bottom).

threshold λu defined as:

λu = σ.
√
2log(N ) (8)

where σ is the standard deviation and N is the number
of samples. Donoho and Johnstone’s threshold technique’s
advantages are slightly limited to denoising the White Gaus-
sian noise affected signals by finding substantial change.
Mozzaquatro et al. [43] presented that the universal threshold
λu should be updated by a constant correction factor ρ to get
a better results, (9). The constant correction factor ρ depends
to specific applications of interests like anomaly detection for
web attacks, boundary conditions, etc.

λ = ρ.λu (9)

It is known so far that thresholding is the crucial element
of an IDS so that low and high thresholds lead to false
positives and false negatives results, respectively. WINDS
involves an adaptive thresholding technique for increasing
the accuracy of decisions and calculating a new threshold
for each window by updating the ρ parameter based on
each window’s MAD value. Finally, the updated λ is applied
to the anomaly decision process for denoting the values
higher than the threshold as anomalies, and so detection of
threat. Figure 4 visualizes the WINDS’ thresholding mecha-
nism via an example, demonstrating the results of converting
the wavelet coefficients in Figure 4.a into MAD values in
Figure 4.b. If any of the MAD values within a window
exceeds the threshold, that window is regarded as malicious.

There are conditions in whichMAD produces results equal
to zero based on the specific attack types. An example is
when a flooding attack causes suspension of the messages

from lower priority ECUs in the presence of the CAN net-
work’s arbitration mechanism. In such cases, the window
spans inside the attack duration, which causes all the wavelet
coefficients to turn to zero, and as a result, MAD generates
zero.

D. PARAMETER INITIALIZATION
The proposed IDS involves a multi-parameter optimization
problem that requires extensive time and works to find the
best performance for the WINDS. Instead, the effort is put
forward to initial the WINDS with the best possible parame-
ters experimentally founded by looking into the performance
when feedingWINDS with various datasets. This stage is run
only once for gathering the values of the parameters. At first,
the ranges of each parameter value are chosen and inserted
into the parameter pool. These parameters are wavelet type
(Haar and Daubechies), wavelet scale (from 4 to 32), window
size (from 32 to 256), window-type (discrete and continuous),
sample time (from 0.5 ms to 3 ms), and threshold (from 1.1×
MAD to 2.2 ×MAD of the current window). The algorithm
is then tested for one attack data for each attack type for all
the parameters inserted in the pool. The parameter setting
which provides better performance on average is chosen as
experimental parameters.

IV. EXPERIMENT AND ANALYSIS
A. DATASET
An essential step for developing an IDS is to test it
on comprehensive datasets on vehicles considering vari-
ous working conditions, attack models, the vehicle made,
and driving style. The collection of comprehensive datasets
requires running a testing vehicle equipped with measure-
ment instruments on dedicated roads where safety measures
are taken. Instead of going through such procedures, we ben-
efit from the open-source datasets from two independent
research centers [44], [45], which are well deserved by the
research community and have already been cited for many
different research pieces. This allows us to develop and com-
pare WINDS with other techniques; further benchmark it
for testing the WINDS against different vehicle models and
driving styles while avoiding WINDS manipulation for any
particular dataset.

Both centers’ datasets include the well-recognized attack
models, including Daniel of Service (DoS), suspension,
replay, spoofing, and fuzzy attacks. The downside of both
datasets is only one attack instance is considered for each
attack model, which is insufficient for testing IDS’ capabil-
ities. To overcome the problem, we studied the CAN traffic
for vehicular applications and explored realistic traffics under
various driving scenarios and attack models to get a view
for intentionally extending the initial datasets to the one that
covers more comprehensive attack datasets. This resulted in
generating synthetic attacks allowing us to see the capabilities
and limitations of the IDS by testing it on different attack sce-
narios. Applying such a technique to the initial data provides
us with:
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TABLE 2. Generated synthetic attacks based on automotive CAN bus
intrusion dataset v2.

TABLE 3. Car-hacking dataset from real vehicle attack.

• Synthetic Attacks: Attacks induced synthetically to real
CAN traffic shown in Table 2

• Real Attacks: Attacks implemented on a real running
vehicle in Table 3

The synthetic attacks are generated from Automotive Con-
troller Area Network (CAN) bus intrusion dataset v2 [44],
consisting of synthetic attacks based on real CAN traffic from
two commercially available vehicles and will be used for
testing WINDS in the following sections. The methodology
to generate the artificial attacks to regenerate ten attack data
is the same attack methodology as the original attack; how-
ever, attack strengths are different. We increased the attack
duration gradually, second by second, from 1 to 10 seconds
for DoS and suspension attacks. Similarly, the inserted mali-
cious message’ frequency rises step by step from the attacked
node’s base frequency to ten times faster for the replay attack.
Simulated attacks presented in Table 2 are more challenging
to detect than the original attacks because attack duration is
short, and traffic’s effect is minimal.

The real attacks are to test the algorithm in a real-world
scenario where the targeted vehicle is running. Although
synthetic attacks mimic the real ones, they cannot mimic
the knock-on effect, which may affect the results. Therefore,
WINDS is tested on the Car-hacking dataset [45], has data
from an actual vehicle while message injection attacks were
performed, as shown in Table 3. DoS attack was implemented
by injecting the highest priority CANmessages while fuzzing
attack was executed by random CAN ID and payload values.
A spoofing attack was implemented by inserting malicious
messages on relevant CAN IDs for Gear and RPM.

B. EXPERIMENTAL SETUP
Resulted from the parameter initialization step mentioned
in Section III, we set the experimental setup with the

TABLE 4. Experimental setup specifications.

TABLE 5. Confusion matrix for IDS decision.

specifications given in Table 4. The window w(t) includes
128 samples, consisting of 384 ms network traffic, collected
by a sampling time of 3 ms for the ID-based data segments.
The setup is tied for short sampling times, ensuring the
window would be populated with sufficient active data while
avoiding informationmisses. Short sampling time also results
in earlier attack detection, consequently. The threshold is set
to 1.8 × the MAD value of the current window. The Haar
wavelet, consisting of shifted and scaled square wave func-
tions, is used as a mother wavelet in the analysis. The Haar
function in (10) has the potential for looking at differences of
averages, essentially. The initial scale for Haar wavelet in this
experiment is 16.

ψ (H) (t) =


1, 0 ≤ t<

1
2
;

−1,
1
2
≤ t< 1;

0, otherwise.

(10) [46]

C. PERFORMANCE EVALUATION METRICS
The evaluation is carried out by assessing each window and
labeling them based on the confusion matrix in Table 5. There
are four possible outcomes of this decision:
True Positive (TP): A malicious message detected

correctly.
False Positive (FP): An authentic message is detected as a

malicious message.
True Negative (TN): An authentic message is detected

correctly.
False Negative (FN): A malicious message is detected as

an authentic message.
As accuracy does not always represent the real success of

the IDS (i.e., when data is not symmetric), True Positive Rate
(sensitivity), False Positive Rate (FPR), and Precision are also
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TABLE 6. The performance of WINDS for the synthetically generated data.

calculated using the following equations:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

Sensitivity =
TP

TP+ FN
(12)

FPR =
FP

TN + FP
(13)

Precision =
TP

TP+ FP
(14)

In which sensitivity presents the IDS probability to detect
an attack, whereas FPR is the probability of labeling an
authentic message as an attack. Precision, positive predictive
value, shows how accurately the algorithm label themalicious
messages.

Additionally, the Time-To-Detection (TTD), the time
difference between the attack start and the time that the
algorithm detects an attack [47], is also considered as a
performance metric and calculated by the following formula:

tTTD = tD − ts (15)

where tTTD is TTD, ts is the time attack started, and td is
the time the algorithm detected the attack. Mean Time-To-
Detect (MTTD), the average time between the attacks start
and the attacks’ detection, is calculated by averaging the TTD
durations.

V. RESULTS AND DISCUSSIONS
A. RESULTS
The WINDS was tested on two groups of the datasets col-
lected from three commercial vehicles. The first experiment
evaluates WINDS capabilities on a broad range of synthetic
attacks with varying attack strength. The second experiment
assesses the performance of WINDS on a real vehicle attack
dataset and compares it with existing solutions.

1) SYNTHETIC ATTACKS
The synthetic attacks allow us to safely implement vari-
ous attack scenarios, facilitating the observation of the IDS’
performance and limitation on different attacks by tuning
the attack strength and duration. Using such techniques,
we tested WINDS on various attack scenarios, including
DoS, suspension, and replay attacks, alongwith an attack-free
dataset.

The experiment is constructed on splitting the entire net-
work data into segments based on the ID numbers, then
proceed with analyzing each ID-based data separately to get
satisfactory results, shown in Table 6.

The attack-free dataset gives information about how IDS
will perform and react in the normal traffic mode by looking
into evaluation metrics such as FPR rate. It is essential to
keep FPR low; otherwise, higher rates generate many false
alarms, which drivers may ignore. Moreover, a higher FPR
rate hardens the tasks of the security team. TheWINDS’ FPR
rate is kept for less than 0.0004.

Denial of Service (DoS) attack by flooding high-priority
messages can significantly affect network behavior. Although
the attack is implemented by sending messages with the
highest priority (CAN ID ‘000’), it can be detected by moni-
toring any ID in the network. TheWINDS algorithm success-
fully detected DoS attacks, with an average, attack detection
rate of 99.82% and 99.79% for Vehicle 1 and Vehicle 2,
respectively. The detection rate can reach as high as 99.94%
for more prolonged attack durations. The attacks were also
swiftly detected in less than 6 ms.

Suspension attack has similar results to DoS attacks as
shown in Figure 5. It could be anticipated the same because
the arbitration scheme does not allow lower priority nodes
to transmit when the DoS attack is implemented. Therefore,
suspension attack mimics the DoS attack. The average sen-
sitivity values for Vehicle 1 and Vehicle 2 were 99.8% and
99.81%, consecutively.

Replay attacks were implemented for a short duration of
time (75 ms and 66 ms) with low message insertion rates
(from 8 to 30 frames). The results shown in Figure 6 depict
that the WINDS algorithm can respond in milliseconds and
successfully detect over 96% of the attacks with almost zero
false-positive rate. The observation is that the algorithm’s
sensitivity rises with the increased rate of malicious messages
while the TTD decreases.

The experimental results show that the sensitivity of the
WINDS is correlated with the attack strength. In general,
the sensitivity increases for the longer duration and more
frequent attacks, as seen in Figure 5 and Figure 6.

2) REAL VEHICLE ATTACKS
In the second experiment, the WINDS is tested on the
real-world vehicle attacks and compared with baseline
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TABLE 7. Comparison of the WINDS with existing methods using real vehicle attack data.

FIGURE 5. The sensitivity of WINDS algorithm during various suspension
and DoS attacks. The sensitivity of the algorithm gets better with the
rising attack duration.

frequency-based IDS and other existing methods; GIDS [11],
DCNN [14], and SAIDuCANT [32], which are based on gen-
erative adversarial nets, deep convolutional neural network,
and a specification of CAN timing, respectively. The results
for the real-vehicle attacks are summarized in Table 7.

Gear spoofing and RPM attacks directly target certain IDs,
and the WINDS can detect 98.45% and 98.90% of these
attacks accordingly and provides over 99% precision for both
cases.

The attack detection rate and accuracy decrease for Fuzzy
and DoS attacks. This is partly because these attacks do not
target any particular IDs; therefore, they are not as disrup-
tive as direct attacks like gear or RPM spoofing. While the
WINDS’ sensitivity for the DoS attack is 94.15%, it can
decrease to 83.39% for the fuzzy attack. This is an expected
result; hence DoS attack was implemented using the high-
est ID number while the fuzzy attack transmits random

ID numbers. Some of these IDs have low priority and have
no disruption in transmitting authentic messages because of
the arbitration process. We also comparedWINDSwith some
alternative methods, including frequency-based IDS, which
measures the frequency of attacked ID and generates an alarm
if the threshold exceeds lower or higher threshold bonds. The
WINDS outperforms the frequency-based IDS in all metrics
for all attack types. Compared to GIDS and SAIDuCANT,
the proposed method has advantages in generating better
results for gear and RPM spoofing attack scenarios; how-
ever, its performance is slightly lower in the case of DoS
and Fuzzy attacks. Although DCNN has the best perfor-
mance for this dataset, it requires extensive training with
attack data; because it involves a supervised learning method.
It is also computationally expensive and requires GPU
acceleration.

B. DISCUSSIONS
An IDS can be implemented as a host-based (also known
as node-based) or network-based. In the host-based IDS,
each ECU has an integrated IDS and may dismiss the mes-
sage according to the IDS decision. However, this requires
additional resources in each ECU. On the other hand,
the network-based approach has only one IDS implemented
on the gateway ECU. The WINDS is independent of imple-
mentation perspectives, suitable for implementation through
host-based or network-based approaches with the same per-
formance; however, the required resources would differ. This
allows themethod to be implemented on various applications,
from low-end resource constraint vehicles as a network-based
IDS to high-end vehicles as an advanced sensor for intrusion
prevention systems in each ECU.

An IDS should satisfy specific requirements for vehicles,
which are real-time safety-critical cyber-physical systems.
In short, it should detect attacks correctly in an acceptable
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FIGURE 6. The sensitivity of WINDS algorithm during different replay
attacks. The increased message insertion rate increases the sensitivity
while decreasing the time to detect.

time frame while using limited resources and without causing
false alarms. Therefore, WINDS is assessed based on three
criteria: timing behavior, success rate, and resource usage.

1) TIME ANALYSIS
Successful IDS must detect attacks as soon as possible to
prevent propagating misinformation and causing system mis-
behavior. A metric suitable for measuring the algorithm’s
behavior is TTD, which varies by the parameters like the
sampling time and the threshold. Assessing WINDS by TTD
demonstrated that an increase in the attack strength decreases
the detection time, as presented in Figure 6.

The processing time is also an important parameter to eval-
uate timing behavior. Contrary to TTD, the processing time
depends on the hardware and can be decreased by optimizing
computational logic (e.g., CWT can be computed for only
the last portion of the window and use the historical data for
the rest). Actual processing time requires implementing the
WINDS algorithm on an ECU, which is not covered in this
research. AsWINDS can be implemented as a network-based
IDS, this can be ignored even on low-end vehicles using only
one high-end automobile processor on the gateway ECU.

The WINDS algorithm can detect an anomaly in millisec-
onds. Considering the delay times in the CAN network [48],
the algorithm should be suitable for the real-time analysis of
most ECUs.

2) SUCCESS RATE
As the main parameter, changes in the message frequency
should be observed by WINDS to detect attacks. The method
cannot locate, for instance, impersonate attacks, where a node
is suspended, and a malicious node transmits on behalf of
the suspended one by causing the protocol error. However,
this can be easily detected by counting the error frames.
In contrast, the proposed algorithm successfully detects time
variations, which enable WINDS to locate all the flooding
attacks by analyzing only a single ID even though the attacker
targets different IDs.

The threshold is the most critical parameter that affects
the success rate. The lower threshold value will increase the

FIGURE 7. The Receiver Operating Characteristic (ROC) curves for varying
threshold values for RPM spoofing, gear spoofing, and replay attack.

detection rate, but it will also raise false alarms. Additionally,
the threshold can be adjusted based on IDs and adapted
to the arbitration process of the CAN for increasing the
overall performance. This adaption will decrease the false
alarms because lower priority IDs are not as punctual as
the higher priority IDs due to the arbitration mechanism in
CAN. The Receiver Operating Characteristic (ROC) curves
in Figure 7 depict WINDS’ behavior for three different
attack models: replay attack, gear and RPM spoofing attacks.
The result shows that WINDS provides a good performance
characteristic.

An alternative way to increase the system’s performance
comes from the driving mode; hence, some ECUs are linked
to different driving modes. Theoretically, the wavelet can
detect this change and may give a false alarm during the
transition. After a window passes the transition period, it does
not provide a warning. This requires further investigation and
testing on data from different driving modes.

3) RESOURCE USAGE
Vehicles are resource-constrained cyber-physical systems.
Distributed ECUs have limited memory, computational
power, and bandwidth. Therefore, optimum IDS should have
low resource usage. The WINDS does not transmit any
messages, so it does not have any effects on the bandwidth.

The memory usage of WINDS is directly proportional to
the window size. It analyses the timing of the messages and
does not need to store data bits. It only requires a single bit of
memory storage as a flag identifying the message exists in the
given sample time. Therefore, each ID requires n-bit memory
equal to thewindow size, which is 16 bytes in this experiment.
This is a very reasonable amount, even for low-end ECUs.

The CWT mainly drains computational power. If the scale
is increased, the required power will increase, too. Efficient
CWT algorithms are essential for making the IDS affordable
for all ECUs. A way to reduce the algorithm’s computa-
tional cost is to sacrifice some memories when ECU has
limited computational power available. For instance, the n-
bit window is not necessarily required to be transformed to
wavelet coefficients as a whole each time. Instead, updating
only some bits from the previous transform is sufficient while
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keeping the rest unchanged. A partial updating of the last
window results in the new window, which was expected to
be transformed.

VI. FUTURE DIRECTIONS
Although the research results demonstrated so far in this
paper through various tests, analysis, and evaluation are
promising, further improvement is achievable by analyzing
each wavelet scale individually. This additional improvement
would be at the cost of higher complexity and computational
needs. It is worth investigating alternative wavelet-based IDS
systems such as Discrete Wavelet Transforms (DWT) and
Maximal Overlap Discrete Wavelet Transform (MODWT);
mainly, for reducing the computational cost, and conduct
further assessments and comparisons with other techniques.

WINDS is limited to analyzing system behavior based on
message frequency, and it is not extended toward nodes trans-
mitting infrequent messages. The current implementation is
not detecting attacks that do not affect the message frequency,
requiring further investigations.

There is still a need for experimenting with real cars, con-
sidering various attack scenarios followed with suitable data
collection to generate comprehensive and efficient datasets.
Existing datasets available from open-access research cen-
ters are limited to specific cases, and yet, they don’t pro-
vide essential system specifications under test and technical
details of testing scenarios. This paper successfully demon-
strated methods for generating synthetic attacks to overcome
weaknesses from open-access datasets. This is limited to
simple cases and leaves generation complex synthetic attacks,
which are needed for sophisticated attacking scenarios, for
future research. Furthermore, it is also crucial to test IDS on
various driver and journey types, meaning that more datasets
are needed for achieving efficient analysis.

The lack of available datasets for various vehicle models
also prevents us from implementing an optimization process
for the parameter decision. Optimization on limited datasets
will cause overtraining. Therefore, it will worth investigating
optimization techniques when we have enough independent
datasets to improve the performance of WINDS.

For safe driving, it is essential to prevent attacks that cause
system misbehavior. The current implementation of WINDS
is designed as an intrusion detection system. To implement
a real-time intrusion prevention system, each ID should be
analyzed separately to gather its deadline. Then WINDS
should be adapted to respond to the deadline. The prevention
mechanisms to invalidate messages also need to be assessed
and combined with WINDS. It is also worth mentioning
that the WINDS is implemented on a personal computer.
Although the TTD will be the same, the processing time will
vary. Therefore, we aim to apply the WINDS on an ECU and
gather processing time.

VII. CONCLUSION
In this paper, a wavelet-based intrusion detection mechanism
is proposed to protect the in-vehicle communication network.

It was shown that the WINDS algorithm could detect
intrusions without any disruption to the network.

The proposed method can be applied to various vehicle
models without any modification on the parameters. It has
been tested on two datasets, which include replay, suspen-
sion, DoS, fuzzy, and spoofing attacks, collected from three
vehicles. The results are also compared with other existing
solutions.

Overall experimental results show that WINDS has a rea-
sonable detection rate, in a short time from when the attack
starts; therefore, it may be a suitable IDS for in-vehicle CAN
networks.
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