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ABSTRACT Fuel cell electric vehicles use fuel cells as their main power source; the vehicle is driven
by an electric motor, and have an electric battery as a secondary power source that stores regenerative
braking energy and assists driving. To reduce the hydrogen fuel consumption by using these fuel cells and
electric batteries efficiently, an energy management strategy is needed for the proper distribution of power
among them. In this study, model-based reinforcement learning was utilized for energy management. For
the optimal control of a fuel-cell electric vehicle, reinforcement learning is conducted using an internal
vehicle powertrain model in the learning algorithm; initially, the model is completely unknown, but the
model is learned with data from experiences as the learning process progresses. Then, reinforcement learning
is conducted for the environment of the driving cycle profile to optimize the control policy. In this study,
vehicle simulation was conducted using standard driving cycles, and the results showed that the learning
process converged steadily and that the powertrain model was well learned. The simulated fuel consumption
values show that the proposed algorithm reduces fuel consumption compared to the rule-based strategy by
an average of 5.7%.

INDEX TERMS Fuel cell electric vehicles, model-based reinforcement learning, optimal control, power
management, reinforcement learning.

I. INTRODUCTION
Recent developments in fuel-cell technology have attracted
considerable attention owing to its advantages such as zero
emission, which can augment fuel cell electric vehicle
(FCEV) technology. Among the different types of fuel cells,
such as polymer electrolyte membrane fuel cells (PEMFCs),
direct methanol fuel cells, alkaline fuel cells, phosphoric acid
fuel cells, and solid oxide fuel cells, PEMFCs are considered
suitable for vehicle applications considering the operating
temperatures, power density, efficiency, and cost. As they are
powered by hydrogen instead of conventional fossil fuels,
FCEVs do not produce harmful emissions and can be charged
quickly similar to conventional internal combustion engine-
based vehicles. Similar to electric vehicles (EVs), FCEVs
also rely on electricity to drive vehicles using electric motors,
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but FCEVs generate electricity using PEMFCs. However,
an electric battery is still an essential component in the FCEV
powertrain to regenerate energy from braking so as to provide
extra power as required and to avoid inefficient operation of
the PEMFC system, such as idling and low speed. Therefore,
in FCEVs, it is necessary to appropriately distribute the power
required by the vehicle to two power sources, the PEMFC
and electric battery, and this is called an energy management
strategy (EMS) [1].

Numerous studies have been conducted on EMSs for
FCEVs. Dynamic programming (DP) is a well-known strat-
egy for finding a global optimal solution [2]–[5]. DP is based
on the Bellman equation, which represents the optimization
problem in a recursive form, and can solve the problem effi-
ciently. However, the DP calculation is quite time consuming,
making real-life application difficult; also, as the number of
states increases, the complexity of calculation also increases
rapidly owing to the so-called ‘‘curse of dimensionality.’’
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Thus, in many studies, DP is used to determine the bench-
mark performance of the vehicle system, or provide a
guideline for the rule-based controller. The equivalent con-
sumption minimization strategy (ECMS) is another popu-
lar approach [6]–[9] in which the fossil fuel and electrical
energy consumption is evaluated comprehensively using an
equivalent factor comprising of equivalent values. In ECMS,
the instantaneous cost minimization results in global opti-
mization with a proper equivalent factor. However, ECMS
requires an exact estimation of the equivalent factor for the
subsequent driving cycle, and at the same time, mitigates
the difficulty in prediction. Pontryagin’s minimum princi-
ple (PMP)-based energy management strategy [10]–[14] can
explain the theoretical background of the ECMS. In PMP, the
fuel consumption of the engine and battery can be expressed
by a Hamiltonian using the co-state value corresponding to
the equivalent factor in the ECMS, and minimization of the
Hamiltonian gives the equivalent consumption of ECMS,
which should be always be minimized. However, in PMP, it is
also necessary to estimate an initial co-state value, similar
to ECMS, which is driving cycle dependent; thus, it also
has the same difficulty. Model predictive control (MPC) has
been studied in many studies [15]–[17], in which, based on
optimization techniques, the MPC-based approach to various
industrial problems has been successful, and accordingly,
research using this approach is underway for the control
problem of FCEVs.

The above approaches of DP, PMP, and MPC is mainly
based on the exact modeling of the environment, which
requires the modeling of the complicated powertrain system,
especially in the case of DP, these difficulty of modelling
of the system is called ‘‘curse of modeling’’. In addition,
modeling is required not only for the vehicle system, but
also for the driving cycle. The driving cycle information
should be incorporated in the control strategy, but the exact
forecasting of driving cycle information has its limitations.
Recently, data-driven approaches based on machine learning
have been developed. In particular, reinforcement learning
(RL) can be applied to decision-making processes, such as
the energy management of FCEVs. In RL, unlike in super-
vised or unsupervised learning, the agent interacts with the
environment, and the control policy can be learned through
this interaction; thus, the control policy is optimized based
on the control action, state transition, and reward [18]. A few
approaches have been examined for reinforcement learning in
FCEVs. In [19], Q-learning was utilized for fuel cell/battery/
ultra-capacitor hybrid electric vehicles. Here, a fuzzy filter
was used to improve the performance of the RL algorithm.
In [20], for FCEVs made of PEMFCs and Li-ion batteries,
RL is utilized in which the battery state of charge(SOC)
boundary is determined using a deep deterministic policy
gradient (DDPG), and thermostat control is used within the
SOC boundary. In [21], two-level RL was proposed for plug-
in FCEVs, in which the global optimal solution was approx-
imated using hierarchical RL, enabling speed predictions.
These approaches are mainly based on model-free methods,

and the optimal behavior of the control strategy is learned
from experience. However, ensuring the convergence of the
value function or control policy is a time-consuming process
that requires data from many iterative simulations.

In this study, model-based reinforcement learning (MBRL)
was examined for FCEVs. MBRL uses an internal model
to approximate the environment and the control behavior
can be learned through this model [22]–[24]. MBRL are
more efficient than model-free approaches; in model-based
learning, the optimal policy can be extracted from the cal-
culation using the learned model, while in the model-free
method, trial-and-error is required to determine the optimal
control policy, which is a time-consuming process. In our
previous studies, MBRLwas utilized for the EMSs of parallel
hybrid electric vehicles (HEVs) [25], [26] and in this study,
MBRL was applied to the FCEVs. Unlike parallel HEVs
studied previously, FCEVs have a series-type powertrain in
which the fuel cell system can be operated independently
regardless of the vehicle’s speed, and the fuel cell system has
characteristics that are completely different from the inter-
nal combustion engine. Therefore, the energy management
strategy of FCEVs must also depend on these powertrain
dynamics characteristics. Here, we divided the environment
into the vehicle powertrain and driving cycle, and a model-
based learning approach was utilized for the FCEV’s power-
train using domain knowledge, while model-free learning is
conducted for the environment of the driving cycle profile.
The contributions of this study are as follows:

1) MBRL is applied to find the supervisory control policy
of the energy management problem of FCEVs. In particu-
lar, by showing that MBRL can be successfully applied to
FCEVs, we proved that MBRL can be applied to different
vehicle powertrain systems.

2) In addition, we propose a data-driven model update
method in MBRL, where MBRL starts the learning process
with completely unknown model parameters, and the model
is learned using the experience data alone. The learning
performances of the model-based and model-free methods
are compared, and the fuel economy performance of FCEVs
using MBRL is compared with that of DP and rule-based
control strategies to verify its effectiveness.

The remainder of this paper is organized as follows.
In Section II, the modeling of vehicle longitudinal dynamics
and the modeling of the powertrain for vehicle simulation is
introduced. In Section III, an energy management strategy
using RL is presented. In Section IV, the vehicle simulation
results are presented, and finally, the conclusion is presented
in Section V.

II. VEHICLE SIMULATION MODEL
In this study, the proposed algorithm was verified through a
vehicle simulation. The concept of the powertrain structure
for the vehicle simulation model is shown in Fig. 1. In the
structure, the vehicle is driven using an electric motor, and
the energy required to operate the electric motor is supplied
by a PEMFC and an electric battery. In addition, there is

VOLUME 9, 2021 59245



H. Lee, S. W. Cha: EMS of FCEVs Using MBRL With Data-Driven Model Update

FIGURE 1. Vehicle simulation model.

the balance of plant (BOP), which is a subsystem compo-
nent for operating the PEMFC, such as a compressor, heat
exchanger, and humidifier, that requires additional power.
In regenerative braking, the energy generated on braking is
stored in the battery. Quasi-static modeling was used for
the vehicle powertrain modelling, and only the longitudinal
vehicle dynamics were considered. The detailed subsystem
modeling is as follows.

First, the vehicle dynamics can be expressed as (1), con-
sidering only the longitudinal dynamics

v̇ =
Twhl/Rtire − Fbrk − Fload

mv
, (1)

where v is the vehicle speed,mv is the vehiclemass, Twhl is the
wheel torque, Rtire is the tire radius, Fbrk is the brake force,
and Fload is the vehicle road load, which can be expressed
as (2):

Fload =
1
2
ρaAf Cdv2 + Crmvgcosθ + mvgsinθ, (2)

where ρa is the air density, Af is the vehicle front area,
Cd is the vehicle drag coefficient, Cr is the vehicle rolling
resistance coefficient, and θ is the slope. Then, the vehicle
powertrain can be represented by:

Twhl = Tm · η
sgn(Tm)
fd · γfd , (3)

ωm = γfd · ωwhl, (4)

where Tm is the motor torque, ηfd is the efficiency of the final
drive ,γfd is the gear ratio of the final drive, ωm is the motor
speed, and ωwhl is the wheel speed, which is ωwhl = v/Rtire.
The efficiency of the final drive is assumed to be constant at
0.98. The electric power demand Pelec can then be expressed
as follows:

Pelec = ηelec −sgn(Tm) · Tm · ωm, (5)

where ηelec is the efficiency of the motor and converter, which
can be expressed as a function of the motor torque and speed,
as shown in Fig. 2. In the case of an electric battery, an
internal resistance model is used, and the battery state of
charge (SOC) is expressed as follows:

˙SOC = −
1
2

Vocv −
√
Vocv2 − 4PbatRbat
QbatRbat

, (6)

where Vocv is the open-circuit voltage, Pbat is the battery
power, and Rbat is the internal resistance of the battery, both
of which can be expressed as a function of the battery SOC,
as shown in Fig. 3. Qbat represents the battery capacity. For

FIGURE 2. Efficiency of the electric motor including the converter.

FIGURE 3. Open circuit voltage (a) and internal resistance (b) of the
electric battery as a function of battery SOC.

the PEMFC, a steady-state model was utilized [27], [28]. The
fuel consumption of the PEMFC can be expressed as follows:

ṁh2 =
Ncell ·Mh2

n · F
· λ · Istack , (7)

where ṁh2 is the hydrogen fuel consumption rate, Ncell is
the number of cells, Mh2 is the molar mass of hydrogen, n
is the number of electrons acting in the reaction, F is the
Faraday constant, λ is the hydrogen excess ratio, Istack is
the stack current, and the stack current and stack power of
the fuel cell system are shown in Fig. 4. (a). For the fuel cell
system, auxiliary power consumption in BOP, PBOP, and the
net power Pfcs, and the stack provided power Pstack have the
following relationship:

Pfcs = Pstack − PBOP (8)

while the fuel cell system net power Pfcs is required to
satisfy Pfcs = Pelec − Pbat . Then, Fig. 4. (b) shows the
BOP power consumption for net power of the given fuel cell
system, and hydrogen fuel consumption can be expressed as
a function of the net power of the fuel cell system, as shown
in Fig. 4. (c). A summary of the vehicle model parameters is
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FIGURE 4. Characteristics of the fuel cell system; (a) stack power over
stack current; (b) auxiliary power in BOP corresponds to net power;
(c) Hydrogen fuel consumption rate corresponds to fuel cell system net
power.

TABLE 1. Parameters of the vehicle model.

presented in Table. 1. The data used in this paper for vehicle
simulation is obtained from ‘‘OC SIM,’’ an Optimal Control
Simulator developed for the control problem of electrified
vehicles [29]. Based on this vehicle model, a simulation was
conducted to test and verify the newly proposed algorithm.
The energy management strategy using model-based rein-
forcement learning is described in detail in the following
sections.

III. ENERGY MANAGEMENT STRATEGY
A. OPTIMAL CONTROL PROBLEM DEFINITION
In this section, the energy management strategy of FCEVs
using MBRL is presented. The objective of the optimization

problem is to find the control policy π to minimize cost
Jπ (x0), which is the expected cost when the vehicle system
starts from an initial condition of x0 and follows the control
policy π , which can be expressed as follows:

min Jπ (x0) = lim
N→∞

E
{∑N−1

k=0
γ kg (xk , π (xk))

}
, (9)

where xk is the state variable at time k , which is a three –
dimensional state, as shown below (10)

xk = [SOCk ,Pdem,k , vk ], (10)

where Pdem,k represents the power demand. Battery SOC,
SOCk evolves with the nonlinear vehicle powertrain dynam-
ics described in (1)–(6). The transition of vehicle speed vk
and corresponding power demand Pdem,k , can be modeled
using a Markov chain as a discrete time stochastic dynamic
process using random variable wk , which is the probability
distribution of driving cycle information. It can be expressed
as follows.

Pr
{
wk = [Pdem, v]k+1 | [Pdem, v]k

}
(11)

Thus, the one-step transition probability in (11) can be esti-
mated from the driving cycle as per recent driving cycle
records; however, it is not required to model in MBRL,
in which the Q function can be updated based on sampling.
For Pdem, it can be calculated from the vehicle dynamics in
(1) for a given driving cycle. The control variable u = π (x)
is the fuel cell net power Pfcs, which is equally discretized as

Pfcs ∈ {Plfcs|l = 1, 2, . . . ,Nu}, (12)

where Nu is the number of control inputs, and Pdem=Pfcs +
Pbat . Vehicle powertrain dynamics are constrained by
equations (13)–(15).

ωm,min ≤ ωm(k) ≤ ωm,max , (13)

Tm,min(ωm (k) , SOC(k)) ≤ Tm(k) ≤ Tm,max(ωm (k) ,

SOC(k)), (14)

SOCmin ≤ SOC(k) ≤ SOCmax . (15)

The instantaneous cost, also called the reward g, is composed
of the hydrogen fuel consumption Wfuel and battery SOC
sustaining termWsoc

g = Wfuel +Wsoc(SOC), (16)

where Wfuel is the hydrogen fuel consumption observed for
one step, and WSOC is a term for keeping the SOC close to
the constant target SOC reference SOCref , defined as:

Wsoc(SOC)

=

{
C1 ·

(
SOC − SOCref

)2 if SOC > SOCmin

C2 if SOC > SOCmin
(17)

where C1 and C2 are the weighting coefficients. Then,
the optimization problem is to minimize the discounted sum
of the instantaneous cost with the discount factor γ for a cycle
duration of N , when N → ∞. Thus, with the stochastic
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FIGURE 5. Control structure of MBRL for FCEV.

driving cycle profile, the control policy π (xk) is optimized to
minimize the expected value of the hydrogen fuel consump-
tion while the battery SOC is sustained near the target SOC
reference.

B. MBRL FOR FCEVs
To solve this optimization problem, an MBRL based on
Q-learning was utilized. First, the Pdem, v, and battery SOC
are quantized as follows:

Pdem ∈ {Pidem|i = 1, 2, . . . ,Np}, (18)

v ∈ {vj|j = 1, 2, . . . ,Nv}, (19)

SOC ∈ {SOCm
|m = 1, 2, . . . ,NSOC }, (20)

where Np, Nv, and NSOC represent the number of discretized
power demands, vehicle speed, and battery SOC, respec-
tively. In Q-learning [30], the Q function can be defined
using the instantaneous cost gk and the cost of the next state
Jπ (xk+1) with the control u as follows :

Q (xk , uk) = g (xk , uk)+ γ · J (xk+1) , (21)

where Q (xk , uk) are the action-value functions. Using Q,
the optimal cost J∗ (xk) can be defined by simply finding the
minimum value of Q∗ as below (21), and the optimal control
policy π∗ (xk) can be found as follows (22):

J∗ (xk) = min
u

(Q∗(xk , u)), (22)

π∗ (xk) = arg min
u

(Q∗(xk , u)). (23)

The Q-function value can be updated iteratively as below:

Q (xk , uk)← Q (xk , uk)+ α(gk + γ min
u
Q (xk+1, u)

−Q (xk , uk)). (24)

Therefore, in Q-learning, the Q function can be updated
in a model-free and data-driven manner by calculating the
reward cost gk based on observation according to control uk
without modeling the vehicle powertrain dynamics or driving
environments.

However, as mentioned in the Introduction, since the pow-
ertrain of FCEVs can be modeled, the use of this domain
knowledge is beneficial for the efficient learning process of
RL. The main idea of MBRL is shown in Fig. 5. Here, MBRL

utilizes the internal approximation model of the FCEV pow-
ertrain and can determine the optimal action in association
with learning process. MBRL can be divided into two main
approaches. The first is the internal loop with the agent and
the approximation model created by domain knowledge, such
as dynamics equations, and the second is the outer loop
to construct a model through learning based on the expe-
rience obtained from the interaction with the environment.
More specifically, in MBRL for FCEVs, we can estimate
the fuel consumption Ŵfuel,k for a given uk = Pfcs,k , and
the battery SOC change 1̂sock can be predicted for the
given Pdem,k , vk , and Pfcs,k values from the FCEV powertrain
model, as follows:

Ŵfuel,k = f̂fuel
(
Pfcs,k

)
, (25)

1̂sock = f̂soc(Pdem,k , vk ,Pfcs,k ), (26)

where f̂fuel and f̂soc are estimated models for fuel consump-
tion and battery SOC use, and Pfcs,k , vk , and Pdem,k are
discretized using the nearest neighbor quantization. In addi-
tion, instead of using the known model, these estimation
models can also be learned from the experience data of
D ={(xk , uk , gk , xk+1)} and observation of Wfuel,k for a
given input uk , as follows:

f̂fuel ← f̂fuel
(
Plfcs,k

)
+ αm

(
Wfuel,k − f̂fuel

(
Pfcs,k

))
,

(27)

f̂soc← f̂soc(Pdem,k , vk ,Pfcs,k )

+αm(1̂sock − f̂soc(Pdem,k , vk ,Pfcs,k )), (28)

where αm is the learning rate of the model learning pro-
cess. Then, the MBRL runs the vehicle in a virtual driving
cycle using the experience replay of Pdem,k→Pdem,k+1, and
vk→vk+1, but for all admissible control inputs ul = Plfcs with
l = 1, 2, 3, . . . ,Nu, and for different battery SOC, SOCm

with m = 1, 2, 3, . . . ,NSOC , as follows:

Q← (1− α) · Q
(
xk = [SOCm,Pdem,k , vk ], ul

)
+α·

(
ĝk + γ minQ

(
x̂k+1=

[
ŜOCm

k+1,Pdem,k+1, vk+1
]
, u
))
,

(29)

where ĝk is estimated cost (reward) that can be calculated as

ĝk = Ŵfuel,k +Wsoc(SOCk ), (30)

and the next state of battery SOC ŜOC j
k+1, for the previous

battery SOC, SOC j can be estimated using f̂soc as follows.

ŜOC j
k+1 = f̂soc

(
xk , ul

)
+ SOC j (31)

The overall MBRL algorithm for FCEVs is given in
Algorithm 1. Similar to [25], in FCEVs, the driving cycle
information, which is difficult to expect, remains completely
model-free, to be learned in the Q-function with control
policy through the data-driven learning process, while the
vehicle powertrain dynamics can be modeled using domain
knowledge; however, in this study, instead the model is
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Algorithm 1MBRL algorithm for FCEVs’ Energy Manage-
ment Strategy
input: data xk, size N
repeat
Observe xk
Choose the greedy action
uk = argmin

u
(Q (xk , u))

Observe reward gk , and next state xk+1
Update model using D ={(xk , uk , gk , xk+1)}

f̂fuel ← f̂fuel
(
Pfcs,k

)
+ αm

(
Wfuel,k − f̂fuel

(
Pfcs,k

))
f̂soc← f̂soc

(
Pdem,k , vk ,Pfcs,k

)
+ αm

(
1̂sock − f̂soc(

Pdem,k , vk ,Pfcs,k
))

Update Q using the approximated vehicle model for all u
for l = 1 to Nu do
for m = 1 to Nsoc do

Q← (1− α) · Q
(
xk = [SOCm,Pdem,k , vk ], ul

)
+α ·

(
ĝk + γminQ

(
x̂k+1

=
[
ŜOCm

k+1,Pdem,k+1, vk+1
]
, u
))

end for
end for

k ← k + 1
until Simulation Stop

given, it is designed such that the model can be learned
from the data-driven update. Thus, reinforcement learning
is conducted based on a framework using a model, but the
model is updated with the experience data, without a model
of the dynamic equation. Compared to the HEV case study
in our previous research, in the present study, FCEVs have
a series-type powertrain, where hydrogen fuel consumption
is only dependent on the control input of the fuel cell power
and not on the constrained vehicle speed; thus, the estimation
model of hydrogen fuel consumption can be expressed as
(25). For the model of battery SOC change, f̂soc is a function
of Pdem, v, and Pfcs, and is not a function of battery SOC; in
reality, it is also a function of SOC that 1soc is affected by
the current battery SOC, but it is assumed that the difference
in 1soc due to the current SOC value is not large, and the
SOC dynamics of the battery in the decision-making process
of the RL are relatively slow, such that a sudden change in
the SOC of the battery does not occur within a short time;
thus, it can be ignored in the estimation model, while it is
included in the Q-function value update in (29). Therefore,
using estimation models, the Q-function value can be updated
quickly and stably.

Considering the practical applications of this algorithm,
the learning process requires considerable time and compu-
tational load. In this study, the model update and Q function
update using the vehicle approximation model in Algorithm 1

TABLE 2. Discretization of state and control variables.

are carried out at every step. However, the update does not
necessarily have to be performed at every step, but it can
be performed asynchronously considering the computational
load. In addition, as with other Q-learning, once the Q table
learns a general control policy for different driving cycles, it is
possible to use it as a base policy and to adaptively change the
control policy by learning according to the characteristics of
the current driving cycle. To adapt the control policy more
quickly, the ‘for loop’ in Algorithm 1 can be replaced with
an update method using parameterization methods such as
neural networks, or the update method itself can be changed
using methods such as prioritized sweeping [31], which is
beyond the scope of this paper. In addition, the vehicle
approximation model does not change significantly once it
is trained, so the model need not be updated regularly. The
proposed energy management strategy is tested on the FCEV
model in Section II, and the vehicle simulation results are
presented in Section IV.

IV. VEHICLE SIMULATION
MATLAB was used for the vehicle simulation and to write
and implement the algorithm based on MBRL. The vehicle
simulation, including the training, was executed on a work-
station with an i7-8700k CPU @ 3.70GHz, with a 32.0 GB
RAM. The discretization levels of the state and control vari-
ables are listed in Table 2. Note that, generally, the better the
discretization proceeds, the better the performance that can
be expected. However, this should be considered in terms of
learning and determined appropriately by taking into account
the state variable that needs to be measured with the distur-
bance. In addition, for a Q function configured in the form of
a lookup table, the size of the Q function increases rapidly
depending on the number of state variables and the level
of discretization; therefore, it is necessary to take this into
account. The parameters for RL are given in Table 3, where
the parameters C1 were defined to evaluate the hydrogen fuel
consumption and battery SOC deviation comprehensively,
while C2 has a relatively large value to assign a penalty for
SOC less than the minimum value. The learning rate α and
model learning rate αm are determined by trial and error. The
discounted factor is assumed to be close to 1, which means
that the total expected value of the future cost is considered,
instead of conducting instantaneous minimization.

A. LEARNING CURVE
First, vehicle simulation was conducted using an urban
dynamometer driving schedule (UDDS). The MBRL
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FIGURE 6. UDDS driving cycle.

FIGURE 7. Learning curve on the log scale for MBRL for driving cycle of
UDDS.

algorithm is run iteratively to learn the model and the corre-
sponding control policy. As mentioned earlier, models of f̂fuel
and f̂soc are completely unknown initially, and are updated
based on the data from these iterations. The iteration was
repeated 1000 times. The learning curve is shown in Fig. 7.
Here, the cumulative cost, which is the accumulated value
of the instantaneous cost g in (15), when the vehicle runs
through the UDDS cycle is presented in the log scale, and it
can be seen that the learning is conducted effectively; the cost
decreases progressively with each iteration, and the decrease
is sharp initially. The simulated motor torque, fuel cell power,
battery power, hydrogen fuel consumption, and battery SOC
are shown in Fig. 8. The battery mainly operates around the
target SOC of 0.6, and the SOC performs well. Therefore,
the MBRL successfully learns the optimal control policy for
the UDDS cycle and drives the vehicle while maintaining the
battery SOC.

On the other hand, the fuel consumption and battery SOC
estimation models f̂fuel and f̂soc are also updated successfully.
In Fig. 9 and Fig. 10, the plant model used as the environment
in the vehicle model simulation and the estimation model
used inside the MBRL are presented. After iterative learning,
the estimation models tend to resemble the plant model. In
the case of the fuel consumption model, which is relatively
simply expressed as a function of the net power of the fuel
cell system, it can be confirmed that the model is estimated to
be remarkably close to the actual model in all areas, as shown
in Fig. 9. The SOC can be predicted when the current battery
SOC, power demand, vehicle speed, and control input of
the fuel cell power are given. The SOC predictions made
using the known powertrain and power electric dynamics
are remarkably accurate, as shown in Fig. 10. Therefore,
as in model-free learning, even without information or ini-
tialization of the vehicle model, with only information about
which state determines the future states and constitutes the

FIGURE 8. Simulation results of MBRL on the UDDS driving cycle;
(a) motor torque, (b) fuel cell and battery power, (c) hydrogen fuel
consumption, (d) battery SOC trajectory.

FIGURE 9. Hydrogen fuel consumption model.

instantaneous cost, it is possible to proceed with the learning
through the interaction between the agent and the driving
cycle environment. The model can be learned based on data-
driven updates with experience while the control policy is
simultaneously optimized based on the learned model.
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FIGURE 10. Estimation of next battery SOC when Battery SOC is 0.6 and
fuel cell output power is 10 kW; (a) Overall view, (b) Side view.

B. MODEL-BASED VS MODEL-FREE
In addition, the MBRL was compared with the exist-
ing model-free RL method based on simulations. Tabular
Q-learning was used as a model-free method and all other
conditions were defined in the same way as MBRL. For
learning, the Q-function value was updated as in (24), while
the ε-greedy method with ε = 0.1 is used to balance explo-
ration and exploitation, where ε represents the probability of
choosing an action randomly for exploration and exploitation
dilemma [32]. The simulation results are shown in Fig. 11.
This shows that the cumulative cost of MBRL and Q-learning
for the UDDS driving cycle decreases as the iterations pro-
ceed. MBRL takes more time to perform one iteration than
Q-learning. However, after several iterations, the cumulative
cost decreases more quickly in MBRL. Q-learning takes
considerably more time to learn the control policy reflecting
both vehicle powertrain dynamics and driving cycle infor-
mation, especially as learning is performed through trial and
error. Thus, the cumulative cost decreases slowly; whereas
in MBRL, learning can be performed efficiently using the

FIGURE 11. Learning curve on the log scale for Q-learning, and MBRL for
driving cycle of UDDS.

powertrain dynamics model. As Q-learning is a completely
model-free method, it is not necessary to model the environ-
ment, and so, it is free from problems caused by modeling
difficulties or inaccurate modeling. However, the proposed
MBRL also has the same advantage as Q-learning because
it is not necessary to know model parameters or detailed
dynamics equations to implement it, and only the framework
needs to be constructed based on the domain knowledge of
model dynamics.

C. COMPARISON WITH ENERGY MANAGEMENT
STRATEGY USING DP, AND RULE-BASED CONTROL
To verify the fuel efficiency performance of the proposed
MBRL algorithm, theDP and rule-based strategies were used.
As mentioned in the introduction, DP is the algorithm that
shows the maximum performance that the system can achieve
when the driving cycle information is given in advance, and
so, the performance of the MBRL can be compared with the
best solution. On the other hand, in the case of the rule-based
strategy, thermostat control [33] is used that, according to the
series powertrain structure, enables the fuel cell to operate in
the most efficient area, as shown in (32).

Pfc =

{
Popt if Sfc (k) = 1
0 if Sfc (k) = 0,

(32)

where Popt is the fuel cell power at the most efficient area,
and Sfc is the on/off signal for the fuel cell system, which is
determined to maintain the battery SOC near the target SOC,
as follows:

Sfc (k)

=


0 if SOC (k) > SOCupper

Sfc (k − 1) if SOC lower ≤ SOC (k) ≤ SOCupper

1 if SOC (k) < SOC lower ,

(33)

where SOCupper , and SOC lower are the upper boundary and
lower boundary of SOC, separately.

The simulation results for UDDS and highway fuel econ-
omy test driving cycle (HWFET) are shown in Fig. 12 and
Fig. 13, respectively. In Fig. 12 (a) and Fig. 13 (a), because
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FIGURE 12. Simulation results on UDDS driving cycle for DP, MBRL, and
rule-based strategy; (a) battery SOC, (b) hydrogen fuel consumption,
(C) fuel cell net power, (d) battery power.

all the driving cycle information is known in advance for
DP, it can be seen that there is a tendency to increase the
battery SOC early and then decrease it slowly. However, in the
case of MBRL and rule-based algorithms, the battery SOC is
controlled to be maintained near the target SOC, and in the
case of MBRL, optimization was performed to minimize fuel
consumptionwhilemaintaining the battery SOC.On the other
hand, in Fig. 12 (c) and Fig. 13 (c), for the rule-based strategy,
the fuel cell system is operated in the most efficient area of
approximately 30 kW, while the fuel cell system is turned on
and off according to the battery SOC. In the case of MBRL,
compared with the rule-based strategy, MBRL shows that
the control is closer to the DP result. The fuel consumption
for each case is listed in Table 4. Because the final SOC is

FIGURE 13. Simulation results on HWFET driving cycle for DP, MBRL, and
rule-based strategy; (a) battery SOC, (b) hydrogen fuel consumption,
(C) fuel cell net power, (d) battery power.

different for each simulation, the equivalent fuel consumption
representing the fuel consumption when the final SOC is
the same as the initial SOC was calculated as in [34]. The
equivalent fuel consumption shows that DP performs the
best, while the fuel consumption associated with MBRL is
inevitably larger than the optimal result of DP; however, the
fuel consumption is reduced by nearly 5.7% compared to the
rule-based fuel consumption. Note that in DP, information
regarding the entire driving cycle and powertrain is given,
and for the rule-based strategy, the control policy is based on
the information about the powertrain (efficiency of the fuel
cell system). However, for MBRL, there was no initial infor-
mation, but the control policy could be extracted from the
interaction between the controller and the environment; using
the internal model of the powertrain learned from experience,
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TABLE 3. Parameter values of RL.

TABLE 4. Comparison of the equivalent fuel consumption(g) results for
DP, MBRL, and Rule-based strategy (percentage relative to the Rule-based
results).

the MBRL strategy could also be used to identify and analyze
the characteristics of powertrain systems.

D. OFFLINE CONTROL STRATEGY
MBRL has the advantage of being able to extract the
optimal control policy through learning but formulating
the control policy suitable for the current driving cycle is
time-consuming. Instead, MBRL can be used for extracting
a general control policy in advance before driving using
offline processing with historic driving cycle data. Thus,
the extracted general control policy can be used when driv-
ing, while the control policy can be updated simultaneously
to reflect the characteristics of the current driving cycle.
In Table 5, the offline control policy using MBRL was tested
in the UDDS and HWFET driving cycles. The control policy
is trained using different driving cycles of UDDS, such as
the worldwide harmonized light vehicles test cycles (WLTC),
supplemental federal test procedure (SC03), new European
driving cycle (NEDC), and HWFET, in which each learning
proceeded in the corresponding order. The simulation results
are presented in Table 5. In the case of the UDDS driving
cycle, the fuel consumption is 75.5 (g), which increases
slightly compared with the UDDS result of 72.6 (g)in Table 4
as the control policy is generalized for different driving
cycles; thus, the fuel economy performance is reduced for
the specific driving cycle of the UDDS. However, it shows
that fuel consumption is still less than the 76.1 (g) associated
with the rule-based strategy in Table 4, and the extracted
general control policy still performs better than the rule-based
strategy. The HWFET shows an improved fuel consumption
performance of 106.4 (g), compared to the 108.6 (g) of
MBRL for HWFET, as shown in Table 4. This is because,

TABLE 5. Fuel consumption (g) of Offline control policy using MBRL:
(percentage relative to the Rule-based results).

during offline training, the HWFET cycle is the last data used
for learning, and combined with the general control policy
previously formulated from the other driving cycles, it shows
improved performance than when only the HWFET is used,
as shown in Table 4.

V. CONCLUSION
In this study, MBRL was used as the energy management
strategy in FCEVs. Unlike existing model-free RL meth-
ods, MBRL allows learning based on a model. In this
study, the model is used for the learning process of a vehi-
cle powertrain in which a control policy according to the
driving cycle part, which has a stochastic characteristic,
remains for model-free approaches. In addition, for model-
based learning, instead of the vehicle model represented by
dynamic equations, a powertrain model is learned with a
data-driven model update. The model parameters, however,
were unknown initially. The simulation results show that the
learning process is very stable, and it was confirmed that the
model was also well-learned. The performance of the algo-
rithm was compared with DP and the rule-based strategy; for
MBRL, the fuel consumption decreased by 5.7% on average
compared to the rule-based strategy, while MBRL consumes
more fuel than DP.

In the future, we plan to perform various simulations before
conducting experimental validations to check and improve
the performance of MBRL algorithms for FCEVs. In addi-
tion, we will consider the implementation aspect as well,
because the current computational requirements of MBRL
cannot be handled by the electric control unit in an actual
vehicle powertrain for usage as an online controller. However,
considering the expandability of MBRL and its applicability
to the system, it is thought that it can be applied to the
complex control problem of an FCEV system.
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