IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 22, 2021, accepted April 5, 2021, date of publication April 12, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072609

Distributed Tree-Based Machine Learning for
Short-Term Load Forecasting With Apache Spark

AMEEMA ZAINAB “'2, (Member, IEEE), ALI GHRAYEB"“2, (Fellow, IEEE),
HAITHAM ABU-RUB 2, (Fellow, IEEE), SHADY S. REFAAT -2, (Senior Member, IEEE),

AND OTHMANE BOUHALI*#, (Member, IEEE)

IDepartment of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
2Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha 5825, Qatar

3Research Computing, Texas A&M University at Qatar, Doha 5825, Qatar
#Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar

Corresponding author: Ameema Zainab (azain@tamu.edu)

This work was supported in part by the National Priorities Research Program (NPRP) Grant from the Qatar National Research Fund
(a member of Qatar Foundation) under Grant NPRP10-0101-170082, in part by the Internal Seed Grant from Texas A&M University at
Qatar, in part by IBERDROLA Qatar Science and Technology Park (QSTP) LLC, and in part by the Open Access Funding by the Qatar

National Library.

ABSTRACT Machine learning algorithms have been intensively applied to perform load forecasting to
obtain better accuracies as compared to traditional statistical methods. However, with the huge increase in
data size, sophisticated models have to be created which require big data platforms. Optimal and effective
use of the available computational resources can be attained by maximizing the effective utilization of the
cluster nodes. Parallel computing is demanded to allow for optimal resource utilization in dealing with
smart grid big data. In this paper, a master-slave parallel computing paradigm is utilized and experimented
with for load forecasting in a multi-AMI environment. The paper proposes a concurrent job scheduling
algorithm in a multi-energy data source environment using Apache Spark. An efficient resource utilization
strategy is proposed for submitting multiple Spark jobs to reduce job completion time. The optimal value
of clustering is used in this paper to cluster the data into groups to be able to reduce the computational
time additionally. Multiple tree-based machine learning algorithms are tested with parallel computation
to evaluate the performance with tunable parameters on a real-world dataset. One thousand distribution
transformers’ real data from Spain for three years are used to demonstrate the performance of the proposed
methodology with a trade-off between accuracy and processing time.

INDEX TERMS Apache spark, concurrent computing, load forecasting, parallel processing, resource

management.

I. INTRODUCTION

With the development of the smart infrastructure in the elec-
trical grids, the data collected from various units and loca-
tions over time have begun to receive the attention of grid
operators and research centers. Data centers usually collect
15-minutes to one-hour frequency of grid data, which creates
enormous amounts of data streams. The power grid opera-
tors are looking forward to creating data analytics solutions
to benefit from these enormous amounts of collected data.
Processing large amounts of data and deriving insights will
help in the purpose of knowledge discovery and better deci-
sion making. Machine learning (ML) techniques help in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Zhang

57372

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

decision-making processes and big data provides power in
better decision making. For an hourly load forecast, if the
algorithm takes few hours to calibrate the hour-ahead fore-
casting model, then it is a big data problem [1]. The comput-
ing time can not be longer than the lead time for any business
application.

To manage big data and perform ML with big data, most of
the researchers focused on one of the important challenges,
i.e., handling large size of data stored historically in the
data centers [2]. Several ML algorithms were designed with
the assumption that the entire dataset fits in the memory.
This assumption negatively affects the ML algorithms while
impeding their performance. For instance, a support vector
machine (SVM) has a space complexity of O (mz) and a train-
ing complexity of O (m?) [3], where m indicates the number

VOLUME 9, 2021

https://orcid.org/0000-0002-3754-4162
https://orcid.org/0000-0002-6808-5886
https://orcid.org/0000-0001-8687-3942
https://orcid.org/0000-0001-9392-6141
https://orcid.org/0000-0003-0244-9525

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

of samples. Traditional ML algorithms were built with the
assumption that the data can fit into memory, but with the era
of big data, it becomes challenging for ML models to adapt to
the deluge of data. Big data due to its nature of velocity also
imposes the challenge of all the data being available during
training. Therefore, as the size of the data increases, dis-
tributed processing frameworks, parallel data structures, data
reuse, and data partitioning become important characteristics.
Resilient distributed datasets (RDDs) implemented in a Spark
cluster computing framework exhibit in-memory characteris-
tics [4]. This leads to the use of the typical architecture which
can accommodate both the cluster computing framework and
machine learning capabilities. To improve the performance of
the big data machine learning algorithms, manipulations in
terms of the way ML algorithms execute and the processing
infrastructure is necessary. Among the various ML paradigms
in big data, this paper focuses on tree-based methods and
ensemble learning techniques. Splitting a deluge of data into
multiple datasets to perform training with the ML models
has gained significant improvement in the learning process
in terms of the big data context. For example, the authors
in [5] applied ensemble learning to subsamples of big data
improving learning accuracy and simultaneously decreased
the computation time.

The multi AMI infrastructure mostly concentrates on fore-
casting the load of all the distribution transformers (DT’s) at
the same time. In this paper, a novel scheduling technique
with the help of the Apache spark platform is proposed to
short-long term forecast the load of all the one thousand
transformers simultaneously. The spark cluster submits big
data analytics tasks as spark jobs and the computational
resources are allocated optimally to these spark jobs. The
amount allocated to these jobs is customizable by the user
which affects the Job Completion Time (JCT) significantly.
This paper utilizes ML algorithms such as Spark Random
Forest and Spark Gradient boosted regression trees for train-
ing and forecasting the load. The proposed method performs
load forecasting by submitting multiple jobs concurrently on
the data sets utilizing the cluster resources optimally.

The main contributions of this paper can be summarized as
follows:

1) Proposing an optimal scheduling algorithm to perform
load forecasting with parallel and distributed execution
in a multi-AMI environment on the smart grid big data.

2) Tuning the ML models to gain high accuracy along with
measures to combat overfitting.

3) Testing the proposed methodology on all the one thou-
sand transformers’ data without grouping, then a com-
parison is made against the proposed grouping technique
to show its merits.

The performance of the proposed method is tested on real
big data from an industry partner Iberdrola to validate its
effect on ascended performance.

The paper is organized as follows. Section II dis-
cusses the related research in the field of load forecasting
using big data platforms. Section III describes the novel

VOLUME 9, 2021

scheduling algorithm proposed to perform load forecast-
ing on multiple datasets utilizing apache spark. Section IV
describes the experimental setup of the optimal scheduling
algorithm along with the results obtained by implement-
ing the proposed methodology on real big data. Section V
concludes the paper.

Il. RELATED WORK

Many papers have proposed benchmarking results with the
use of ML for load forecasting, but in this section, the essence
of big data smart grid load forecasting using spark is outlined.
The widely installed smart meters collect huge amounts of
load data for each of the grid’s distribution transformers.
Many computing frameworks [6]-[9] have been developed
for the analysis of big data but, MapReduce [6] is the most
famous one because of its features of fault-tolerance, parallel
computation, and flexibility. Apache Spark [10] proposed by
the Zaharia et al. team emerged to overcome the drawbacks in
MapReduce. It is an open-source framework and is 100 times
faster than Hadoop MapReduce [11]. Spark can execute over
several cluster managers such as Hadoop YARN [12], Apache
Mesos [13], and spark’s standalone scheduler. Spark can
also interface with a variety of data storage repositories like
Hadoop Distributed File System (HDFS) [14], Hive [15],
Hbase [16], to name a few. However, spark supports dis-
tributed computing resulting in a communication overhead
increase. Previous research has observed that by only increas-
ing the computational capability, JCT reduces but then starts
increasing in communication overhead [17]. Hence the pro-
posed scheduling algorithm in this paper focuses to utilize the
available computation capability and still be able to submit
multiple jobs with the help of an optimal scheduling algo-
rithm and not losing on communication overhead.

Highly cited algorithms for forecasting smart grid data
include linear regression, SVM and its variants [18], and
artificial neural networks (ANN) [19] [20]. A pooling-based
deep recurrent neural network (DRNN) was proposed to
learn the spatial information, which outperformed Support
Vector regressor (SVR), Auto-Regressive Integrated Moving
Average (ARIMA), and the classical deep recurrent neural
network (RNN) [21]. In [22], Happy et al, proposed a statis-
tical approach for load forecasting using quantile regression
random forest, risk assessment index, and probability map.
In [23], a backpropagation approach was utilized to perform
short-term load forecasting utilizing weather data. In [24],
Wei et al performed midterm load forecasting of power sup-
ply unit (PSU) considered as a collection of distribution trans-
formers. The authors have utilized a dynamic based network
(DBN), with a peak load of all the distribution transformers
within a PSU summed. All of the summed load values are
utilized to train and forecast the load using sparks standalone
cluster. However, the use of complete data to train instead
of summed load values can result in better training accura-
cies but will require optimized scheduling method which is
achieved in this paper.

57373

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

This paper focuses on an hourly day-ahead load forecast
with the use of spark ML tree-based algorithms. The models
are trained with the spark.ml Application Programming Inter-
face (API) of spark which is data frame based facilitating ML
pipelines and feasible feature transformations [25].

1IIl. PROPOSED LOAD FORECASTING METHODOLOGY
FOR OPTIMIZED COMPUTATION WITH APACHE SPARK
The Spark ML library supports tree-based models namely
spark ml decision trees and ensemble models namely spark
ml random forest and spark ml gradient boosted regression
trees [26]. Spark session connects to the master node to
submit jobs, where each job is split into stages, and stages
are further split into tasks. Adding more tasks to a single
job if possible is recommended as compared to starting new
jobs to avoid start-up costs. In the case of data from mul-
tiple transformers, each dataset can be assigned as a job.
To reduce the execution time of the load forecasting models,
multiple DTs’ load forecasting is performed simultaneously
with the help of parallel job submission in spark. Moreover,
the shortest job submitted may consume fewer resources as
compared to the other jobs submitted. To overcome this,
python’s thread pool concurrency feature in addition to the
spark fair scheduler can be used. A solution is to decompose
the complete dataset into a cluster of transformers IDs and
use multiple computing nodes to train the clustered model
with an added sequential step to test the model of each of
the transformers within the clusters. However, it is necessary
to train clustered models first and then test the individual
models within the clusters. This attempts to add multiple
layers of parallel processes executed sequentially as iterated
in Fig. 1. For n clusters, the number of iterations to train the
clustered data is n/j, where j is the number of jobs submitted
simultaneously. As the n clusters are accessed repeatedly by
the processes, the training data pertaining to n clusters is
cached into memory. Similarly for ¢ transformers belonging
to a cluster, the number of iterations in total to test the
holdout data of each of the transformers (TF) is n *x (¢/)).
As the value of (n * (¢/j)) is larger than n/j in all cases of ¢,

Job 2 Jobj
_ Load forecast
l parallel jobs Ln/j
- iterations
(Job1 Job2 Jobj Level 1
Cluster n-x+1 Cluster n-1 Cluster n
Load forecast Load forecast Load forecast
Job 1 Job2 Jobj
TR CTF

parallel jobs
Job 1 Job 2 Jobj
i])

nx (t/))
[iterations
Level 2

l Job 1 Job 2 Job 7

FIGURE 1. Nested parallelism with spark (sequential and parallel runs).

57374

the time in the previous case (with n clusters) is much less
than without clustering, provided the data size for each of
the jobs in both cases is the same. The proposed parallel
and sequential approach of the tree-based ensemble model
is deployed on the spark. Fig. 2 is an illustration of the
employed master-slave parallel computing paradigm where a
single master and multiple slaves are used. To incorporate the
proposed methodology parallelism in datastore and training
are discussed further.

Pyspark
Spark
Session
Master
HDFS Name
YARN Node
Resource
Manager HDFS
Secondary
Name Node

Node Node
Manager Manager

HDFS Data HDFS Data
Node Node

Node
Manager

HDFS Data
Node

Node Node
Manager Manager

HDFS Data HDFS Data
Node Node

FIGURE 2. Experimental setup of spark framework for load forecasting.

A. DATASTORE PARALLELISM

The big data of the transformers load values with the times-
tamp is stored in the HDFS with replication factor 3. The
resulting load data partitions are constructed into RDDs and
stored in the corresponding data nodes. The number of par-
titions is automatically set by spark as one partition for a
block of file, however, the data is repartitioned to 20 which is
equal to the number of cores in each of the nodes using the
pyspark programming interface. Spark by default supports
Kyro serializer, that is almost 10x faster than the default java
serializer. Kyro serializer is a graph serialization framework
which is efficient and fast, and performs direct copy from
object to object rather than a transition phase of bytes in the
middle.

B. TRAINING PARALLELISM

The data from HDFS is read into the spark data frame for the
analysis. By using the data frame API only, all the physical
execution is compiled in native spark using Java Virtual
Machine (JVM), while only the logical plan is constructed in
pyspark [27]. The use of data frame API in pyspark results in
efficient execution as it avoids the creation of key-value pairs
that occur in scala. Data frames in spark are immutable like
RDD and are conceptually similar to a pandas data frame or a
relational database. However, the important difference is the
execution of transformations and actions in spark. The spark’s

VOLUME 9, 2021

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

Stage: rdd at (Stage: rdd a-t\' (" Stage: take a;\ Stage: aggregate a-t\ Stage: flathvap aD
Predictor Predictor DecisionTree Randomforest RandomForest
Scan orc Metadara TakeOrderedA
Custom Shuffle ndProject aggregateByKey
> R cader e
Mo L
- Hash g map
g Filter Ag%egate
* N ————
I E— Hash TakeOrderedAn D ——
§ roject piProject I‘PI’OJ' ect
: :
oject
— ! 2
I Stage L
— Project
® v
L
%ET oOject

;
& ¢! oei!l o
"5;

FIGURE 3. Spark-based DAG visualization for random forest regressor.

catalyst optimizer creates an optimized logical plan before
sending an instruction to the spark driver. As the catalyst
optimizer functions are the same across all the language APIs,
data frames provide equivalent performance to all the spark
APIL. Once a logical plan is created, it visualizes it as a
Directed Acyclic Graph (DAG) as shown in Fig. 3, and is
distributed among all the tasks in a job to be able to perform
each of the stages concurrently.

Considering the merits of spark, it is used as the big data
processing platform in our application for two of the main
computing tasks:

1) Average load matrices calculation: the elements of the
average load matrix consist of load averaged for 1 lag
day, 7 lag days, etc. The data is inputted into the matrix
calculation from the historical data stored in HDFS and
the computations are carried out in pyspark.

2) Simultaneous training of DTs’ load forecasting models
with the help of thread pools in python and multiple jobs
in spark utilizing a fair scheduler.

VOLUME 9, 2021

IV. OPTIMAL SCHEDULING ALGORITHM

Scheduling jobs considering the available resources is chal-
lenging. An optimal scheduling algorithm is necessary to
schedule jobs to be able to reduce the execution time. As per
the requirement of load prediction of multiple transformers
at the same time, two scheduling algorithms are leveraged in
this paper. In this section, the solutions of optimal scheduling
when communication costs are ignored and when considered
are discussed.

A. IGNORING COMMUNICATION COSTS

Considering w workers available and M jobs to be executed,
three cases can be obtained where (w < M) &(wx = M),
w<M)&wx < M), and w > M where x is a multiple
of M resulting in wx = M. The algorithm in this section is
structured as follows.

Step 1: Submit the array of tasks to the w workers
Step 2: w jobs are submitted to the available w workers

57375

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

Step 3: Whenever a processor becomes available, assign it
the unexecuted ready job with the highest priority.
Submitting the jobs with the help of a thread pool as
discussed in section III, w jobs are submitted at the same
time. Considering the three cases, the algorithm flow can be
elaborated for three of the cases as below:
Casel :

pool, (train, [1,2,w])
w<M)&wx =M)
tm

m-m-m-m:*

xtimes

1234
TIT2T3Th T

m-m-m-m:*

Case II:

pool, (train, [1, 2,w])
w<M)&wx <M)
T 27378 T

m-m-m-m*

x — ltimes

1243 M—(x—1
Tir2r3 M =G=bw

m-m-m-*

Case III:

pool, (train, [1,2,w])
w=M)
123 pd
T,T.T.T,.Ty

m-m-m-m-*

where T,, is the time taken for individual job execution and
is assumed to be the same. In case III, the computational
capabilities are not as high most of the time when the number
of jobs to be submitted is in the thousands. The total execution
time in all three cases can be summarized in (1) as:

xT, where (W < M) and (wx = M)
Trotaltime = { XTI, where (w < M) and &wx <M) (1)
T, wherew>M

Because of the way the number of concurrent jobs is sub-
mitted, w workers are assigned for each step of parallel
runs. Although at the last step of execution wx < M still
takes the same amount of time, as w workers are assigned to
perform the job. Algorithm 1 details the overall proposed load
forecasting methodology based on the optimal scheduling
algorithm discussed in section III.

Algorithm 1 Proposed Optimal Scheduling Algorithm

Input:

J : the number of batches

T : an array consisting of each of the meterID’s

w : number of workers (indicates the number of cores in
an executor)

57376

D : data filtered as per meterID
tfs: transformer allocated to a cluster with clusterID
csv: an empty csv file to accumulate all the results

Initialize:

def Cluster(clusterID):

DelusterlD — clysterArray [clusterID] ;

Cache D¢*s%"ID jnto memory for repeated access;

Create the train and holdout data from DelusteriD,

Perform ML modeling on grouped train data by
performing hyperparameter tuning;

Chose the hyperparameters with least error and store the
model MclusterID;

end def
def forecast(n, D'):

Create the train and holdout data from D’

Chose the hyperparameters with least error and store the
model M;

Perform testing on holdout data with M clusterID,

Use model M to predict the holdout data;

Test the accuracy of the predicted model;

Read the results in the csv file;

Update csv file with training accuracy and holdout

dataset accuracy along with the meterID;
end def
Output:

csv: the accuracy of holdout data of all the 7 models.

1. groupBy D with meterID and timestamp
2. Perform clustering on optimal value of k to obtain the
group of clusters as clusterlist
3. Split D into an array of dataframes based on the clus-
terlist as clusterArray [D] D%,D"] where n is the
number of clusters
4. call pool.map function with cluster function and
clusterID as varibles;
The function cluster is called n times in j batches
resulting in n/j iterations. If any processor is available
the available job is assigned to the processor. The
results are updated simultaneously and any point is
equal to the number of forecast processes completed
execution;
5. Close pool;
. Call join function after all the n/j iterations are com-
pleted;
. Open a csv file to store results;
for n:
tfs = clusterlist [n];
Split D" into an array of dataframes based on the
tfsas tfArray [D', D?,D'] where 1 is the number
of transformers belonging to cluster n.
11. call pool.map function for forecast function with n
and D' as varibles;
The function forecast is called ¢ times in x batches.
If any processor is available the available
job is assigned to the processor. The results are
updated simultaneously and any point is equal to the

@)}

S © o N

VOLUME 9, 2021

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

number of forecast processes completed execution;
12. close pool;
13. call join function after all the ¢ /j iterations
are completed;
14. end for
15. return csv

B. CONSIDERING COMMUNICATION COSTS

The main idea of this scheduling task is to augment the
scheduling with new precedence relations to be able to com-
pensate for the communication time. By clustering the jobs
into C clusters and submitting them to the same worker,
the overall communication between clusters will be mini-
mized. If T is the time taken by a cluster including the
communication costs, and y is a multiple of the total number
of clusters resulting in wy = C, yT, is the time taken for all
the jobs where y < x.

C. OBJECTIVE FUNCTION

This section attempts to create the theoretical functions for
parallel and sequential training approaches and to propose
an implementation solution based on the spark platform. The
collected transformers power data is denoted as D where D!,
D2, D3, ...DM denote the data for meter m. The data D con-
sists of F features namely month, day, year, etc. Therefore,
the chunk of data for a meter ID can be expressed by D™ as
following:

D" =X XX)
_ M - _ M Ni}l -
D = Um:l D= Um:l Un:l Dn (3)

where Xf’” is the feature f of the chunk of the data for a meter
ID m; N™ is the size of the m™ dataset. This chunk of data is
trainable input to the machine learning model. Additionally,
based on the data decomposition shown in (2), the mean
square error (MSE) for regression of the parallel training of
the ML model is represented as

1 M

ooB _ _.. L m
RMSE®P — min N Zm:1 J

= min 1\11 ZZZI Zj:l Jm 4)

And, the loss function J]" of the sample » in data with a
subset, m is given by (5)

1
\/N St [y — 390 (x;m)

where J™ in (6) is the loss function of the m™ data set

]m

E &)

m N m
Jm = anl J! (6)
vy and Y are the observed and the predicted load values,
respectively, of sample n in data subset m; and N is the dimen-
sion of each of the output samples. The ML model training is
performed to minimize the RMSE?B in (4) and obtain the
trees using the dataset D. Similar procedures are performed

VOLUME 9, 2021

for the subset dataset D™ concerning the data subset m for
transformer level load forecasting.

V. CASE STUDY

Firstly, the experimental setup is introduced in this section.
Secondly, the performance of the proposed scheduling algo-
rithms is evaluated. Finally, the results are presented and
discussed.

A. EXPERIMENTAL SETUP

1) CLUSTER CONFIGURATION

The apache-spark platform, where all the computations are
performed, consists of one master node and 5 slave nodes as
shown in Fig. 2. Each of the 5 compute nodes is Linux-based
and contains 24 physical CPU cores — 2 processor sockets
with 12 cores per socket — and 128GB of RAM. The inter-
connect is comprised of the Cray Aries network, which is
employed both for MPI as well as for storage traffic [28].
Hadoop 2.8.0 and spark 3.0.0 are installed on both the master
and slave nodes. The load forecasting algorithm is imple-
mented in Python 3.6.4.

2) DATA COLLECTION, STORAGE, & PREPROCESSING

In used experiments, the dataset consists of load value and
timestamp of 1000 transformers meters of the Iberdrola net-
work [29]. The data is split into 90% (Jan 2017 to Jun 2019)
of training and 10% (July 2019 to September 2019) holdout
dataset. The total dataset counts to around ~24000000. The
data was collected from the utility company in an Optimized
Row Columnar (ORC) format and was stored in the HDFS
storage on 5 data nodes and replicated 3 times. Currently,
spark supports timestamp input with the help of flint time
series as flint context and not flint session. As a consequence
of this limitation, the timestamp is split into the year, month,
day, and hour.

Fig. 4 shows the power consumption pattern for all the
3 years in the top left, data with large load values on the
top right, and the frequency of the load values in the bottom
left and bottom right graphs. It can be noted that the bot-
tom left graph is right-skewed, and after log normalization,
the spread of the data is more diverse comparatively but still
not normally distributed. The bottom right graph also has
log+1 normalization as the data consists of load values of 0.
It can be noticed that the data is right-skewed.

In the short-term load forecasting (STLF) scenario of this
work, the load value of 1000 DTs needs to be forecasted at
the same time. The data profile of each of the DT ranges from
January 2017 to September 2019. Based on the above infor-
mation, an ideal load forecasting model for STLF requires

1) The time series of the historical data for the load profile.

2) The parameters of the trained ML model to accelerate
the load forecasting.

3) The trained model of a single DT consisting of simple
parameters, yet accurate.

4) Model executed and realized efficiently on a parallel
processing platform i.e., apache-spark.

57377

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

00 Transformer ID

107 Log Function + 1 Normalized

%0 60 800) 02 a4 06 08 10
wadixwh] Normalised(logiLoadK¥h] + 1)}

0 200

FIGURE 4. Top left - Load distribution across all the three years (The
vertical axis indicates the load value in kWh and the x axis indicates the
time stamp). Top right — Data with large load values greater than

1000 kWh (The vertical axis indicates the transformer id the data belongs
to and the x axis indicates the load value in kWh. Bottom left - Frequency
of the load distribution limiting to 1000 kWh. Bottom right - Frequency of
log normalized load plus 1.

Spark tree models support both continuous and categorical
features, partitioning data by rows, and distributed training.
Algorithms available in spark ml are used for performance
comparison, which includes the spark decision trees (Spark
DT) and tree ensembles i.e., spark parallelized random forests
(Spark RF), and spark gradient boosted trees (Spark GBTs).

B. PERFORMANCE EVALUATION

1) AVERAGE RMSE

The objective of future load consumption is to predict the
load with high precision and speed to have near real-time
processing ability. Root mean square error (RMSE) is used as
the error metric because of its wide use. To evaluate the pre-
dictive performance, the training dataset is separated from the
holdout dataset (data never used for training). All the models
are built on the training data and optimized to obtain as low
RMSE44in as possible and predicted on the holdout dataset to
note the RMSEj}o140u: - Moreover, to evaluate the performance
on all the holdout datasets for different transformers, the
average RMSE (ARMSE) is calculated as described below:

1 M .
ARMSE = i Z:l RMSE hogousl <i <M (7

1

The ARMSE shows how well the ML model learns the
data for all the distribution transformers. The reason for
choosing ARMSE to have high average accuracy across all
the distribution transformers and not just one or a few.

2) EXECUTION TIME
An important objective of choosing the proposed methodol-
ogy is to reduce the processing time of the transformer’s data.

57378

To improve the performance in terms of execution time, total
time 7, , ..., is first measured by submitting individual jobs
and Tioraitime by considering a cluster of jobs. The time is
compared in both cases to choose the methodology with the
lowest execution time and still retain the skewed distribution
of the multiple meters data.

3) SPARK OPTIMIZATION

Besides spark being an in-memory computing framework,
it runs on top of the Java Virtual machines (JVMs). Hence
tuning the JVM parameters is necessary to improve the per-
formance of spark. In this paper, the authors have identified
three key spark parameters that impact the utilization of
resources to reduce the workload execution time. The paper
has also focused on the right choice of parameters that impact
the memory serialization, data compression, caching, and
repartitioning of data. Compressing serialized RDDs helps in
saving substantial space at the expense of some extra CPU
time. Compression of RDD in shuffle operations has a great
advantage due to it random read/write and multiple times
read/write. Compression of spark RDD is achieved with the
help of codec. Experiments are conducted considering: i)
various combinations of several executors, ii) the number of
cores per executor, and iii) the amount of memory for each
of the executors. If CO is the total number of cores in the
configuration then

CO = E % COperE ®)

where E is the total number of executors assigned and
COperE is the number of cores assigned per executor in the
spark configuration. The distribution of total memory in the
spark configuration is given as follows.

MEM = (0.9 x MEMperE x E) + (0.1 x MEMperE x E)
)

where MEMperE is the memory assigned per executor.
The second term in (9) is the overhead memory allocated
to each of the executors which accounts for virtual machine
overheads or other native overheads. The additional memory
and is usually chosen as either 10% of the executor memory
or a minimum of 384MB by the spark cluster computing
system [30]. Further, the MEMperE is divided into two frac-
tions, one for memory and the other for storage. The memory
fraction handles the data structures, out-of-memory error and
the storage fraction handles the cached blocks of data. The
values of CO and MEM can vary and are very specific to the
cluster used for configuring spark. Choosing a larger value
of E results in reducing the COperE to balance the CO.
Similarly, choosing a larger value of E reduces the MEMperE
to balance the MEM .

C. RESULTS AND DISCUSSION

In this section, the metrics discussed in the previous section
are evaluated on the dataset to showcase the benefits of the
optimal scheduling algorithm. The ARMSE and the execution

VOLUME 9, 2021

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

y=750 y=500 y=250 y=75 y=50 y=25
(@) T for various values of y

450 24
440 2.35
Q 430 2.3
£ 420 225
'g 410 2.15 g
c 400 R]
S 390 21 g
o 2.05 %
§ 380 2
8 370 1.95
360 1.9
350 1.85

jobs=6 jobs=12 jobs=18 jobs=24 jobs=30

(b) T, forincreasing nubmer of job
submissions

FIGURE 5. Performance evaluation. (a) shows the speedup for various cluster sizes for a concurrent job submission size of 18 and (b) presents the
speedup of increasing the number of jobs. A value of y = 93 is chosen for all the job submission values.

times are noted under experiments to determine the robust-
ness of load forecasting methodology using spark.

1) VALIDATION OF EXECUTION TIME

In this experiment, the proposed optimal scheduling method
is validated in terms of the training time and the forecasting
time. The total time 7 and 7 are measured for both cases
of x and y number of jobs submitted. The proposed scheme
is tested for x using the K-means clustering algorithm to
group the data in order to obtain clusters with higher accuracy.
To validate the proposed method, various chunks of y values
are considered and compared against the time taken for x
number of chunks of data. For the given data as the value
of x is 1000, values ranging from 750 to 25 are chosen as
shown in Fig. 5(a). The speedup is calculated for the various
combinations by performing 7'/T . As the value of y increases,
the size of the data is distributed among the y chunks which
also affects the processing time for different sizes of y. For
varying values of y the speedup is increasing, indicating the
time 7 is always less than T for all the values of y. Choosing
a lesser value of y and still not losing on speedup is recom-
mended, as in practice it will help in reducing the execution
time in cases of performing representative clustering. Hence
the proposed optimal scheduling algorithm stated in section
IV improves the performance by reducing the time to perform
the analysis. similarly, for a y value of 93, varying values
of the thread pool are performed to analyze the speedup as
shown in Fig. 5(b). The choice value of y = 93 is based on
the kmedoids clustering approach proposed in [31]. Hence
the value of y is chosen as 93 to group data closest to each
other, rather than choosing a random value of y. Compared
with a single job submission, the calculation time tends to
decrease gradually as the number of concurrent jobs sub-
mitted increases based on the left axis in Fig. 5(b). Massive
jobs are distributed across the slave nodes, which reduces the
computational load. The spark computing platform captures
the intermediates results to memory resulting in the ineffi-
ciency of iterative processing where each data frame is called

VOLUME 9, 2021

my=93 my=193

600
400

execution time (sec

200

With Threadpool ~ Without Threadpool

FIGURE 6. Performance benefit in terms of execution time with
scheduling that can be achieved by using thread pool.

multiple times for various processing stages. As shown in
Fig. 5 (b), based on the right y-axis, the speedup is approxi-
mately increasing linearly up to a value close to a number of
cores and makes it less linear after a value of 18-20. When
the number of jobs submitted increases above the threshold
of a possible number of concurrent threads that can be sub-
mitted, the data transfer among the processes increases com-
munication overhead which eventually increases the parallel
management overhead. Hence a trend of less linearity can be
observed clearly after a value of jobs = 18. Fig. 6, shows
the benefits in terms of scheduling that can be achieved by
using thread pool. The experiments are performed y = 93 and
a randomly chosen group value of y = 193 to compare the
performance. The execution time is lesser in both the cases
as proposed for a value y < x. The training time for y7, for
y = 93 executes 2.26 times, and for Y = 193, 2 times faster
for a pool value of 18, as compared to without threadpool.
Additionally, the clustering time, training time, and testing
time for a value of k = 93 is estimated based on the clus-
tering performed to choose the best cluster number value as
shown in Fig. 7(a). The total execution time (includes the
training time of grouped clusters, testing time of individual

57379

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

100 Spark —
80 | Spark RF o
ar ,
o SparkLR, SparkDT, ~egys = 9258
2 60 52.29 50.98
£ 40
=
20
0
R o' =\3 ot
e (% % c
o0 02 502" oot
mClustering Mtraining time Mforecast time
(a)

1400

1200
1000
800
600
400

“mm
0

<
oot e

Execution Time (sec)

93‘\6 Qa‘\“o Q@X\k ?\?

(b)

FIGURE 7. Comparison of compute time at various stages of load forecasting. (a) Results obtained for the time taken to perform clustering,
training time and testing time on the holdout dataset for SLR(spark LR), SDT, SRF and SGBT. (b) The execution time involves clustering, training
of grouped data, testing on clustered data, training on individual transformers and testing on individual transformers for the spark ML models.

transformers with clustering, the training time of the individ-
ual transformers, and the testing time for individual trans-
formers) for the 1000 models is shown in Fig. 7(b). The
time taken by the gradient boosted algorithm is the high-
est compared to the other spark ml algorithms. Although
both random forest and gradient boosted trees are ensemble
models, the random forest takes noticeably lesser time as
compared to random forest. Inference out of this observa-
tion is that gradient boosted is a boosting algorithm that
is quite sequential and is intended to take more execution
time whereas multiple trees in the random forest can be run
parallelly across the nodes to speed up the execution. The
times observed in Fig. 7(a) show the lowest training time for
spark decision tree regressor. It can be noted that the time
taken to perform testing is almost close to the training time.
This is evident from the proposed methodology which states
that performing analysis on grouped data is preferred over
individual transformers data. However, as the testing has to
be performed on all the DT’s datasets, grouping cannot be
performed to reduce execution time.

To compare the results with different previous works,
the comparison has been done with datasets of similar sizes
and computational capacities utilized have been documented.
The comparison has been done with methodologies that have
utilized distributed ML modeling with Apache Spark. The
comparison with previous works is presented in Table 1. It can
be observed that although the proposed methodology consists
of a dataset size of ~24 million records is superior in terms of
execution time as compared to previous works in performing
distributed machine learning on big data.

2) VALIDATION OF SPARK OPTIMIZATION

To validate the use of an optimal number of COperE,
experiments are conducted based on various combinations
of COperE and E which in turn affects the MEMperE.
Fig. 8 displays the comparison of run-time for various combi-
nations of executors and cores per executor. The combination

57380

TABLE 1. Comparison of performance of ML model in terms of execution
time with previous works.

Reference Techniques Numbe Total Total Executi
applied rof Memory numb on time
records erof (s)
cores
1 [32] Spark MLib ~ 2*10* 256GB 64 ~500
2 [33] DCPELM 5%10° - 2.50
(Spark)

3 [5] Spark - RSEM 10*10° 16GB 2 1374
4 [34] Spark - RF 24*10° 150GB 32 ~1600
5 Proposed Spark - RF 24*10° 600GB 100 58.75

RSEM - Reservoir Sampling based Ensemble Method
DCPELM - Distributed Computing Process Extreme Learning Machine

with the largest number of cores per executor shows the
lowest run time as per the secondary y-axis in Fig. 8. As the
job submission computes multiple jobs at the same time more
number of workers helps in the distribution of the jobs to
more number of workers. However, choosing more E and less
COperE is not expected to be efficient as the work will be
distributed across more executors resulting in larger transfer
of data across the executors. The choice of executors less
than 5 is not possible as the number of nodes in the configu-
ration is 5, each node consists of a total of 120GB memory.
Reducing the number of executors will result in each executor
to contain more than 120GB which exceeds the threshold and
is practically not possible. Hence a choice of 5 executors and
20 cores per executor is decided as an optimized combination
of the spark configuration. It is worth to mention also that
as the number of executors are increased, the MEMperE is
reduced as it is distributed among the executors, to sum up
to MEM .

Other than time, communication overhead and data trans-
fer is also a concern in distributed computing. Other than
time, communication overhead and data transfer is also a
concern in distributed computing. By increasing the depth of

VOLUME 9, 2021

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

120 430
m —_
O 100 420 §
— o
5 Rz
£ 80 410 0
(8] —
¢ 60 400 £
o o
5 40 390 £
> 3
2 20 L 380 X
§ o 370
= 5E20 10E 10 20E,5

COperE COperE COperE

mmm MEMperE (GB) —@— execution time (sec)
FIGURE 8. Run time comparison for various spark optimization

parameters.

TABLE 2. Performance of ML model in terms of RMSE and training time
to monitor the effect of deep networks.

Max depth Training accuracy ~ Holdout accuracy ~ Time (sec)
(kWh) (kWh)
2 5.850740 9.205257 28.711398
4 5.422266 9.738556 25.833542
6 4.759868 11.30912 24.382604
8 4.401291 17.37286 25.479490
10 4.153886 12.44175 26.977820
12 4.083622 12.50476 29.376672
14 4.077183 17.77995 32.170327
16 4.081471 17.79192 35.396624

a random forest regressor (refer to Table 2), it is noticed that
as each of the tree grows larger, after a max depth of 10, large
task transfer warning is shown by spark indicating that deep
models with large number of tree nodes are being transferred
across the tasks which results in more data transfer. Referring
to Table 2, it can be noted that by increasing the depth of the
model, the training accuracy is reducing and the time taken is
close to each other. However, after a max depth of 10, there
is a jump in the time and the time is gradually increasing.
This indicates that more amount of time is being utilized in
transferring data, hence such a scenario has to be avoided
during the execution or the spark parameters have to be tuned
further to accommodate large task binaries.

3) OVERFITTING

Most of the machine learning models perform accurately
post tuning of hyperparameters. However, excess tuning of
parameters tends to fit the training data so accurately that the
model is overfitted. Once overfit, the models do not perform
as expected on the new forecasting dataset. To avoid such a
case many measures are taken to avoid overfitting in the train-
ing data. Consideration of holdout data set which has never
been used in the training is one of the measures to prevent
overfitting. In the case of tree ML models, the depth of the

VOLUME 9, 2021

19

== holdout data RMSE (KWh)
=—¢==training data RMSE (KWh)

17
15
13

ARMSE (kWh)

11

1234567 8910111213141516171819202330
Tree size (nodes) / Tree depth

FIGURE 9. ARMSE of training and holdout dataset for spark decision tree.
The spot above 820 nodes result in overfitting of the datasets.

tree or the number of nodes while training can be regulated.
An experiment is performed by increasing the depth of the
tree and the num of nodes in the trained model is monitored
(refer to Fig. 9). The x-axis shows the number of nodes and
the y-axis the performance measure in terms of RMSE. It can
be noted that the red line in Fig. 9, which indicates the training
RMSE, is decreasing with an increase in the number of nodes
by fitting the dataset onto the trees as deeper as possible.
Whereas, the blue line which denotes the holdout RMSE does
not show such a trend. After a point, the models’ performance
starts deteriorating. This point is called the sweet spot where
the models tend to start overfitting. Hence the depth of the
model has to be restricted below this point which indicates a
value of 820 nodes for a tree depth of 9 in Fig. 9. By taking
such a measure on the average RMSE of all the transformers
data, a max depth of 8 is chosen to perform training on the
spark ML models.

4) VALIDATION OF ACCURACY

This section discusses the results after considering the vali-
dation of accuracy, computation time, and overfitting in the
previous sections. For each of the spark ml models, the per-
formance of the training dataset and holdout dataset are
compared. Table 3 reports the ARMSE computed for all the
1000 datasets. Holdout ARMSE indicates the quality of load
forecasting. Thus, a lower value of ARMSE indicates a better
load forecasting model. The table indicates that the values of
holdout ARMSE are the lowest for the spark random forest
regression model. Referring back to Fig. 7 (b), the execution
time for the random forest is not the lowest but is comparable
to the spark DT model. The training RMSE is lowest for
Gradient-Boosted Trees, but the lowest holdout RMSE is
noted for the spark random forest algorithm. Even though the
random forest is an ensemble model, the execution time is
not as large compared to other models. This is because the
way spark performs its execution is that it utilizes its parallel
computing capability to execute each of the decision trees
individually and gives back the result. The actual power of

57381

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

TABLE 3. Final ARMSE, for training and holdout dataset after choosing tuned parameters.

Algorithm Training ARMSE (kWh) Holdout ARMSE (kWh)
Spark Decision Tree Regression Model 9.171939547 10.80716307
Spark Random Forest Regression Model 8.01070855 10.60056138
Spark Gradient-Boosted Trees 4.206574519 11.88559708
120
—— RMSEtrain - - - - RMSEholdout .
100 =)

RMSE (KWh)
(o)) 0]
o o

N
o

0 78 0@ 91 13 3 WM 1 52

transformer num
——RMSFtrain —— RMSFholdout

|
NDOOANDOT-"ITNONOAAANLDO-INOMOD
VDOANULNIOANTODTMOUOHOOALINOIOOAN I O 0
OO O OO ONMNMNNMNOGDOGWODOWOWDMODO O D

transformer number

FIGURE 10. ARMSE comparison of training and holdout dataset for all the DT’s.

spark in terms of execution can be observed here. Thus, it
can be concluded that the spark RF performs better than the
other spark ml models under comparison.

Fig. 10 shows the plot of RMSE of all the distribution
transformers under consideration. The red line indicates the
RMSE(kWh) obtained for all the distribution transformers.
The blue line indicated as the holdout RMSE (RMSE of the
data never used for training) is the forecasting error in kWh.
To measure the quality of the trained models the holdout
RMSE is expected to be as close as possible to the train-
ing RMSE. From Fig. 10, it can be observed that the blue
line follows the red line for almost all the transformers. For
randomly chosen DTs, indexed as 0, 78, 208, 91, 13, 39,
104, 1, 52 present the training RMSE and holdout RMSE
zoomed in the top right of the figure. The plots indicate that
the forecasting accuracy follows the training accuracy closely
attributing to the fact that the built ML model is quite robust
in terms of performance while increasing the speedup when
a large number of jobs is performed.

VI. CONCLUSION

In this paper, a smart scheduling algorithm to perform load
forecasting on multiple DTs was proposed. The proposed
approach was implemented on Apache spark to not only
deal with the challenges associated with computation time
while handling the big data but also to submit jobs using an
optimized methodology in a parallel manner. The processed
big data was partitioned into various chunks and cached to
improve the performance in terms of storage and in-memory

57382

processing. One distinctive characteristic of the proposed
methodology is to be able to submit a maximum number of
jobs and to process all the jobs in parallel. Several experi-
ments were performed to optimize the scheduling strategy
in terms of ML model error and execution time. A large
number of DTs training procedures were performed with
reduced run-times which allow handling big data that is too
large to be stored. The training time for a group of 93 clus-
ters data with a data size of ~24 million records was per-
formed in ~50 sec and forecasting of 1000 transformers with
~2.4 million records took ~57 sec. The total time includ-
ing, grouping, training, and forecasting was performed in
~450 sec. The other important achievement of this paper is
2 times faster execution time with the use of thread pool and
fair scheduler. This is a good optimization strategy for load
forecasting using multi-sensor big datasets. Empirical eval-
uations significantly outperformed the previously proposed
iterative algorithms. Moreover, the proposed ML models
achieved higher accuracies. The merits shown in the exper-
iment indicated that there is great potential for the proposed
method to be used in big data load forecasting of multi AMI
environments.

As this work chooses the optimized cluster value of 93,
the next plan is to conduct experiments to investigate the
optimal cluster value utilizing the proposed approach while
using the spark platform. Also, scaling the dataset to more
than 1000 DTs requires more than a minimum of 100 jobs
to be submitted. Scaling the size of the spark cluster to an
optimal value is a subject for future work.

VOLUME 9, 2021

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

IEEE Access

ACKNOWLEDGMENT

The HPC (and/or scientific visualization) resources and ser-
vices used in this work were provided by the Research
Computing group in Texas A&M University at Qatar.
Research Computing is funded by the Qatar Founda-
tion for Education, Science and Community Development
(http://www.qf.org.qa).

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

P. Wang, B. Liu, and T. Hong, “Electric load forecasting with recency
effect: A big data approach,” Int. J. Forecasting, vol. 32, no. 3,
pp. 585-597, Jul. 2016, doi: 10.1016/j.ijforecast.2015.09.006.

A. L’Heureux, K. Grolinger, H. F. Elyamany, and
M. A. M. Capretz, “Machine learning with big data: Challenges and
approaches,” IEEE Access, vol. 5, no. 1, pp. 77767797, 2017, doi: 10.
1109/ACCESS.2017.2696365.

I. W. Tsang, J. T. Kwok, and P-M. Cheung, “Core vector machines:
Fast SVM training on very large data sets,” J. Mach. Learn. Res., vol. 6,
pp. 363-392, Apr. 2005.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Work. Hot
Top. Cloud Comput. (HotCloud), vol. 10, 2010, p. 95.

Y. Tang, Z. Xu, and Y. Zhuang, “Bayesian network structure learning from
big data: A reservoir sampling based ensemble method,” in Proc. Int. Conf.
Database Syst. Adv. Appl., vol. 9645. Dallas, TX, USA, 2016, pp. 209-222,
doi: 10.1007/978-3-319-32055-7_18.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008,
doi: 10.1145/1327452.1327492.

P. Mika, “Flink: Semantic Web technology for the extraction and analysis
of social networks,” J. Web Semantics, vol. 3, nos. 2-3, pp. 211-223,
Oct. 2005, doi: 10.1016/j.websem.2005.05.006.

A. Baldominos, E. Albacete, Y. Saez, and P. Isasi, “A scalable machine
learning online service for big data real-time analysis,” in Proc. IEEE
Symp. Comput. Intell. Big Data (CIBD), Orlando, FL, USA, Dec. 2014,
pp. 1-8, doi: 10.1109/CIBD.2014.7011537.

Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i*> MapReduce:
Incremental mapreduce for mining evolving big data,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 7, pp. 1906-1919, Jul. 2015, doi:
10.1109/TKDE.2015.2397438.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, ‘“Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc. 9th
USENIX Symp. Networked Syst. Design Implement., San Jose, CA, USA,
2012, pp. 15-28.

N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based scalable
clustering algorithms for handling big data using apache spark,”
IEEE Trans. Big Data, vol. 2, no. 4, pp.339-352, Dec. 2016, doi:
10.1109/tbdata.2016.2622288.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet another resource negotiator,” in Proc. 4th Annu.
Symp. Cloud Comput., Santa Clara, CA, USA, Oct. 2013, pp. 1-16,
doi: 10.1145/2523616.2523633.

B. Hindman, A Konwinski, M Zaharia, A Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. NSDI, 2011, vol. 11, no. 2011,
pp. 295-308.

T. White, Hadoop: The Definitive Guide, 3rd ed. Sebastopol, CA, USA:
O’Reilly Media, 2012.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. S. Wyckoff, and R. Murthy, “Hive: A warehousing solution over a map-
reduce framework,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1626-1629,
2009.

L. George, HBase: The Definitive Guide: Random Access to Your Planet-
Sized Data, 1st ed. Sebastopol, CA, USA: O’Reilly Media, 2011.

Z.Hu, D. Li, and D. Guo, “‘Balance resource allocation for spark jobs based
on prediction of the optimal resource,” Tsinghua Sci. Technol., vol. 25,
no. 4, pp. 487-497, Aug. 2020, doi: 10.26599/TST.2019.9010054.

R. E. Edwards, J. New, and L. E. Parker, “Predicting future hourly residen-
tial electrical consumption: A machine learning case study,” Energy Build-
ings, vol. 49, pp. 591-603, Jun. 2012, doi: 10.1016/j.enbuild.2012.03.010.

VOLUME 9, 2021

(19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

S.S.Reddy and J. A. Momoh, ““Short term electrical load forecasting using
back propagation neural networks,” in Proc. North Amer. Power Symp.
(NAPS), Sep. 2014, pp. 1-6, doi: 10.1109/NAPS.2014.6965453.

S. S. Reddy, C.-M. Jung, and K. J. Seog, ““Day-ahead electricity price fore-
casting using back propagation neural networks and weighted least square
technique,” Frontiers Energy, vol. 10, no. 1, pp. 105113, Mar. 2016, doi:
10.1007/s11708-016-0393-y.

H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting—
A novel pooling deep RNN,” IEEE Trans. Smart Grid, vol. 9, no. 5,
pp. 5271-5280, Sep. 2018, doi: 10.1109/TSG.2017.2686012.

H. Aprillia, H.-T. Yang, and C.-M. Huang, “Statistical load forecast-
ing using optimal quantile regression random forest and risk assessment
index,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1467-1480, Mar. 2021,
doi: 10.1109/tsg.2020.3034194.

S. S. Reddy, “Bat algorithm-based back propagation approach for short-
term load forecasting considering weather factors,” Electr. Eng., vol. 100,
no. 3, pp. 1297-1303, Sep. 2018, doi: 10.1007/s00202-017-0587-2.

W. Jiang, H. Tang, L. Wu, H. Huang, and H. Qi, ‘““Parallel processing
of probabilistic models-based power supply unit mid-term load forecast-
ing with apache spark,” IEEE Access, vol. 7, pp. 7588-7598, 2019, doi:
10.1109/ACCESS.2018.2890339.

Classification and Regression—Spark 3.0.1 Documentation. Accessed:
Nov. 26, 2020. [Online]. Available: https://spark.apache.org/docs/latest/
ml-classification-regression.html#decision-trees

X. Meng, J. Bradley, B. Yavuz, and E. Sparks, “MLIlib: Machine learning
in Apache Spark,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241,
2016.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark SQL: Rela-
tional data processing in spark,” in Proc. ACM SIGMOD Int. Conf. Man-
age. Data, May 2015, pp. 1383-1394, doi: 10.1145/2723372.2742797.
TAMUQ Research Computing Policies—Research Computing @
TAMUQ. Accessed: Jan. 11, 2021. [Online]. Available: https://rc-
docs.qatar.tamu.edu/index.php/Main_Page

STAR Project—Iberdrola. Accessed: Jan. 11, 2021. [Online]. Available:
https://www.iberdrola.com/about-us/lines-business/flagship-projects/star-
project

The Apache Software Foundation. Spark Configuration. Accessed:
Feb. 11, 2021. [Online]. Available: http://spark.apache.org/docs/1.2.1/ec2-
scripts.html

D. Syed, H. Abu-Rub, A. Ghrayeb, S. S. Refaat, M. Houchati,
O. Bouhali, and S. Banales, “Deep learning-based short-term load
forecasting approach in smart grid with clustering and consumption
pattern recognition,” [EEE Access, early access, Apr. 8, 2021, doi:
10.1109/ACCESS.2021.3071654.

D. Syed, S. S. Refaat, and H. Abu-Rub, ‘‘Performance evalua-
tion of distributed machine learning for load forecasting in smart
grids,” in Proc. Cybern. Informat. (K&I), Jan. 2020, pp. 1-6, doi:
10.1109/K148306.2020.9039797.

Y. Xu, H. Liu, and Z. Long, “A distributed computing frame-
work for wind speed big data forecasting on apache spark,” Sustain.
Energy Technol. Assessments, vol. 37, Feb. 2020, Art. no. 100582, doi:
10.1016/j.seta.2019.100582.

A. Zainab, D. Syed, A. Ghrayeb, H. Abu-Rub, S. S. Refaat, M. Houchati,
O. Bouhali, and S. Banales Lopez, “A multiprocessing-based sensitivity
analysis of machine learning algorithms for load forecasting of electric
power distribution system,” IEEE Access, vol. 9, pp. 31684-31694, 2021,
doi: 10.1109/ACCESS.2021.3059730.

AMEEMA ZAINAB (Member, IEEE) received the
bachelor’s degree in electronics and communica-
tion engineering from Osmania University, Hyder-
abad, India, in 2013, and the M.S. degree in data
science and engineering from Hamad Bin Khalifa
University (HBKU), Qatar. She is currently pursu-
ing the Ph.D. degree in electrical engineering with
Texas A&M University (TAMU), College Station,
TX, USA. She has three years of industry expe-
rience, working as a Data Analytics Professional,

supporting audit at Deloitte Touche LLP, Hyderabad. She is also a base
SAS Certified Programmer. Her research interests include data science, big
data machine learning, power forecasting, and big data management in the
smart grids.

57383

http://dx.doi.org/10.1016/j.ijforecast.2015.09.006
http://dx.doi.org/10.1109/ACCESS.2017.2696365
http://dx.doi.org/10.1109/ACCESS.2017.2696365
http://dx.doi.org/10.1007/978-3-319-32055-7_18
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.websem.2005.05.006
http://dx.doi.org/10.1109/CIBD.2014.7011537
http://dx.doi.org/10.1109/TKDE.2015.2397438
http://dx.doi.org/10.1109/tbdata.2016.2622288
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.26599/TST.2019.9010054
http://dx.doi.org/10.1016/j.enbuild.2012.03.010
http://dx.doi.org/10.1109/NAPS.2014.6965453
http://dx.doi.org/10.1007/s11708-016-0393-y
http://dx.doi.org/10.1109/TSG.2017.2686012
http://dx.doi.org/10.1109/tsg.2020.3034194
http://dx.doi.org/10.1007/s00202-017-0587-2
http://dx.doi.org/10.1109/ACCESS.2018.2890339
http://dx.doi.org/10.1145/2723372.2742797
http://dx.doi.org/10.1109/ACCESS.2021.3071654
http://dx.doi.org/10.1109/KI48306.2020.9039797
http://dx.doi.org/10.1016/j.seta.2019.100582
http://dx.doi.org/10.1109/ACCESS.2021.3059730

IEEE Access

A. Zainab et al.: Distributed Tree-Based ML for Short-Term Load Forecasting With Apache Spark

ALI GHRAYEB (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from The Uni-
versity of Arizona, Tucson, AZ, USA, in 2000.
He was a Professor with the Department of Electri-
cal and Computer Engineering, Concordia Univer-
sity, Montreal, Canada. He is currently a Professor
with the Department of Electrical and Computer
Engineering, Texas A&M University at Qatar.
His research interests include wireless and mobile

: communications, physical layer security, massive
MIMO, and v151ble light communications. He served as an instructor or
a co-instructor in technical tutorials at several major IEEE conferences.
He served as the Executive Chair for the 2016 IEEE WCNC Conference.
He has served on the editorial board of several IEEE and non-IEEE journals.

HAITHAM ABU-RUB (Fellow, IEEE) received
two Ph.D. degrees. He has been with many uni-
versities in many countries, including Poland,
Palestine, USA, Germany, and Qatar. Since 2006,
he has been with Texas A&M University at Qatar
(TAMU-Q). He is currently a Full Professor of
electrical engineering (EE). He is also the Manag-
ing Director of the Smart Grid Center-Extension in
Qatar (SGC-Q). He has supervised many research
projects on the smart grid and renewable energy
systems. He has pubhshed more than 400 journal and conference papers, five
books, and five book chapters. His principal research interests include smart
grid, power electronic converters, renewable energy, and electric drives.
He was a recipient of the American Fulbright Scholarship, the German
Alexander von Humboldt Fellowship, and many national and international
awards and recognitions.

57384

SHADY S. REFAAT (Senior Member, IEEE)
received the B.A.Sc., M.A.Sc., and Ph.D. degrees
in EE from Cairo University, Giza, Egypt, in 2002,
2007, and 2013, respectively. For more than
12 years, he has worked in the industry as an Engi-
neering Team Leader, a Senior EE, and an Electri-
cal Design Engineer. He is currently an Associate
Research Scientist with the Department of ECEN,
TAMU-Q. He has published more than 100 journal
and conference papers. His main research interests
include power systems, electrical machines, smart grid, big data, devel-
opment of fault-tolerant systems, reliability of power grids and electric
machinery, fault detection, condition monitoring, and energy management
systems. He is also a member of IET and the SGC-Q.

OTHMANE BOUHALI (Member, IEEE) is a
currently a Research Professor of physics with
TAMU-Q. He is also the Founder and the Director
of the TAMU-Q Advanced Scientific Computing
Center. He has been involved in the Large Hadron
Collider research program for more than 25 years
and has supervised various research projects. His
research interests include large scale modeling,
high-performance computing, and detector tech-
nologies for radiation and medical physics.

VOLUME 9, 2021

