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ABSTRACT Path planning is a global optimization problem aims to program the optimal flight path for
Unmanned Aerial Vehicle (UAV) that has short length and suffers from low threat. In this paper, we present
a Mixed-Strategy based Gravitational Search Algorithm (MSGSA) for the path planning. In MSGSA,
an adaptive adjustment strategy for the gravitational constant attenuation factor alpha («) is presented
firstly, in which the value of « is adjusted based on the evolutionary state of the particles. This helps to
adaptively balance the exploration and exploitation of the algorithm. In addition, to further alleviate the
premature convergence problem, a Cauchy mutation strategy is developed for MSGSA. In this strategy, only
when the global best particle cannot be further improved for several times the mutation is executed. In the
MSGSA based path planning procedure, we construct an objective function using the flight length cost,
threat area cost, and turning angle constraint to decrease the flight risk and obtain the smoother path. For
performance evaluation, the MSGSA is applied to two typical simulated flight missions with complex flight
environments, including user-defined forbidden flying areas, Radar, missile, artillery and anti-aircraft gun.
The obtained flight paths are compared with that of the standard Gravitational Search Algorithm (GSA) and
two improved variants of GSA, i.e. gbest-guided GSA (GGSA), and hybrid Particle Swarm Optimization
and GSA (PSOGSA). The experimental results demonstrate the superiority of the MSGSA based method in
terms of the solution quality, robustness, as well as the constraint-handling ability.

INDEX TERMS Path planning, unmanned aerial vehicle (UAV), gravitational search algorithm (GSA),
adaptive alpha-adjusting, Cauchy mutation.

I. INTRODUCTION quickly [4]. Thus a more rational path of UAV should with

Unmanned aerial vehicle (UAV) is an aircraft that can be
remotely controlled or can fly autonomously based on a
preprogrammed flight path without pilots onboard [1]. The
aforementioned properties of UAV have made it being suc-
cessfully used in a wide range of real-world applications,
especially in the military side under extremely hazardous
environmental conditions [2], [3]. Generally, the prepro-
grammed flight path in these applications requires to be as
safe and short as possible to allow the UAV flies from a
predesigned start location to a target position safely and
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better safety and shorter flight length. Obviously, how to pro-
gram the optimal flight path, i.e., the design of path planning
algorithm, is of great importance to UAV.

The path planning can be treated as a global optimiza-
tion problem with various constraints from the certain
mission, environment and UAV physical property [5]. For
effective path planning, a number of environmental con-
straints (such as flight length and threat constraints) and
UAV’s self-constraints (such as flight altitude and turning
angle constraints) should be considered. To solve this global
optimization problem, different approaches based on the
graph-theory [6], the mathematical programming [7], and
the bi-level programming Liu et al. [8] have been proposed.
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The Voronoi diagram search method [6] is a typical
graph-based method. In this method, the battle area is par-
titioned into a number of convex polygons and in every
polygon only one threat is contained. The optimal path is
decided using the Eppstein’s k-best algorithm in the pres-
ence of simple disjoint polygonal obstacles. The Eppstein’s
k-best algorithm is also utilized in both the mathematical
programming methods and the bi-level programming meth-
ods [5]. However, the Eppstein’s k-best based Voronoi dia-
gram search method has difficulty to consider the motion
constraints of UAVs [9]. To realize real-time route panning
for UAVs, the sparse A* search algorithm [10] and the D* Lite
algorithm [11] were successively put forward. Unfortunately,
the former can only work under the known environment and
the latter may become time consuming when the problem
space becomes larger and more complex.

Recently, the population-based meta-heuristic algorithms
that can handle constrained optimization problems have
become the efficient and effective techniques for path plan-
ning [2], [12]-[20]. By designing specific objective func-
tions or constraint functions, both the self-constraints of UAV
and environmental constraints can be taken into account
during the planning process [21]-[23]. In [12], the genetic
algorithm (GA) is combined with the Voronoi diagram to
generate the optimal path for autonomous UAVs. In [23],
the evolutionary algorithm is used to find the optimal path
for the multiple UAVs based on many real-world simulations.
Roberge et al. [2] compared the performance of parallel
GA and particle swarm optimization (PSO) for real-time
UAV path planning. In addition, the artificial bee colony
(ABC) [13], ant colony optimization (ACO) [14], water drops
optimization (WDO) [15], and their variations have also been
utilized to search the optimal flight path for single or multiple
UAVs. More critical situation such as scenarios with disas-
ter and dynamic threats usually desires improved intelligent
algorithms [18]-[20]. More recently, the development of deep
learning also spawned the deep reinforcement learning based
path planning [24].

Gravitational search algorithm (GSA) is one of the most
popular meta-heuristic algorithms inspired by the law of
gravity and mass interactions [25]. In GSA, particles with
better fitness values are assigned larger masses. Following
the law of gravity, those heavier masses can exert larger
gravitational force to the other particles. Therefore, those par-
ticles with smaller masses, i.e. the particle with worse fitness
values, can move towards those better ones. In the past ten
years, the GSA has shown its simplicity in concept, fast speed
in convergence, and high precision in optimization [26]-[30].
Moreover, GSA and its variants have been applied to many
real-world problems, including feature selection [31], image
segmentation [32], and design of pow flow [33]. Further,
Li and Duan [34] has introduced GSA to the path planning
area and verified the potential of GSA for solving the path
planning problem.

However, the inherent characteristics of GSA limited
its application in path planning [35]-[38]. Especially GSA
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overly emphasize the fast convergence lead to the algorithm
cannot widely explore the search space in the early stage
and failed to sufficiently exploit the promising area. That is,
GSA cannot balance the exploitation and exploration well
when facing to the complicated problem. Additionally, this
kind of imbalance easily lead to premature convergence.
To overcome these issues, numerous strategies have been
proposed. These strategies can be classified into three aspects.
Firstly, hybridize GSA with other meta-heuristics algorithms.
Typical methods including differential evolution (DE) [39],
PSO [37], [40]-[42], GA [27], [43], ABC [44] and Sim-
ulated Annealing (SA) [45]. Secondly, modify GSA using
some other learning strategies, such as neighborhood learning
strategy [45], [46], black hole attraction [47], disruption [48],
and quantum based methods [49], [50]. Thirdly, adjust the
parameter in GSA. Actually, the only one parameter in GSA
is the attenuation factor of gravitational constant. According
to the law of gravity, gravitational force F = G-Mm/R?, thus
the gravitational constant G’ can directly affect the value of
gravitational force exerted on a particle. Larger gravitational
force produces the bigger acceleration and thereby endow a
particle with fast convergence speed. Obviously, the gravi-
tational constant play an important role for promoting the
balance between exploration and exploitation [29], [51], [52].

Although the aforementioned strategies can promote the
performance of GSA, seldom strategy can improve it from
different aspects. For example, the hybrid of GA and GSA,
especially the usage of GA’s mutation operator can diverse the
population and thereby help GSA escape from local optima,
while the modification of the neighborhood learning can
adjust the global and local learning ability of GSA [27], [43].
However, these kinds of methods may increase the com-
putational complexity of the GSA. The design of param-
eter G' is useful to balance exploration and exploitation
but it is helpless when the algorithm is trapped in stagna-
tion [29], [51]-[54].

To tackle the aforementioned issues of GSA and promote
its application in path planning of UAV, a mix-strategy based
GSA (MSGSA) is proposed in this paper. The first strategy is
focusing on the adaptive adjustment of G'. As the attenuation
factor alpha («) directly affects the changing of G', we adjust
the value of o based on the evolutionary state of the global
best particle (gbest). This strategy is utilized to keep a balance
between the exploration and exploitation in the searching pro-
cess. Another strategy is the Cauchy mutation strategy which
is introduced to revise the ghest when it cannot improve the
self-solution and thus alleviate the premature convergence
problem. In the path planning process, the MSGSA is used
to search for the optimal flight path based on an objective
function which considers the length cost, threat cost, and
turning angle constraints simultaneously.

The remainder of this paper is organized as follows.
Section II describes the main related works and details
of the proposed method, including the route representa-
tion and the design of objective function, followed by
the detailed introduction of the proposed MSGSA and its
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implementation in path planning. In Section III, the param-
eter setting and experimental results are described. Then
this study is discussed in Section IV. Finally, the paper is
concluded in Section V.

Il. MATERIALS AND METHODS

A. PATH REPRESENTATION OF UAV

The path planning of UAV aims to program a flight path
for a start location to a target position T = (xr, yr, zT)T,
which can be considered as a global optimization problem.
The flight path from S to T can be defined as a curve with
D turning point, i.e. {S, Py, P2, ..., Pp, T}. The final route
can be obtained by connecting all the adjacent D + 2 points
into a broken line and smoothing it at last. Obviously, the path
planning requires the determination of D points with 3 dimen-
sional coordinate. With the increase of point number, it will
be complicate and time consuming.

Coordinate system transformation can help to simplify
the computation as well as accelerate the searching speed.
In specific, we first transform the coordinate system from
O0-XYZ to O' =X’ Y’ Z', where the S is defined as the
origin of coordinates (O’) and the line from S to T is
defined as the X’-axis. Following the law of coordinate
system rotation, the geometrical relationship of the same
waypoint ((x, y) and (x/, y')) in the two coordinate systems
is [5]:

/

X cosf sin@ O X —Xs
y |=|—sin@ cos® 0 y—ys (D
Zs 0 0 1 ey
where
9 = arcsin 223 ()

where (x, y) and (x’, y') is the corresponding X and Y coor-
dinates of one point in the original and rotated coordinate
systems, respectively. Due to the Z coordinate is kept in the
transform, the rotated angle 6 is the angle between the axes
OX and O’ X’ as shown in Fig. 1.

As illustrated in Fig. 1, the D turning points are the
segment points that divide the line ST in the O’ X’ axis
into D equal segments, the abscissas of the D points in the
rotated coordinate system are P'X = (x|, x},...,x,) =
(ST /D, 2*ST/D, ..., ST). Thus, finding the ordinates PY’ =
(), ¥, ¥pp) and flight altitude PZ' = (2}, 25, z,) of the D
points and connecting the D points from the start to the target
points will form a flight path.

Besides, the flight environment, mainly refer to the threat
areas (includes missiles, radars, and artillery etc. as illustrated
by blue circles in Fig. 1), is assumed as priori known followed
the suggested in [4]. As shown Fig. 1, the threat radius of each
threat area is limited which means each threat point can only
effect a limited range. In other words, there is no threat out
of the sphere. An effective flight path should be as short as
possible without encountering any threat.
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FIGURE 1. Representation of the path planning problem.

B. DESIGN OF THE OBJECTIVE FUNCTION

The objective function is the core of an optimization problem.
In the path planning problem, it is used to evaluate the quality
of the candidate flight path. Generally, it is determined as
the weight sum of the cost of the flight length and the cost
of threat area constraints. The objective function is usually
formulated as Eq. (3) below [34] and the purpose of path
planning is to minimize the objective function:

min Jyay = wi - Jiength + w2 + Jthrear 3

where Jyay is the overall cost of the flight path, Jeg is the
length of the path and Jyq; 1s exerted by all the threat areas
in the flying space, wi and wy are the weighting coefficients
for Jiengm and Jiprear, respectively. Usually, wy + wy = 1
is required. Obviously, the adjustment coefficients give the
designer certain flexibility to dispose relations between the
threat exposition degree and the fuel consumption. When w
is more approaching 1, a shorter path is needed to be planned,
and less attention is paid to exposure to threats. Otherwise,
when wy is more approaching 1, it requires avoiding the
threat as far as possible on the cost of more fuel consump-
tion [34]. Following the previous experiments in [34], both
the coefficients are set to 0.5 in this paper. Fig. 2(a) shows
the optimal flight path produced by MSGSA with the widely
used objective function as given in Eq. (3).

Due to the objective function only considering the length
cost and threat cost while ignoring the turning angle con-
straint, the generated flight path in Fig. 2(a) shows poor
performance with very large turning angles. In realistic appli-
cations, larger turning angle will increase the risk of the
flight mission. To decrease the flight risk and improve the
smoothness of the path, in this paper, we take the turn-
ing angle constraint into consideration. Specifically, once
the turning angle at the point P; is larger than 60°, its
position is reset by median interpolation method. Thereby,
the path planning objective function should be written
as:

min Jyay = wi - Jiength + w2 * Jthrear

st A,-g%(i:l,z,...,D) )

where A; is the turning angle on i-th turning point, Ag is the
turning angle between the start point S and P;.
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FIGURE 2. The optimal flight path produced by MSGSA using the
objective function Eq. (3); (b) Optimal flight path based on Eq. (4).

FIGURE 3. Calculation of turning angle A;. S is the start point. A, is the
turning angle between the start point S and P,. P; (i € (1,2,...,D)) is
the i-th turning point, §;_; and g; respectively respects the flight vector
from P;_, to P; and that from P; to P; ;.

As shown in Fig. 3, the turning angle is calculated by the
flight vector. For the three turning points P;_1, P;, and P41,
the flight vector from P;_; to P; is represented by g;—1 and
that from P; to P;1; is denoted by g;. A; represents the angle
between vector ;| and vector g;, namely the turning angle
of UAV at the i-th turning point.

A= acos—f]i_1 : qi 5)
lgi—1ll - llg:ll
where

- Pi—Pi—1) - (Piy1—P)
gi-1= 75— 4i= 15 75 (6)

I1Pi — Pi-1ll I1Pit1 — Pill

Thus, the total turning angle can be summarized by:
D

Jangle =Ap + ZAi @)

i=1
Fig. 2(b) displays the optimal flight path obtained by the
MSGSA with the modified objective function Eq. (4). Obvi-
ously, the objective function design plays a key role for it
is constructed by considering both the internal feature of
UAV and the external features of the flying space, where
optimization of the objective function produces the optimal
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horizontal

FIGURE 4. lllustration for the calculation of Jje,¢s, in the 3-dimensinal
space. S and T is the start and target points, respectively. Zs and Z; are
the corresponding altitude. P; (i € {1,2, ..., D}) is the i-th turning point,
Li (i €{1,2,...,D+1})is the i-th fight path. S; (i < {1,2,...,D+1}) is
trapezoid area enclosed by points P; and P;_; and their projection points
on the horizontal plane.

flight path. The detailed formulas of the length cost and threat
cost are given in the following subsections.

1) LENGTH COST

To decrease the energy consumption, such as fuel cost,
a higher quality flight path should be of smaller length
cost. As shown in Fig. 1, for the schematic flight path in a
2-dimensional space, the length cost Jjepgyp, is the sum of D+1
path segments, which is defined by:

D+1
Jlength = Z Li (8)
i=1
where
Li= JGd_y = x)? + 0y — 3} ©)

where (x/, y}) and (x;_,, y._,) are the i-th and i — 1-th
points of the flight path in the coordinate system O' —X’
Y’. To decrease the energy consumption, such as fuel cost,
a higher quality flight path should be of smaller length cost.

For a 3-dimensional space, the Jepg, is also related to the
flight altitude as shown in Fig. 4. Here the Jiepg, is defined
by the area of the vertical section composed of flight path and
plane as follows.

D+1
Jiength = Z S; where §; = (z; +z;—1) x L;/2 (10)

i=1
where z; and z;_; are the flight altitude of UAV at the two
points. L; is the length cost of the i-th path segment calculated

by Eq. (9).

2) THREAT COST

The threat cost is used to represent the threat that exerted to
the flight path. The main risk sources include Radar, missile,
artillery, anti-aircraft gun, user-defined forbidden flying areas
(i.e., the NFZs [4]) and so on. Except for the NFZs, the threat
area of the other risk sources is looked as sphere as shown
in Fig. 1. The function of the threat cost is often designed
based on the distance of each path segment L; (shown in
Fig. 1) to the center of the threat areas and their corresponding
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Pi-l threat k

FIGURE 5. Calculation of threat cost of L;.

threat levels [4]. In this paper, the threat cost of Li is modeled
by Eq. (11) follows [34]:

LY

LS
k=1

Jthreutz 1 1 I 4 1 ) ifd R

X ,  ifdmin <Rk
dork  dook do.ok i

0, otherwise

Ny

where N; is the number of threat areas, k-th is the threat level
of the k-th threat area, d is the distance from the center of
the k-th threat area to the path segment L; and d,;, is the
minimum distance between L; and the center of the k-th threat
area. Detailed description of djx(j = 0.1,0.2,...,0.9) is
shown in Fig. 5.

Besides, due to UAV cannot appear in the NFZs, the threat
cost inside the NFZs is defined as infinity while that outside
the NFZs is set to zero, i.e.:

A, ifLiNNFZ # 0
Jpz =1 12
threat 0, otherwise (12)

where A respects a very large number.

C. THE PROPOSED MSGSA

1) REVIEW OF THE STANDARD GSA

GSA search for the optimal solutions follows the gravitational
forces exerted by its neighbors according to the law of grav-
ity [26]. Specifically, each particle X; = [xj1, X2, ..., Xip]
respects one prepared solution in the D-dimensional search
space with a velocity V; = [v;,vi2,...,vip]. Due to the
gravitational force between two particles is directly propor-
tional to their masses and inversely proportional to their
distance, all the particles move towards those particles that
have heavier masses [26]. The mass of each particle Mif
at generation t is calculated from its fitness value fir!.
That is,

! t
fit; — worst

Nept = —— 13
fi} best! — worst! (13)
Neot
fit}
Mi’ = v (14)
Zj:l Nfitj’
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For a minimization problem, worst!' and best’ are defined
by Egs. (15)-(16) as follows:

worst' = max fit! 15
jell, .., NP}f J (13

best' = min fit! 16
e jell, ..., NP}'ﬁ J (16)

where NP is the size of the particles in GSA.

The force acting on the particle i from the particle j at
generation ¢ is calculated by:

Fl . = Gtﬂ(x.f —x1) (17)

id jd jo te jd id

where G’ is the gravitational constant; M it and M! are the
gravitational mass of the i-th and j-th particles, respectively;
x}, and x}d are their corresponding position in the d-th dimen-
sion; jo is the Euclidian distance between the two particles in
generation ¢; ¢ is a small but positive constant which always
is set to e~ ©.

Note that the gravitational constant G’ in GSA is not keep
unchanged in the whole convergence process. It is initialized
as a Go (Go = 20 in standard GSA). With the convergence of
the algorithm, to decrease the convergence speed and perform
refine exploitation of the search space, G' is decreased as
defined in Eq. (18).

G' = G® x exp(—a x L) (18)
Tmax
where « is the attenuation factor of gravitational constant,
Tmax 1s the termination parameter, i.e. the maximum number
of iterations. In the standard GSA, « is set to 20.
According to the Newton’s Second Law of Motion,
the acceleration of particles (a,) can be obtained by:

F!
i 19
=5 (19)
Obviously, the gravitational constant G* can control the
effects of the gravitational force as it is the coefficient of all
gravitational forces exerted on each particle. In other words,
G’ defectively affect the acceleration of particles and thereby
controls their movement steps and convergence speed in each
iteration. Thus, designing of G’ and adjusting of « is an
important branch of GSA promote variants.
Further, note that in the standard GSA, Eq. (17) always
written as Eq. (20) as follows to keep a better convergence
accuracy.

NP
t ot
Fia = ZjeKbest,j;éi rand;Fiy iq 20)

where Ky is the archive stores the K superior particles
(with bigger masses) after fitness sorting in each iteration.
The initial value of Kp, is the same as the population size,
i.e. NP. The size of Kpes is then linearly decreased to 1 with
time going. rand; is a uniform random variable in the interval
[0, 1].
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Accordingly, in generation ¢, the velocity and the position
of the particle i are updated by:

vgl = rand; X Viy + di, (21)
t+1 1t t+1
Via = XigtVig (22)

2) ADAPTIVE ALPHA-ADJUSTING STRATEGY

As seen in Egs. (18)-(22), a larger G' makes particles move
with bigger steps towards the center of Kp,; and the algorithm
focuses on global exploration, while a smaller G' makes
particles move with smaller steps and the algorithm mainly
concenters on exploitation of the current search area. Obvi-
ously, the G plays a key role in adjusting the balance between
exploration and exploitation of GSA. Moreover, due to the
value of G' are affected by the attenuation factor alpha (o)
as introduced in Eq. (18), the parameter « plays an important
role controlling the searching ability of GSA.

In the standard GSA, the parameter is set to a constant
in the whole evolutionary process which overlooks the evo-
lutionary state of the population. In this paper, we propose
an adaptive alpha-adjusting strategy to adjust the value of
o based on the evolutionary state of the global best particle
(gbest). Specifically, the convergence situation of the gbest
is used to define its evolutionary state. When the gbest is
improved in the current iteration, we assume the algorithm
is converging to better solution space. In this case, other
particles should move towards gbest with larger acceleration.
Thereby, the decreased speed of G' should be reduced and the
value of o should be increased. Otherwise, when the gbest
cannot be improved, the population is assumed to be trapped
into a local optimum and other particles should decrease their
own velocity towards the gbest. Accordingly, the value of
should be decreased and the decreased speed of G' thereby
can be raised. Therefore, the proposed strategy can be defined
as follows:

t . .. .
Omin+ (¥max — ®max)——, if gbest is imprived

t max

at—l _ (at—l

t .
—Olmin) , otherwise

max

(23)

where amin and omax respectively represents the minimum
and maximum value of the parameter «. In the proposed
MSGSA, is set to 15 and is set to 25 by trail and errors.
By using this strategy, particles can adjust their move speed
and tendency towards the gbest. Hence, this strategy can help
to balance the exploration and exploitation of GSA based on
the evolutionary state of the algorithm.

3) CAUCHY MUTATION STRATEGY

To further alleviate the premature convergence problem,
a mutation strategy based on the Cauchy distribution den-
sity function is brought into GSA. This strategy is used to
adjust the particles’ positions once the gbest particle cannot
be improved for [p (set to 5 in this paper) generation. The
Cauchy distribution density function is selected to replace
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Algorithm 1 Mixed-Strategy Based Gravitational Search
Algorithm (MSGSA)
1: Random initialize the position X; and velocity V;
of NP particle. Lpesr = 1.
/*Main Loop*/
for ¢ from 1 to Typax do
Evaluate the fitness value of each particle.
Compute the worst’ and best! respectively by
Eq. (15) and Eq. (16).

6: if best' < best'™!
7: Lpest = Lpest + 1
8: end if
9: Compute the mass of each particle M/ by
Eqgs. (13)-(14).
10: Update the Kpeg;.
11: Compute the parameter o’ by Eq. (23).
12: Update the G" by Eq. (13).
13: Compute the total force exerted on each particle
based on Eq. (20).
14: Update the acceleration of each particle by Eq. (19).
15: Compute the velocity of each particle by Eq. (21).
16: Update the position of each particle by Eq. (22).
17: if Lpest > 1
18: Update the position of each particle by Eq. (25).
19: end if
20: end for

21:  Output the particle with best fitness value.

the traditional Gaussian distribution mainly because of the
Gaussian distribution, the Cauchy distribution at the origin of
peak value is smaller. Moreover, the speed of both ends in
Cauchy distribution close to zero is slower. Thus, its distur-
bance ability is stronger than that of the Gaussian mutation.
The probability density function is defined as follows:

1 Y
Jl@ =1 y? + (2 — 20)?
where y > 0 is the proportional parameter, z is the position
of the peak, and C(zp, y») is the Cauchy distribution. In this
paper, zp is set to 0 and y is set to 1, the distribution range is
set to the boundary of the search space.
Based on the Cauchy distribution, we define a Cauchy
mutation strategy for the MSGSA as follows:

(24)

t+1 t+1

Xt =Xt xrt (o, 1) (25)

The particles in MSGSA are therefore more likely to jump
out of local optima, make full use of the current state of the
particles, avoid the blindness of random initialization, and
improve the search speed.

The pseudocode of the proposed MSGSA is presented in
Algorithm 1 below.

4) PATH PLANNING USING MSGSA
Generally, the path planning procedure contains four parts:
(1) internal feature descriptions, i.e. the description of the
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Initialize the position ¥,'=0

v

evaluate fitness by Eq. (3)

A

Connect S, P, and 7'to get the L_
optimal flight path

Inverse transformation of
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*

Get the updated position of PY',PZ’

*

Output the X,
with best fitness

Rl T I Cauchy mutation
L e T by Eq. (25)

Update mass, acceleration, velocity and
position of each particle
A
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A

v
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s~ Oayin) 7
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‘ Update ghest {__V{fg/b/est i111pr0\‘€a?j>>

FIGURE 6. The flowchart of MSGSA-based path planning.

self-constraints of UAV, including the fuel cost and the angle
constraints, (2) external feature descriptions, i.e. the threat
modeling of the flying space, (3) objective function design,
and (4) algorithm realization. Based on the methods intro-
duced in the Sections II.A, II1.B and I1.C, the flowchart of the
path planning using MSGSA is given in Fig. 6.

The detailed steps of preprogram of path planning using
MSGSA are summarized as follows:

Step 1: Establish the rotating coordinate system and map
the threat areas to the rotated coordinate system based on
Eq. (1).

Step 2: Divide the line ST into D equal segments, the
coor—dinate system is denoted as P = (PX’, PY’, PZ’) where
Px' = T/p, 25T [p, ... ST), PY' = (¥}, ¥}, . Yp) =
0,0,...,0),and PZ' = (21,22, ...,2D)

Step 3: Initialize the prepared solutions randomly by X; =
Vips Yigs - Yips Zit» Zi2s - Zip) (i = 1,2,...,NP) and the
corresponding velocity V; = (vi1, vi2, .., vip) = (0,0, ...0).
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Step 4: Calculate the fitness value Jysy of each flight path
using Eq. (3) and update the gbest.

Step 5: If gbest cannot improve its self-solution
for [, generation, perform the Cauchy mutation strat-
egy to escape from local optimum, otherwise go to
Step 6.

Step 6: Update the parameter « and G’ using the proposed
adaptive alpha-adjusting strategy.

Step 7: Update the velocity and position of each particle
and produce the NP flight paths.

Step 8: To determine whether the iteration is terminated, if
not, return to Step 4. Otherwise, output the X;

with the smallest objective function value.

Step 9: Transform the coordinates of the D points in the
outputted X; to the O — XYZ coordinate system from the
O' — X'Y’Z’ coordinate system. Connecting the D points
from the start to the target points will form the optimal flight
path.
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TABLE 1. Setting of the UAV scenarios.

Mission Threat center and NFZs Threat radius  Threat level
Start Point Anti-aircraft gun  [45,25] 13 2
[10,10] Radar 1 [17,40] 13 10
Case 1 Target point Missile [28,70] 10 1
[55,100] Artillery [38,26] 10 2
Radar 2 [58,80] 16 5
Start Point Anti-aircraft gun [250,150,20] 85 2
[50,50,50] Missile [300,500,50] 100 1
Case 2 Target point Radar [600,600,10] 50 5
[950,950,50]  Artillery  [850,900,0] 80 3
NFZs  {[450,100],[550,400]} 100 1
TABLE 2. Parameter settings. in Table 2. Moreover, to reduce random discrepancy, all
algorithms were independently run 30 times.
Algorithm Parameters
MSGSA G=100, o =15, o, =25, Ip=5 B. EXPERIMENTAL RESULTS
GSA Gi=100, @ =20 Following the exp.erimental.setup anq parameter settings
above, path planning experiments using MSGSA, GSA,
GGSA G100, =20, ¢ =2-20/7,,, GGSA, and PSOGSA are conducted.
¢ =201T,, To evaluate the search accuracy of these algorithms,
PSOGSA Go=100, & =20,1=0.5, ¢=1.5 the minimum (Best), maximum (Worst), average (Mean),

IIl. RESULTS

In this section, a 2-D flight mission with 5 threat areas
(Case 1) and a 3-D flight mission with 4 threat areas as well
as 1 user-defined forbidden flying area (i.e. NFZ) (Case 2)
are simulated to evaluate the performance of the proposed
MSGSA. The vertices of the polygonal NFZ, the location
of the start point, the target point, the threat centers and
their threat radiuses/levels are listed in Table 1 (unit: km).
The obtained results of the proposed algorithm were bench-
marked with those of the standard GSA and two improved
variants of GSA, i.e. gbest-guided GSA (GGSA), and hybrid
Particle Swarm Optimization and Gravitational Search Algo-
rithm (PSOGSA). All of the algorithms are implemented in
MATLAB environment (Matlab 2018a) and ran on a server
with a 3.0 GHz CPU (Inter Core i5-7400) and 8.0 GB of
RAM.

A. PARAMETER SETING

Based on the description of the UAV scenario, the flying
space of Case 1 and Case 2 is respectively defined as a square
with a side length 100 km and 950 km in this paper. Besides,
for Case 2, the flight altitude is limited to [Okm, 100km].
To perform fair comparison, for all the four tested algorithm,
the maximum number of iterations (7Tjax), the number of
prepared flight paths, i.e. the size of the population (NP),
and the number of segments, i.e. the turning point for each
flight path (D) are set to 1000, 100, and 15, respectively.
Other parameters in GSA, GGSA, and PSOGSA are set as
the parameters recommended in the previous studies as listed
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and standard deviation (Std) of the Jyav, Jiengn» Jihrear
and Jangle (the sum of the turning constraints of the opti-
mal path flight) of the 30 runs are taken as the per-
formance metrics in this paper as listed in Tables 3-4.
Moreover, the success rate, SR%, is employed to reflect the
search reliability of the corresponding algorithm as shown
in Table 3. Note that when the Jy.,s of a candidate flight
path is zero the algorithm is regarded as successful. The
best result in each column is set in bold. The flight path
of each algorithm obtained in the last iteration is given in
Figs. 7-9.

For Case 1, as shown in Table 3, MSGSA obtains the
best Mean value in terms of the objective function value
Juav. In addition, the Std of MSGSA is the smallest which
indicates its superior robustness. This mainly result from
the evolutionary state-based alpha-adjusting and mutation
strategies that promote the search ability of GSA. With
respect to the SR%, MSGSA is the only algorithm with
100% success. This shows the best searching reliability and
the best risk aversion ability of MSGSA compared with
other three algorithms. This is also confirmed by the statis-
tic results of Jyeq: values as shown in Table 4. Moreover,
the flight paths shown in Fig. 7, especially the position of
the first three turning points highlighted by the blue square
box, display that MSGSA can obtain more reasonable flight
path.

Similarly, for Case 2, MSGSA generated the best results
on all the metrics, followed by GSA. We can infer that the
GGSA and PSOGSA may rely on the setting of the acceler-
ation coefficients. For the more complicated 3D flight path
planning problem, users need to take more time to adjusting
them. The better robustness of MSGSA compared to the
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TABLE 3. The Jy,y of path planning for Case 1 and Case 2.

Mission Cost  Algorithm Best Worst Mean Std SR%
MSGSA 121.649 122.813 122.221 0.385 100
o Tow GSA 121.722 124.518 122.798 0.980 80
GGSA 121.477 126.594 123.230 1.559 90
PSOGSA 107.608 134.128 125.040 7478 90
MSGSA 6.082E+04  7.383E+04  6.510E+04  1.667E+03 100
P Tow GSA 6.957E+04  8.135E+04  7.499E+04  3.510E+03  86.7
GGSA 7.445E+04  8.451E+05 8.143E+04  4914E+03  36.7
PSOGSA  B8.655E+04 8.768E+04  8.079E+04  5.267E+03  33.3
TABLE 4. The Jypreat: Jjength. and jangle of path planning for Case 1 and Case 2.
Mission Cost  Algorithm Best Worst Mean Std
MSGSA 0.000 0.000 0.000 0.000
GSA 0.000 6.848 1.803 2.978
i Gasa 0.000 6.916 3378 3.567
PSOGSA 0.000 5.448 0.545 1.723
Case 1 MSGSA 237.556 239.676 238.826 0.661
GSA 238.131 239.800 239.183 0.669
e s 237.508 242.119 239.795 1355
PSOGSA 192.361 239.799 231.407 15.703
Jangte MSGSA 284.007 318.246 294.989 8.952
GSA 275.591 295.791 287.162 9.068
GGSA 226.348 303.844 279.768 25.046
PSOGSA 350.004 524.365 412.686 49.522
MSGSA 0.000 0.000 0.000 0.000
To GSA 0.000 8.924E+02 2.231E+02 4.462E+02
GGSA 0.000 1.977E+05 4.973E+04 4.863E+02
PSOGSA 0.000 1.624E+04 6.168E+03 7.476E+03
MSGSA 1.124E+05 2.113E+05 1.505E+05 3.667E+04
Case 2 o GSA 1.448E+05 2.508E+05 1.947E+05 4.060E+04
GGSA 1.664E+05 4.094E+05 3.334E+05 4.322E+04
PSOGSA 1.880E+05 4.853E+05 3.973E+05 7.793E+04
MSGSA 2.833E+02 3.378E+02 2.959E+02 2.984E+01
T GSA 2.898E+02 4.002E+02 3.128E+02 3.891E+01
GGSA 4.808E+02 1.107E+03 6.448E+02 4.770E+01
PSOGSA 4.691E+02 9.377E+02 6.713E+02 5.486E+01

other three algorithms is also confirmed by the SR%. From
Table 4, we can find that for the more complicated Case 2,
the superiority of the MSGSA is more evident. As shown, for
all the cost functions, the MSGSA based method obtained
the best results, followed by the GSA based method. The
flight paths shown in Fig. 8 also verify the advantage of the
proposed method. Overall, MSGSA has the best risk aversion
ability which can also balance the flight length and turning
angle well.
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IV. DISCUSSION

Path planning of the UAVs is required in many real-world
applications, including military and scientific research areas.
Although various techniques have been proposed for finding
the optimal path, the mission is still challenging because of
the changing environments [16]. In the past two decades, the
population-based meta-heuristic algorithms including GSA
have gained success in handling path planning problem
with environmental and UAV’s self-constraints [2]. However,
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FIGURE 7. Flight paths and convergence curves comparisons in Case 1. (a) Flight path generated by MSGSA; (b) Flight
path generated by GSA; (c) Flight path generated by PSOGSA; (d) Flight path generated by GGSA.

according to the “‘no free lunch theorem™ [55], none of the
meta-heuristic algorithm can perform well on all the path
planning problems and each algorithm has its own inevitable
flaws. Therefore, to alleviate the premature problem of GSA
and design a more effective path planning method, the
MSGSA is developed in this paper.

Owing to the adaptive alpha-adjusting strategy, the MSGSA
can adjust the gravitational constant based on the evolution-
ary state of the algorithm. This makes the algorithm can
balance the global and local search for the path planning with
several constrains more adaptively. The Cauchy mutation
strategy, on the other hand, is proposed to further promote the
exploration ability of MSGSA when the objective function is
a multimodal problem. Considering the general constraints of
UAY, i.e. the length cost and threat cost, the MSGSA based
method can project the route avoiding all the threats as shown
in Fig. 2(a). However, due to the considered constraints are
not enough, the Eq. (2) based method overly emphasizes the
threat cost and hardly balance the length cost and threat cost.
To meet this challenge, the turning angle constraint is taken
into consideration in this paper and the experimental results
confirmed the efficiency of the proposed method.
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The comparison results given in the Section 3 also verified
the superiority of the proposed method. Firstly, the MSGSA
based method is the most robust algorithm because its SR% is
100% as shown in Table 3. This may come from the adaptive
alpha-adjusting strategy which improves the adaptability of
the algorithm to the path planning problem. The robustness of
the MSGSA is also confirmed by the Std of Jirear, Jiengn and
Jangle as displayed in Table 4. Secondly, the adaptive property
and the mutation mechanism of MSGSA make the proposed
method achieve the best balance among all the three con-
straints, i.e. the smallest Jyuy value. Although the PSOGSA
can obtain the a much smaller Jysy value for Case 1, i.e.
107.608 shown in Table 3, the PSOGSA always face to larger
turning angle as cost for both Case 1 and Case 2 as presented
in Table 4. Since large turning angle may lead to greater risk
of flight and crash, the value of Juug. should be carefully
considered.

Perhaps adaptive selection of the weight coefficients of
different constraints as well as optimization of other param-
eters can further promote the efficiency of the proposed
method. In addition, finding the optimal path for dynamic
constraints [56] or by designing a multi-objective objective
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FIGURE 8. Flight paths and convergence curves comparisons in Case 2. (a) Flight path generated by MSGSA; (b) Flight path generated
by GSA; (c) Flight path generated by PSOGSA; (d) Flight path generated by GGSA.

function [57]-[59] can also be an alternative method for the
future work.

V. CONCLUSION

In this paper, a mixed-strategy based GSA (MSGSA) is pro-
posed and successfully applied to preprogram UAV path plan-
ning problem in two and three dimensional environments.
In the proposed MSGSA, an adaptive alpha-adjusting strategy
is presented first based on the evolutionary state of the global
best particle to keep the balance between exploration and
exploitation. Moreover, a Cauchy mutation strategy follows
the evolutionary state of the whole population is introduced
to further alleviative the premature problem of GSA. Addi-
tionally, in the path planning procedure, to decrease the flight
risk and improve the path smoothness, the turning angle con-
straints is also considered to design a novel objective function
combining with the length cost and threat cost. To evaluate
the performance of the proposed path planning algorithm,
the obtained results are compared with those of the three
state-of-the-art algorithms, GSA, PSOGSA, and GGSA. The
simulation results reveal the superiority of MSGSA in terms
of the searching accuracy and searching reliability. MSGSA
can not only avoid the threat from various threat areas but
also balance the flight length and turning angle well. We just
tested the availability of the proposed method for off-line path
planning of UAV and its real-time application requires further
studies.
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