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ABSTRACT Attentive learning is an important feature of the learning process. It provides a beneficial
learning experience and plays a key role in generating positive learning outcomes. Most studies widely
applied electroencephalogram (EEG) to measure human attention level. Although most studies use EEG
handcrafted features and statistical methods to classify attention level, a more effective feature learning
technique is still needed. In this paper, we aim to analyze participants’ EEG signals through a deep learning
model and classify those signals as showing either attentive or inattentive behaviors. To carry out this
research, we initially conducted a background study on attention and its detection in EEG. After that,
we design a Troxler’s fading experiment and use an EEG device to collect data on participants’ attentive and
inattentive behaviors during the test. The collected EEG data will be analyzed using a Convolution Attention
Memory Neural Network (CAMNN) model to classify participants’ attention level. The proposed CAMNN
model is optimized with Vector-to-Vector (Vec2Vec) modeling, where the model can be learned through
deep neural networks in an end-to-end approach. The result shows that our model can achieve 92% accuracy
and 0.92 F1 score which outperforms several existing neural network models such as Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN), Deep
Learning with Convolutional Neural Networks (deep ConvNets), and Compact Convolutional Network for
EEG-based BCIs (EEGNet). This research can be useful for those who are interested in developing attention
level monitoring or biofeedback system in areas such as educational classroom learning, medical research,
and industrial operator.

INDEX TERMS Attention level, deep learning, electroencephalogram, Troxler’s fading.

I. INTRODUCTION
Attention is defined as a cognitive process of focusing on
key information in the environment for learning and mem-
ory. Being attentive is important because it will benefit the
learning experience and can potentially contribute to positive
learning outcomes. Most professions such as teacher, opera-
tor, doctor, and driver require a high degree of attentiveness to
complete the work efficiently and effectively [1], [2]. Thus,
developing a method that can accurately monitor the human
attention level has become a central interest of research.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sung Chan Jun .

In the past, Krüger et al. [3] applied facial detection
and recognition to determine whether a person is attentively
learning. However, this method is too subjective and could
not accurately determine the attention level. Kuo et al. [4]
proposed an attention awareness system that uses eye track-
ing software to detect students’ attention in the classroom.
Although eye movement can provide information related to
attention, it can only respond to obvious visual attention
shifts, which may not be enough to determine the student’s
attention level. Due to the reasons, most of the research
studies explored the relationship between Electroencephalo-
gram (EEG) and attention level. EEG is an electrophysio-
logical monitoring method that measures brain activity at
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milliseconds time precision. Ko et al. [5] investigated the use
of EEG and found that there is a close relationship between
the changes in EEG spectral and impaired behavior perfor-
mance in a sustained attention task. List et al. [6] used pattern
classification to conclude that the EEG signals can be used to
predict attention states. Liu et al. [7] used a wireless mobile
EEG headset to record the EEG signals of the frontal cortex
and adopted a Support VectorMachine (SVM) to classify stu-
dent’s attention state. Similar EEG headsets, feature selection
methods, and classifiers were used by Gunawan et al. [1] to
detect the early drop of attention and Peng et al. [8] designed
an attentiveness recognition system. Typically, most research
studies rely heavily on handcrafted EEG spectral features
to perform classification, and there is a lack of research
on the use of deep learned features and neural networks in
this field. Hence, a deep learning model is applied in the
research.

In this paper, we proposed a method with the use of EEG
and a deep learning model for the classification of attention
level. In the proposed method, eye tracking will be used dur-
ing Troxler’s fading experiment to ensure the reliability of the
collected EEG data. Besides, a deep learning model is used as
a classification method for the following reasons. First of all,
deep learning does not require performing handcrafted fea-
tures from raw data, because a neural network can learn fea-
tures in an end-to-end approach [9]. Secondly, deep learning
uses the Multilayer Perceptron (MLP) to learn and classify
the characteristic of features, which is usually more effective
than statistical methods, such as k-nearest neighbors (k-NN)
and SVM [10]. This study aims to introduce a more effective
learning algorithm to measure the attention level. For this
purpose, we propose a novel deep learning model called
Convolution Attention Memory Neural Network (CAMNN).
It uses Vector-to-Vector (Vec2Vec) modeling with convolu-
tion block, attention mechanism, Long Short-Term Mem-
ory, and fully connected neural network to learn high-level
features of the raw EEG signal and perform the classifica-
tion. Other neural network models such as Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and
Convolutional Neural Network (CNN), Deep Learning with
Convolutional Neural Networks (deep ConvNets), and Com-
pact Convolutional Network for EEG-based BCIs (EEGNet)
have also been applied for comparison with the proposed
model.

The contribution of this research is in three folds. First is
to observe the brain activity during Troxler’s fading experi-
ment by analyzing EEG signals. Second is to propose a deep
learning model with Vec2Vec modeling that can learn in an
end-to-end approach by a neural network. Third is to show
that our proposed model can outperform other deep learning
models in terms of accuracy, precision, recall, specificity,
and F1.

Section II will present the related work on the use of EEG
for attention analysis and the contribution of deep learning
in the field of EEG. Section III will describe the research
material and proposed method. Section IV will present the

result and discussion of the proposed method. Section V is
the conclusion summarizing salient finding in this research.

II. RELATED WORK
A. ATTENTION ANALYSIS USING
ELECTROENCEPHALOGRAM
The application of electroencephalogram (EEG) in attention
analysis has attracted the attention of researchers [11], [12].
Li et al. [13] developed a learning system that using the com-
bination of EEG features and the Self-Assessment Manikin
(SAM) model as the input for the k-Nearest-Neighbour
classifier and Naïve Bayes classifier to classify the learner’s
attention. The EGG features are extracted using signal pro-
cessing algorithms such as Fast Independent Component
Analysis (FastICA) and Approximate Entropy (ApEn). The
SAM model is an assessment that measures valence and
arousal associate with the learner’s reaction to a variety of
stimuli. Li et al. [13] stated that EEG signals are proven
useful in analyzing the learner’s attention during the learning
process. Gunawan et al. [1] discussed the usage of EEG for
detecting the early drop of attention. In this work, the Neu-
rosky Mindwave device has been used to record the partici-
pants’ brain waves when performing continuous performance
tests. The collected signals are then inserted into Fourier
transform and Power Spectral Density (PSD) to extract fea-
tures. After that, the k-nearest neighbors (k-NN) algorithm is
applied to classify the signal based on the selected features.
It shows that 70% accuracy was achieved. Alirezaei and
Hajipour Sardouie [14] used the Emotiv device to classify
human attention in an educational environment. The record-
ing of EEG is performed in the frontal cortex because this area
can obtain significant signals of the attention state. Besides,
Alirezaei and Hajipour Sardouie [14] uses the energy extrac-
tionmethod to compute features from rawEEG data and finds
that features of the beta band can obtain important informa-
tion about the attention state. Abiri et al. [15] developed a
portable EEG-based platform to monitor the visual attention
states. A wireless EEG headset called Emotiv EPOC has been
used to collect the EEG signals during the visual discrim-
ination task, where the participants were asked to respond
only to the targeted subcategory while ignoring the irrelevant
subcategories. An individualized SVM model is used and an
average accuracy of about 77% was achieved when decod-
ing the participant’s attention state based on their brainwave
signals. Peng et al. [8] discussed an attentiveness recognition
system based on EEG. In this work, NeuroskyMindwave was
used to record the brain activity of participants during spot-
the-different puzzles and during the resting phase. The empir-
ical mode decomposition (EMD) was applied to decompose
the collected signal into Intrinsic Mode Functions (IMF),
which was then furthered break down into several features
by using Hilbert–Huang transform (HHT). Only selected
features will be applied into Support Vector Machine (SVM)
for the classification. It shows that an accuracy of 84.8% was
achieved to distinguish between attentiveness and relaxed
states. Kim et al. [16] studied the relationship between EEG
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and eye gaze in boredom circumstances. An experiment was
designed with the use of video stimulus to elicit boredom.
During the experiment, the eye movement and brain activity
will be recorded by eye tracker and EEG sensor. For anal-
ysis, a heat map of eye gaze data generated to confirm that
the participants were bored. While for the EEG dataset, a
thresholding technique and several statistical methods (stan-
dard deviation, mean, signal magnitude area) were applied
to identify the significant information that could indicate
the boredom. It seems that most of the related works were
relied on handcrafted features, where they were manually
selected and fed into the statistical methods for classification.
Furthermore, there is a lack of research on the usage of neural
network for the classification of attention level.

B. DEEP LEARNING IN ELECTROENCEPHALOGRAM
Deep Learning can provide a significant contribution to
the classification of electroencephalogram (EEG) in differ-
ent research fields. For example, An et al. [17] describes
the advantages of using deep learning in EEG and apply-
ing Deep Belief Net (DBN) to classify EEG signals of
Motor Imagery (MI) task. The results show that the DBN
model can provide consistent improvements for all MI tasks.
Hasib et al. [18] used a Hierarchical Long Short-Term
Memory (H-LSTM) model to solve the non-stationarities of
EEG signals and showed that the H-LSTM model could be
used to perform prediction on a human decision based on
EEG. Schirrmeister et al. [19] designed a Deep Learning
with Convolutional Neural Networks (deep ConvNets) to
decode movement-related information from the raw EEG
signals. The deep ConvNets do not rely on the handcrafted
features to decoding the movement classes. Besides, the
convolution and nonlinearities of deep ConvNets can learn
from non-linear features and represent as high-level features.
Schirrmeister et al. [19] showed that the use of deep learning
with an end-to-end approach can obtain satisfactory accu-
racy. Lawhern et al. [20] introduced the use of the Com-
pact Convolutional Network for EEG-based BCIs (EEGNet)
model, which is designed to classify EEG signals in different
BCI paradigms with limited data. The use of depthwise and
separable convolutions in the model has encapsulated the
EEG feature extraction concept for BCI. Lawhern et al. [20]
shows that the EEGNet model can provide good performance
on extracting a variety of neurophysiological interpretable
features over a range of BCI tasks. Kim and Choi [21] pro-
posed an end-to-end emotional analysis model, which uses
Long Short-TermMemory (LSTM) networkwith an attention
mechanism for emotional recognition based on EEG signals.
Kim and Choi [21] showed that the attention mechanism can
help on improving the accuracy of emotional recognition by
considering the peak-end rule.

III. MATERIALS AND METHODS
A. EXPERIMENT STIMULATOR AND PROTOCOL
In order to successfully elicit participants’ attention behavior,
an experiment protocol was designed as shown in Figure 1.

FIGURE 1. Troxler’s fading experiment protocol.

FIGURE 2. a) Control test (without distraction) and b) Experimental test
(with distraction).

The duration of the experiment is 180 seconds including
preparation and rest. The experiment is based on Troxler’s
fading, which is a visual field test that has a great influence on
participants’ sustained attention and selective attention [22].
Massa and O’Desky [23] and Jansiewicz et al. [24] showed
that Troxler fading experiment can provide great help in the
attention-related area. They conducted an experiment to study
the impaired habituation of children and adults with attention
deficit hyperactivity disorder. In the experiment, if the par-
ticipants can focus or fix their attention on the targeted stim-
ulus located in the central, the peripheral stimulus will fade
from awareness. Figure 2 shows the application of Troxler’s
effect, where Figure 2a stimulates participants’ attentiveness
by focusing on the targeted stimulus (Black ‘‘X’’ mark) and
Figure 2b stimulates participants’ inattentiveness by diverting
their attention from focusing on the targeted stimulus.

Before experiment, participants were briefly introduced to
the nature of the experiment and obtained their consent. Next,
they were asked to sit in a quiet empty room with a chair,
table, and desktop computer prepared beforehand. A basic
instruction sheet was provided for them to understand the
experiment process. After that, the EEG device was properly
attached to the surface of participants’ scalp and they have
a rest for 30 seconds to get used to the EEG device. Later,
participants began the control test (Figure 2a) where they
focused on the targeted stimulus for 60 seconds. If their gaze
is properly fixed on the stimulus, the peripheral area (fuzzy
purple circle) of the central dot would gradually disappear,
indicating that the participant showed attentive behavior.
After 60 seconds, participants were given a 30-second rest,
to set the visual baseline. Then, participants proceeded to
the experimental test (Figure 2b), which included red color
particles as distraction factor. These particles will move ran-
domly in the scene and cause participants to lose focus on the
targeted stimulus, thus showing inattentive behavior.
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FIGURE 3. The framework of experiment process.

The experiment was monitored with a webcam to track
the gaze of the participants. An eye tracking algorithm is
used to obtain the gaze data of the participant when looking
at the screen. Figure 3 shows the framework of the experi-
ment process. A simple graphical user interface with ‘Start
Button’ is created, which is used to triggered EEG headset
and webcam at the same time when the participant clicks the
button. The EEG headset and webcam are used for different
purposes. The use of eye tracking through webcam is to
ensure that the collected EEG data are useful to meet the
objective of the experiment. For example, if it is found that the
participant’s eye is not properly fixed on the targeted stimulus
during the control test, the raw EEG data of that test will
not be retained. A heat map will be drawn to see where the
participant eye looking at the screen. The collected raw EEG
data are used as the input of Convolution Attention Memory
Neural Network (CAMNN) for the binary classification. The
detailed process of the CAMNN model will be described
later.

B. RECORDING INSTRUMENT
There are two recording instruments used in the experiment.
The first instrument is the EMOTIV Insight wireless headset,
which is used to record participants’ EEG signals [25]. The
device has 5 Channels of electrodes which are AF3, AF4, Pz,
T7, and T8. Since our study is about attention analysis, only
electrodes in the frontal cortex (AF3 and AF4) and parietal
cortex (Pz) are used [22]. As for the sampling frequency
of EEG signals, the device can record up to 128 Hz, which
means that 128 time points can be acquired in one second.
Since the duration of each test sample is 60 seconds, there will
be 7680 time points. Furthermore, the device has a resolution
of 14 bits with one least significant bit equals to 0.51 µV.

The second instrument is webcam-based eye tracking,
which is a video camera suitable for recording the eye gaze
data of participants [26]. The webcam has a resolution of
1920 × 1080 (Full High Definition) with 30 frames per
second. Figure 4 shows the flowchart of the eye tracking
algorithm. A simple calibration will be performed for each
participant eye at the start of experiment. The participant will
be fixing their gaze at several points on the screen during
calibration. In our study, the gaze direction is an indicator

FIGURE 4. Eye tracking algorithms.

of showing spatial focus of a person’s eyes, whether from
left to right, or vice versa, while the gaze data are a set of
XY-coordinates on the screen that show the position where
the eyes are looking at. Figure 5 shows the use of eye tracking
algorithm to track the eye (green circle) through a webcam.

C. PARTICIPANT DATASET
In this study, 30 healthy participants (18 males and
12 females) whose ages are between 20 and 30 years old
volunteered to participate in the experiment. Written consent
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FIGURE 5. To track participant eye position using eye tracking algorithm:
(a) Left, (b) Center, and (c) Right.

FIGURE 6. The Gaussian curve with a two-dimensional domain.

is signed by each participant prior to the experiment. All par-
ticipants were informed that they could stop the experiment at
any time as they felt not well. The participants were required
to participate in the experiment for 4 weeks, of which they
would join in the experiment 2 days per week and 5 times per
day.

D. EYE GAZE DATA VISUALIZATION TECHNIQUE
To track the performance of participants during the test, a heat
map is used to visualize the eye movement in the area of
interest. The heat map is a useful data analytic software
that uses gaze data as input and applies a hot-to-cool color
spectrum to an area that receives attention [26]. In order to
construct the heat map, a two-dimensional Gaussian function
has been used. Figure 6 shows the curve of an elliptical
Gaussian function.

The mathematical calculation of the two-dimensional
Gaussian distribution is shown in Equation 1.

f (x, y) =
1

2πσ 2 e
−
(x−µx )2+(y−µy)

2

2σ2 , (1)

where x and y are screen coordinate of the eye position, σ is
the standard deviation of the Gaussian function, and µx , µy
is the mean of the x and y coordinate.

FIGURE 7. Vector-to-vector (Vec2Vec) modeling.

E. CONVOLUTION ATTENTION MEMORY NEURAL
NETWORK
To effectively extract the features from EEG signals and clas-
sify these signals into either attentive or inattentive behavior,
a deep learning model called Convolution Attention Memory
Neural Network (CAMNN) is proposed. The model uses
Vector-to-Vector (Vec2Vec) modeling as shown in Figure 7 to
perform the feature extraction and classification. Vec2Vec
is inspired by the work in Sequence-to-Sequence (Seq2Seq)
modeling, which has shown powerful representation capabil-
ities in applications such as language translation, voice recog-
nition, image captioning, and text summarization [27], [28].
To the best of our knowledge, there is no research on Vec2Vec
modeling applied for classifying the attention level of EEG
signals. The Vec2Vec is divided into 4 parts, which are the
encoder, attention layer, decoder, and fully connected layer.
In the CAMNN model, the encoder is Residual Networks 34
(ResNet34), the attention layer is a soft attention mechanism,
the decoder is a Long Short-Term Memory (LSTM) and the
fully connected layer is a network with one hidden layer.
These parts will be explained in details in the following
subsections.

1) ENCODER
The encoder is used to perform the feature extraction of the
two-dimensional (2-D) input EEG signals using the convolu-
tion operation of ResNet34, as shown in Figure 8. ResNet34 is
a convolution neural network that has been used as a back-
bone for numerous computer vision tasks and image clas-
sification [29], [30]. The biggest advantage of ResNet34 is
that it can increase the depth and accuracy of the network
model while avoiding the negative outcome. The input EEG
signals of the ResNet34 are using a single input channel (i.e.
grayscale image) and are resized to a size of 700 × 700.
Table 1 shows the parameters of ResNet34 such as kernel
size, padding, stride, and output size. These parameters will
be inserted into the operation, which consists of a convolution
block, a convolution layer with an identity shortcut, and a
convolution layer with a projection shortcut. Convolution
block is feature learning, which is composed of convolution,
batch normalization, non-linear activation function, and pool-
ing layers as shown in Figure 9.

The two-dimensional convolution consists of 64 kernels,
in which all EEG signals will be learned during the training
process. These kernels will stride horizontally column by
column on the input imagematrix to identify 64 feature maps.
Later, these feature maps will be fed into batch normaliza-
tion (BN) to enable a higher learning rate and thus, speed up
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FIGURE 8. Convolution operation of ResNet34.

TABLE 1. Recall parameters of ResNET34.

FIGURE 9. Convolution block.

the training process. Equations 2-5 show the formulation for
batch normalization.

µB =
1
m

m∑
i=1

xi (2)

σ 2
B =

1
m

m∑
i=1

(xi − µB)2 (3)

x̂i =
xi − µB√
σ 2
B+ ∈

, (4)

yi = BN γ,β (xi) (5)

where m is the batch size, x is the activation value, µB
is the mini-batch mean, σ 2

B is the mini-batch variance, x̂i
is the normalized activation, ∈ is a noise parameter used if
the variance becomes zero and yi is the learnable scale and
shift parameter. After BN, these features will be fed into the

FIGURE 10. Convolution layer with a) identity shortcut and b) projection
shortcut.

rectified linear unit (ReLu), which is a non-linear activation
function. The purpose of ReLu is to activate only certain
neurons to introduce non-linearity in the neural network [31].
These neurons are only activated if the output of the linear
transform is more than or equal to 0.

Later, these feature maps will be down sampled by using
the two-dimensional max pooling. The goal is to reduce
computational cost so that the execution speed is faster and
also to avoid model from overruns. The output feature maps
(Op) of the convolution block are calculated using Equation 6.

Op =
L − K + 2P

S
+ 1, (6)

where L is the width or height of the image, K is the kernel
size, P is the number of zero paddings, and S is the stride. All
the feature maps will go to the next operations which are the
convolution layer with identity shortcut and the convolution
layer with projection shortcut [32]. The identity shortcut
as shown in Figure 10(a) is used when the output feature
maps volume is the same as the input feature map volume.
Thus, input feature maps volume can pass to the addition
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FIGURE 11. Soft attention mechanism.

operation. The formulation of the identity shortcut is shown
in Equation 7.

Output = F (x)+ x, (7)

where x using the previous convolution as input feature maps
volume andF(x) is output feature maps volumewith 2 convo-
lution layers. The projection shortcut is used when the input
and output feature map volume are different from each other.
So, to ensure that both can perform the additional operation,
the input volume will perform the convolution operation as
shown in Figure 10(b). The formulation of the projection
shortcut is shown in Equation 8.

Output = F (x)+Wx, (8)

where x is input features volume,W is convolution layer, and
F(x) is output features volume.

2) ATTENTION LAYER
The convoluted features will then be passed to the atten-
tion layer. In this layer, a soft attention mechanism will be
used to focus on the relevant part of features [33], [34].
Figure 11 shows the structure of the soft attentionmechanism.

Based on Figure 11, the mechanism will use convoluted
features (f1, f2, . . . , fk) and hidden state (hk−1) as the input to
calculate the weighted annotation vector which will be used
for the decoder. hk−1 is the output of an LSTM cell that acts
as a neural network memory for storing information of output
data. The aggregation value of fk and hk−1 with ReLu layer
is first calculated, as shown in Equation 9 and Equation 10.

xk = fk + hk−1 (9)

rk (xk ) =

{
0 for xk < 0
xk for xk ≥ 0,

(10)

where xk is the sum of convoluted features and hidden state at
time step k and rk (xk ) is the aggregation value after the ReLu
layer. Next, a softmax function as shown in Equation 11 is
used to calculate the attention weight of the aggregation
value, S (rk).

S (rk) =
erk∑
k e

rk
(11)

FIGURE 12. Long short-term memory (LSTM) cell.

FIGURE 13. Fully connected network with one hidden layer.

Finally, the attention weighted annotation vector, Wk can
be computed using Equation 12. Wk represents the relevant
information for each feature according to the hidden state.

Wk =
∑
k

Sk fk (12)

3) DECODER LAYER
For the decoder, the Long Short-Term Memory (LSTM) cell
was chosen because of its powerful characteristic, which
can make the next prediction while storing the previous
time-series electroencephalogram (EEG) signals [35]. The
LSTM cell consists of three gates as shown in Figure 12.
Each gate contains a sigmoid function, which is used to
regulate the flow of information [36]. The first gate is the
forget gate, which controls whether to keep or forget the
input information (previous hidden state and current input)
according to the output value (0 or 1). If the output value
closer to 1, the input information will be kept, otherwise,
it will be forgotten. The second gate is the input gate, which
is used to control whether the input information needs to be
updated. The gate will control the flow of input information
into the cell by referring to the output value (0 or 1). If the
value is 1, the input information is important, otherwise, it is
not important. The third gate is the output gate, which is used
to determine how much input information is needed in the
cell. The output hidden state can be obtained by multiplying
the new cell state with the output vector. The new cell state is
calculated by making an additional between the forget vector
and the input vector. Equations 13-15 show the formulation
of these three gates.

fk = σ (MfWk +Mf hk−1 + bf ) (13)
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FIGURE 14. Complete overview of convolution attention memory neural network (CAMNN).

ik = σ (MiWk +Mihk−1 + bi) (14)

ok = σ (MoWk +Mohk−1 + bo) (15)

where fk , ik , and ok are forget, input, and output vectors,Mf ,
Mi, and Mo are weight metrics, Wk is the attention weighted
annotation vector, hk−1 is the hidden state, and bo is the bias
vector.

4) FULLY CONNECTED LAYER
The fully connected network with one hidden layer as shown
in Figure 13 is used to take the output of the decoder, flattened
it into a single vector of values, and calculate the probabilities
for each label (Attentive or Inattentive behavior). A dropout
rate of 0.5 is performed after each layer. The use of dropout
is to prevent overfitting of training data [37].

5) OVERVIEW OF CAMNN
Figure 14 shows an overview of the Convolution Atten-
tion Memory Neural Network (CAMNN) model. Initially,
the EEG signal will be fed into the convolution operation
of ResNet34 to extract high-level convoluted features. After
that, these features will be fed into the soft attention mech-
anism and LSTM cell to generate 512 hidden states. The
purpose of the soft attention mechanism is to assist LSTM in
learning important convoluted features at each step. Finally,
all the hidden states will be channeled to the neural network
in a fully connected layer to perform classification.

IV. RESULT AND DISCUSSION
In this section, we will present the experimental results of the
participant’s eye gaze and electroencephalogram (EEG) data.
Since 30 participants voluntarily participated in the 4 weeks’
experiment, the total number of EEG data samples obtained
from each test of the experiment is 7100, of which 3550 are
the control test and 3550 are the experimental test. Five-fold
cross-validation is used to evaluate the CAMNN model by

FIGURE 15. Heat map visualization on a) Control test and b) Experimental
test.

partition the data samples into training sets and test sets. All
data samples were carefully examined, and the poor EEG
signal quality was eliminated.

A. EYE GAZE GRAPHICAL DATA REPRESENTATION
To visualize the gaze points of the participants in the control
and experimental tests, a heat map has been created as shown
in Figure 15.

Through visualization on the heat map, we can determine
whether the participant’s gaze is fixed on the targeted stimu-
lus or deviated from the targeted stimulus (Black ‘‘X’’ mark).
During the control test, if it is found that the participant’s
gaze is not properly fixed on the stimulus, the raw EEG data
of that test will not be retained since it does not meet the
objective of the experiment. Figure 15(a) shows that during
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FIGURE 16. Grand-average ERP components waveforms (a) P100 for
channel AF3, (b) P100 for channel AF4, and (c) P200 for channel PZ.

the control test, the color of the heat map is focused on the
stimulus area. This indicate that the participant’s gaze is fixed
on the stimulus and thus elicited attentive behavior. As for
Figure 15(b), during the experimental test, the color of the
heat map is scattered over several regions, which indicates
that red color particles successfully caused the participants to
lost focus and deviate their gaze from the stimulus, thus elicit-
ing inattentive behavior. The result shows that webcam-based
eye tracking can provide us with participant’s gaze data,
visualized as a heat map, which can help to determine
whether the participant’s attentive and inattentive behaviors
are being elicited during the control test and the experi-
mental test, thereby ensuring the reliability of the collected
EEG data.

B. GRAND-AVERAGED EVENT-RELATED POTENTIAL
Event-Related Potential (ERP) is derived from the electroen-
cephalogram (EEG) measurement of brain response. An ERP
is used to measure the voltage change results of atten-
tive and inattentive behaviour during the experiment [38].
Figure 16 shows a plot of grand-average ERP waveform.
It is constructed by first averaging all trials of EEG signals
within a subject to produce the average ERP waveform.
Later, the average ERP waveform across the subjects will be
averaged to generate grand-average ERP waveform. By aver-
aging, we can average out the random brain activity and
remain the relevant waveform. Based on the graph, AF3 and
AF4 channels having a positive peak around 100 ms, which
represent the P100 of the ERP component. As for Pz channel,
a positive peak is found around 200 ms, which represent the
P200 of ERP component. The P100 and P200 is waveform
components that are commonly related to the early processing
of attention state [39]. According to the waveforms shown
in the graph, the P100 mostly distributed over the frontal
cortex, whereas the P200 is often distributed in the parietal
cortex. Thosewaveforms show that when the participant elicit
attentive behavior by fixing the gaze on the target stimulus,
the potential of P100 and P200 will be higher. As for the
inattentive behavior, since the participant’s gaze is deviated
from the stimulus, the P100 and P200 potential will be lower.
Thus, it shows that the changes in the ERP waveform are
correlated with the gaze of participants, regardless of whether
their gaze is fixed on the stimulus or deviated from the
stimulus.

C. EEG SIGNALS DEEP LEARNING CLASSIFICATION
Since we introduce the use of deep learning in the attention
level classification, 5 existing models have been designed
and compared with the proposed model. The first model is
a Recurrent Neural Network (RNN), which feeds time-series
EEG signals into themodel andmakes a prediction. The RNN
model is composed of internal memory, which is used to
memorize the previous output data and consider it together
with the current input, thus being able to make a classifi-
cation for EEG signal. The RNN model included 2 hidden
layers and 28-time steps for classification. The second model
is Long Short-Term Memory (LSTM), which is a special
kind of RNN with the addition of three gates (input gate,
forget gate, and output gate). These gates are used to update,
forget or control the information in the cell so that it can
make predictions while storing the previous time-series EEG
signals. The LSTM model includes 3 hidden layers and
28-time steps for classification. The third model is the stan-
dard Convolutional Neural Network (CNN), which is mainly
used for image classification. The CNNmodel includes three
convolution operations for feature extraction and a fully con-
nected layer for EEG classification. The fourth model is
Deep Learning with Convolutional Neural Networks (deep
ConvNets), which consists of four convolution blocks and
a fully connected layer. The first convolution block of deep
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TABLE 2. Evaluation metrics comparison between our camnn model and other neural network models.

ConvNets is different compared to the standard CNN con-
volution block where it will split into convolution across
time and convolution across electrodes to handle a large
number of input channels. The rest of the convolution blocks
in ConvNets will be following the standard CNN. The fifth
model is the Compact Convolutional Network for EEG-based
BCIs (EEGNet), which consists of three convolution blocks
and fully connected layers. Those three convolution blocks
include temporal convolution to learn frequency filter, depth-
wise convolution to learn frequency-specific spatial filter, and
separable convolution to learn to summarize feature map and
then optimally mix them. All existing models have imple-
mented a dropout rate of 0.5 in the fully connected layer.

To show the generalization capability of the CAMNN
model, five evaluation metrics which are accuracy, precision,
recall, specificity, and F1-Score are used as shown in Equa-
tions 16-20. The input values of these equations are obtained
from the confusion matrix, which is a tabular representation
used to visualize the generalization of the model. Table 2
shows the result of the evaluation metrics of the CAMNN
model and other existing models.

Accuracy =
TP+ TN

TP+ FN + TN + FP
× 100% (16)

Precision =
TP

TP+ FP
(17)

Recall =
TP

TP+ FN
(18)

Specificity =
TN

TN + FP
(19)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(20)

For the decoding accuracy of the classification model
in Table 2, it is shown that CAMNN model can achieve
the highest accuracy of 92%, followed by deep ConvNets
(80%), EEGNet (76%), CNN (72%), LSTM (60%), and RNN
(52%). This indicates that the CAMNNmodel has the largest

FIGURE 17. Graph of train and validation loss function.

number of correct predictions for the input EEG samples.
Figure 17 shows the training loss and validation loss of the
model. The loss graph shows that the training process of the
CAMNN model converges well without any signs of over-
fitting, indicating that the model having good generalization
capability.

For the precision in Table 2, it shows that CAMNN has
the highest value of 0.93, followed by deep ConvNets (0.83),
EEGNet (0.82), CNN (0.75), RNN (0.6), and LSTM (0.54).
Precision is used to quantify the number of predicted classes
that belong to the actual attentive classes. We found that
CAMNN has the precision value close to 1.0. This indi-
cate that the number of predicted attentive classes using
the CAMNN model is close to number of actual attentive
classes. For the recall in Table 2, it shows that CAMNN has
the highest value of 0.92, followed by LSTM (0.89), CNN
(0.77), deep ConvNets (0.77), EEGNet (0.69), and RNN
(0.46). Recall is used to quantify the predicted number of
attentive classes among all attentive classes in the dataset.
CNN and ConvNet seem to have same recall value, which
mean that both models predict the same number of attentive
classes. As for the CAMNN, it has a recall value close to
1.0, which indicates that it predicted the highest number of
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attentive classes. For the specificity in Table 2, it shows that
CAMNN has the highest value of 0.9, followed by deep
ConvNets (0.83), EEGNet (0.83), CNN (0.76), RNN (0.64),
and LSTM (0.53). Specificity is used to quantify the predicted
number of inattentive classes among all inattentive classes
in the dataset. It shows that deep ConvNets and EEGNet
have same specificity value, which mean that both models
predict the same number of inattentive classes. As for the
CAMNN, it has specificity value close to 1.0, which mean
that it predicted the highest number of inattentive classes. For
the F1-score in Table 2, it is a harmonic mean of precision
and recall. Since the CAMNN has the highest precision and
recall value, the F1-score undoubtedly has the highest value
of 0.92, followed by deep ConvNets (0.8), CNN (0.76), EEG-
Net (0.75), LSTM (0.67), and RNN (0.52). Higher F1-score
indicated that the model has the higher accuracy on the
dataset.

Based on the results of the evaluationmetrics, the CAMNN
model proved to have good generalization ability as it had the
highest accuracy, precision, recall, specificity, and F1-score
when classifying the input EEG signals compared to other
models.

V. CONCLUSION
In this paper, comprehensive research on the use of electroen-
cephalogram (EEG) in measuring human attention level has
been conducted. The designed Troxler’s fading experiment
can effectively elicit the participant’s attentive and inattentive
behaviors during the control and experimental tests. Further-
more, the use of a heat map on visualizing the participant’s
eye position at the screen during the test has been successfully
implemented. We also constructed an Event-Related Poten-
tial (ERP) graph to compare the participants’ brain responses
in attentive and inattentive behaviors. In addition, we have
introduced the use of deep learning model in analyzing par-
ticipants’ EEG signals. The proposed model is called Convo-
lution Attention Memory Neural Network (CAMNN) which
uses Vector-to-Vector (Vec2Vec) modeling to learn in an end-
to-end approach. We have shown that the proposed CAMNN
model outperforms the other 5 existing models with good
generalization. In CAMNN method, we use three-channels
data to build the classification models and obtain 92% accu-
racy, 0.93 precision, 0.92 recall, 0.9 specificity, and 0.92 F1-
score. Currently, we use the EEG signals of three channels
located in the frontal cortex (AF3 and AF4) and the pari-
etal cortex (Pz). We suggest using more EEG channels in
frontal and parietal cortex as it may provide more features
to improve the model for classification. Nevertheless, fewer
EEG channels takes less time to set up and is convenient for
the participants. This study shows that the proposed CAMNN
model can effectively analyze the participants’ EEG signals
through the deep learning model and classify their attention
level. Therefore, this research can be beneficial for those
who are interested in developing attention level monitoring
or biofeedback system in areas such as educational classroom
learning, medical research, and industrial operator
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