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ABSTRACT Electrocardiogram (ECG) signal can be thought of as an effective indicator for detection of
various arrhythmias. However, the acquired ECG data is always corrupted by amounts of noise, which have
a great influence on the diagnosis of cardiovascular diseases. In this paper, an efficient deep convolutional
encoder-decoder network framework is proposed to remove the noise from ECG signal, which is termed as
‘DeepCEDNet’. This network is able to learn a sparse representation of data in the time-frequency domain via
the high-order synchrosqueezing transform (FSSTH) and a nonlinear function that maps the noisy data into
the clean one based on the distribution difference between signal and noise from the training set. Extensive
experiments are conducted on ECG signals from the MIT-BIH Arrhythmia database and MIT-BIH Long-
Term ECG database, and the added noise is obtained from the MIT-BIH Noise Stress Test database. The
denoising performance is evaluated by means of signal to noise ratio (SNR), root mean squared error (RMSE)
and percent root mean square difference (PRD). The results indicate that the proposed DeepCEDNet can
obtain superior performance in both noise reduction and details preservation with higher SNR and lower
RMSE and PRD compared to the traditional convolutional neural network (CNN) and the fully convolutional
network-based denoising auto-encoder (FCN). We believe that the DeepCEDNet has a wide application
prospect in the biomedical field.

INDEX TERMS Electrocardiogram signal, noise reduction, deep neural network, sparse representation,

time-frequency domain.

I. INTRODUCTION
Recorded electrocardiogram (ECG) signal is inevitably con-
taminated by various types of noise (coined artifacts) [1],
[2], such as baseline wander (BW), muscle artifact (MA),
and electrode motion (EM), and so on. All of the noise
has a severe impact on ECG waveform and covers the
weak characteristics of ECG signal, which poses a challenge
for the following cardiovascular diseases diagnosis [3]-[6].
Therefore, the noise removal from ECG signal is becoming
urgent [7], [8].

Over the past decades, numerous efforts have been made
to develop different methods for denoising ECG signal, for
example adaptive filter [9]-[11], wavelet transform [12],
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principle component analysis (PCA) [13], independent com-
ponent analysis (ICA) [14], and empirical mode decomposi-
tion (EMD) [15], [16]. Adaptive filter can effectively remove
noise outside ECG signal frequency band, however, it will fail
when the signal and noise share a common frequency range.
Wavelet transform is capable of suppressing noise well by
shrinking the wavelet coefficients in the transformed domain.
Unfortunately, a suitable wavelet basis function and the
threshold strategy need to be selected with prior knowledge,
which is usually a troublesome process in practice. In addi-
tion, the threshold algorithm is likely to affect the ECG wave-
form. The key idea of the methods based on PCA and ICA
is to eliminate the dimensions corresponding to noise, how-
ever, the obtained mapping model is more sensitive to small
disturbances in the signal or noise. EMD-based approaches
decompose the noisy signal into a series of intrinsic mode
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functions (IMFs), and then the noise-dominant IMFs are
removed while the remaining IMFs are used to reconstruct the
signal. As some useful signals are embedded in the IMFs con-
taining noise, such methods may not give satisfactory result.
Meanwhile, the mode-mixing is also the main drawback of
EMD. Although the variations of EMD (e.g. ensemble empir-
ical mode decomposition (EEMD) [17], [18] and complete
ensemble empirical mode decomposition (CEEMD) [19],
[20]) and variational mode decomposition (VMD) [21], [22]
have greatly alleviated this issue, the nature of redundancy is
still not been fundamentally solved, which limits the potential
application of these methods in a lot of fields.

Recently, deep learning techniques have been gaining
attention due to their powerful capability in learning the
characteristics of ECG signal [23]-[27]. The noise suppres-
sion techniques based on denoising autoencoder (DAE) have
shown the excellent performance than conventional denoising
methods. In [28], an improved DAE reformed by a wavelet
transform was created, in which a scale-adaptive thresholding
algorithm is employed to attenuate most of the noise. In [29],
a stacked contractive DEA through multi-level feature extrac-
tion was developed for noise reduction. In [30], a fully con-
volutional network based DEA is proposed for ECG signal
denoising. However, these methods are usually carried out in
the time domain, and cannot fully exploit the capability of
auto-encoders in learning a sparse representation of data.

In this paper, we present DeepCEDNet, a novel sparsely
promoted deep convolutional encoder-decoder network in
the time-frequency domain. This network is able to simul-
taneously learn a sparse representation of input data and a
nonlinear function that maps the noisy data into the clean
one according to the learned features from signal and noise
based on the training set. We utilize real ECG signals con-
taminated with various types of noise such as BW, MA and
EM to train the network and demonstrate its performance, and
compare with state-of-the-art methods, CNN and FCN (fully
convolutional network). Our contributions are as follows:
(1) we propose a sparsely promoted deep neural network to
extract ECG signal features, (2) DeepCEDNet has powerful
advantage in learning a sparse representation of data (3) our
method can achieve impressive denoising of ECG signal and
preserve the details well.

The rest of this paper is organized as follows. Section II
reviews the basic concepts of the autoencoder (AE) and DAE,
the theory of the FSSTH, and then the proposed DeepCEDNet
is depicted in detail. In Section III, the experimental results
from two available MIT-BIH databases are exhibited in order
to verify the effectiveness of the proposed architecture. The
discussion with respect to experimental results is given in
Section IV. Section V concludes this paper.

Il. METHODOLOGY

A. REVIEW OF AE AND DAE

As a deep learning model, the aim of AE is to reconstruct
the input as accurately as possible through the constraint
of a loss function. A basic AE architecture is comprised
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of encoder and decoder. The former maps an input vector
x to a hidden representation y by a deterministic mapping
expression. In the second stage, the latent representation y is
mapped back to a reconstructed vector z. The two parts can
be formulated as:

y=¢Wx+b), (1)
z=¢ (Wy+b). 2)

where W and b are a weight matrix and a bias vector of
the encoder, respectively. Similarly, W' and b’ are the cor-
responding weight matrix and bias vector of the decoder,
respectively. ¢ and ¢’ are the non-linear activation functions.

The parameters in the aforementioned model are optimized
by minimizing the reconstruction error:

N
.1 2
L= arggmm N ; llx; — zill5. 3)

where 6 is a parameter set {W, b, W', b'}, N is the number of
data samples, and i is the sample index.

DAE, originally developed by Vincent et al. [31], is a
variant of classic AE. In the DAE, the input X is a corrupted
version of data, which is created by means of a stochastic
mapping X ~ ¢ (X|x). The corrupted input X is first mapped to
a hidden representation using Eq. (1), and then one can obtain
its reconstruction using Eq. (2). Throughout the mapping
process, the parameters are trained to minimize the recon-
struction error (Eq. (3)) over a training set in order to make z
as close as possible to the uncorrupted input x.

B. HIGH-ORDER SYNCHROSQUEEZING TRANSFORM

The key idea of FSSTH is to sharpen the short-time Fourier

transform (STFT) representation of a signal by computing

a new local instantaneous frequency estimate, using higher

order approximations both for the amplitude and phase [32].
Considering an AM-FM signal:

f()=A@) 00, 4

where A (¢) denotes the instantaneous amplitude and ¢ (¢) is
the instantaneous phase.

The Taylor expansion of the signal f in Eq. (4) for 7 close
to ¢ is described as:
N

() ; (k)
Z[1og(A)] ) + 27p® (1) (‘L'—t)k).

f(@ =eXP< a

k=0

&)

where T® (¢) is the kth derivative of T with respect to .
Therefore, the local instantaneous frequency estimate
wy (¢, n) can be written as:

log (A)] (¢
o (t.m) = % +' ()
4y Do WY 0 + 279 ® (1) Vi (1) ©
27 (k — 1)! VE ()

k=2
where v;’ (t, n) is the STFT of f (¢).
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FIGURE 1. Architecture of the proposed DeepCEDNet.

Based on the above-mentioned high order Taylor expan-

sions of the amplitude and phase of a signal, a frequency
- *NT e )
modulation operator Iy 18 defined as:

[k,N] _ [log (A)](k) @) + 2 p® (1)
nf T 27 k=)l ]

)

Then, the Nth-order local complex instantaneous fre-
quency, w%] at time ¢ and frequency 7, can be expressed by:

(V]
a)n’f (t7 77)

N
o () + Y g o) (= (),
k=2
=1 Vi@ #0010, #0G=2). 8
wr (t, 1),
otherwise.

Finally, the FSSTH is defined as follows:
Ty (t, w)

L ¢ W
g0 /{’I’Vfg(hn)hy} Vi (t,mé (a) w, (1, T}))dn.

©))
where y denotes some threshold.
The ith mode can be approximately reconstructed by:
fi() ~ / T;@’; (t, w)dw. (10)
{o]o—p®)]<d}

where ¢ (1) is an estimate for ¢/ (1), and d is a compensation
factor.
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: 3X 3 convolution + 2 X 2 stride+Relu+BN U

7zl

VA
m : skip connection

C. PROPOSED DeepCEDNet

The noisy signal x () is firstly transformed into time-
frequency domain via the FSSTH [32], a variant of
STFT-based SST (FSST) [35], which can achieve a highly
concentrated time-frequency representation [33], [34]. In the
time-frequency domain, the noisy signal X (¢,f) can be
expressed as:

X./)=St.H+N@.f). (11)

where S (¢, f) and N (¢, f) denote the useful signal and noise,
respectively.

Our aim is to estimate the underlying signal 5 (t) from its
noise corrupted version x (#) by minimizing the following
square error:

E= H/s\(t)—s(l)Hj. (12)

. . . . LA
where s () is the true signal in the time domain. s (¢) is the
estimated signal in the time domain, which is obtained by

A
implementing an inverse transform of FSSTH on § (¢, f):

SUf)=ME.NHX1.S). (13)

Herein, M (t, f) is a nonlinear function that maps X (¢, f) to
a time-frequency representation of the estimated signal.

Now, the above-mentioned problem is regarded as a super-
vised learning problem, a deep neural network is designed
to learn a sparse representation of data in the time-frequency
domain and create an nonlinear mapping function through a
training set, in which the distribution difference of signal and
noise is described well.

Inspired by the advantage of auto-encoders in learning
a sparse representation of data, we construct a sparsely
promoted deep convolutional encoder-decoder network
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FIGURE 2. Flow diagram of the proposed denoising method. Inputs are the real and imaginary parts of the

time-frequency representation of noisy signal.

framework in the time-frequency domain (Figure 1), which
is mainly composed of two modules: an encoder denoted by
the convolutional layers and a decoder denoted by the decon-
volutional layers. Meanwhile, the skip connections between
two corresponding convolutional and deconvolutional layers
are used, with which the training converges much faster and
attains a higher-quality local optimum [36].

(1) Encoder module

DeepCEDNet projects the input data X into a high-
dimensional feature space in order to obtain the vector y via
a nonlinear mapping function En (X):

y=En(X). (14)

It is worth noting that the inputs to the first layer are the real
and imaginary parts of the time-frequency coefficients of the
noisy data X. En (X) is carried out by the encoder network
that consists of a series of 2D convolutional layers, rectified
linear unit (Relu) and batch normalization (BN). The size of
convolution filter is a constant (3 x 3), and the feature space
is gradually reduced using strides of 2 x 2. These layers make
up a feature extractor that can achieve learning with respect
to a sparse representation of time-frequency coefficients and
capture the abstract content of signal without the noise.

(2) Decoder module

The decoder module is almost symmetric to the encoder
part, it can be thought of as the inverse process of the encoder.
The aim of decoder is to remap y back into the time-frequency
space in order to recover the input details:

S =De(y). (15)

Here, the deconvolution is utilized to map this learned high-
dimensional feature into the desired sparse representation.

Then, the denoised signal § can be reconstructed by the
inverse FSSTH with the constraint of Eq. (12). Through the
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whole training process, the network learns the sparse repre-
sentation of noisy data and the optimal map that recovers the
desired signal by minimizing a loss function.

Figure 2 shows the flow diagram of the proposed denoising
method. First, the noisy ECG signal is transformed into the
time-frequency domain via the FSSTH. Then, DeepCEDNet
extracts the real and imaginary parts of the obtained time-
frequency coefficients as the input and produces the mapping
for signal as the output. The estimated time-frequency coeftfi-

AN

cients S associated with ECG signal can be obtained by apply-
ing the mapping to the real and imaginary of time-frequency
coefficients of noisy ECG signal X. Finally, the denoised

ECG signal § is obtained by transforming § back into the time
domain using an inverse FSSTH, and followed by the least
square constraint. Compared with the conventional denois-
ing algorithms, DeepCEDNet can automatically learn more
abstract features from the noisy ECG data, and remove the
noise in the time-frequency domain.

IIl. EXPERIMENTS

A. EVALUATION CRITERIA

In the paper, three criteria will be used for quantitative eval-
uation in denoising performance, which are signal to noise
ratio (SNR), root mean squared error (RMSE) and percent
root mean square difference (PRD), respectively.

N
Y s
SNR = 10log;g———" ; (16)
t) — t
r[o-50]
RMSE = | - 3 [s t) -5 (z)]2 (17)
< .

=1
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[s ) — s (t)]2

M=

t=1

PRD =

I x 100. (18)
3 s ()1

=1

where s (¢) is the noise-free ECG signal, s () is the denoised
ECG signal, and N is the length of ECG signal.

It should be noteworthy that the SNR describes the level
of noise suppression, thus the higher the SNR, the better
the denoising performance. The RMSE depicts the difference
between the desired output and the actual one, a lower RMSE
indicates the smaller difference between both outputs. The
PRD delineates the signal recovery capability. A lower PRD
means a better reconstruction.

B. DATASET DESCRIPTION

The proposed DeepCEDNet is tested using two standard
ECG datasets, namely, MIT-BIH Arrhythmia Database and
MIT-BIH Long-Term ECG Database, because both of them
have the long duration, which is helpful to train the deep
neural network. The first dataset is composed of 48 ECG
records with length of 30 minutes, and are sampled at 360 Hz
and quantized with 11-bit resolution. The second one contains
7 long-term ECG records and each record lasts about 14h to
22h at the sampling rate of 128 Hz. For each record, we parti-
tion 400 fragments, each with a length of 1024 samples. Real
noise is comprised of BW, MA and EW, which are from the
MIT-BIH Noise Stress Test Database.

We randomly divide the ECG datasets into three parts.
More specifically, 90% of the samples are split into the train-
ing set and 10% into the test set. Meanwhile, in the training
set, 90% of the samples are split into the training set, and
10% into the validation set. Similarly, the noise dataset is
also divided into three sections, the training set, validation
set and test set. In the three segments, the noise contents
are similar but not the same. To increase the randomness,
we randomly choose the noise samples from the training set
with respect to each noise source (BW, MA and EW), and
randomly scale its amplitude. Subsequently, the three kinds
of noise are mixed with equal weight to form the complex
noise. And, the noisy ECG data is generated by adding the
above-mentioned complex noise to the original ECG data.
The FSSTH is applied to generate the time-frequency rep-
resentation of the noisy ECG signal, a detailed description
of FSSTH algorithm, please refer to [37]. Then, the obtained
time-frequency matrix is normalized by removing the mean
and dividing by the standard deviation. During prediction,
such information is temporarily saved in order to trans-
form the processed time-frequency matrix into the original
scale after denoising. The real and imaginary parts of time-
frequency coefficients are respectively fed to the deep neural
network as two channels. The same procedure is applicative
to both validation and test sets. We utilize the test set to
analyze the final performance and demonstrate the denoising
results.

VOLUME 9, 2021

90— T T T T T r
Training
80 Validation |1

701

60

S50

Loss

40t
30t
20t

0 50 100 150 200 250 300
Epoches

(@)

70 .

Training
60 Validation ]

S50

40t

Loss

30r

201

0 50 100 150 200 250 300
Epoches
(b)

FIGURE 3. Training and validation losses during training process.
(a) MIT-BIH Arrhythmia Database, (b) MIT-BIH Long-Term ECG Database.

TABLE 1. Parameters in the proposed DeepCEDNet.

Parameter Value
Batch size 128
Epoches 300
Optimizer Adam
Loss Mean square error (Mse)

C. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of the
proposed DeepCEDNet. Figure 3 shows the losses of train-
ing and validation of the presented model for two datasets.
As can be obviously seen that the loss function of the train-
ing set decreases rapidly and then converges to a smaller
value. Meanwhile, the validation set also shows a similar
trend. Besides, when the training reaches a certain epoch,
the loss difference between the training set and the valida-
tion set is relatively small, which means that the proposed
DeepCEDNet has almost no overfitting, in other words,
the DeepCEDNet has strong learning ability.

CNN and FCN are two classic neural networks, and have
been widely applied in ECG signal analysis [27], thus, they
are employed for comparison. In the paper, the CNN con-
sists of 22 convolutional layers, while the FCN is composed
of 11 layers of convolution and deconvolution operators.
Now, the four examples from the test set are selected, and the
denoising performance is compared with the CNN and FCN.
We select the number of decomposed modes for the FSSTH
algorithm as 5. The parameters used by DeepCEDNet are
summarized in Table 1. In addition, we also apply the dropout
technique with a rate of 0.5 for all layers since it obtain the
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FIGURE 4. Denoised results regarding record 101m.dat. (a) Original ECG
signal, (b) Noisy ECG signal, (c) CNN, (d) FCN, (e) CEDN.

best performance in the validation set. Figures 4 and 5 show
the denoised results regarding record 101m.dat and 223m.dat
from MIT-BIH Arrhythmia Database. In these figures, (a) is
the original ECG signal, (b) is the noisy ECG signal with
a SNR of 0 dB. The denoised results using CNN, FCN and
CEDN are shown in (¢), (d) and (e), respectively. As reported
in Figure 4(b), the noise has a certain influence on P wave,
T wave and QRS complex wave. However, in Figure 5(b),
the noise corrupts the ECG signal severely so that these
characteristic waveforms, P, T and QRS, are completely dis-
torted and the useful signal features cannot be effectively
extracted. The denoised results indicate that the CEDN can
successfully recover the signal with a less distortion of the
waveform (see magenta rectangles in Figures 4(c), (d) and (e)
and Figures 5(c), (d) and (e)), meanwhile, the signal leakage
is minimal, and the ECG waveform and amplitude charac-
teristics are well preserved after denoising. In contrast, both
of CNN and FCN can also suppress most of the noise but
the residual noise is still found, which maybe lead to an
inappropriate diagnosis of the disease. In addition, from the
perspective of local details, it seems that FCN is superior to
CNN because of a less loss of amplitudes of ECG signal (see
black rectangles in Figures 4(c), (d) and Figures 5(c), (d)).
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FIGURE 5. Denoised results regarding record 223m.dat. (a) Original ECG
signal, (b) Noisy ECG signal, (c) CNN, (d) FCN, (e) CEDN.

Similarly, our method is also applied to 14046m.dat
and 14149m.dat from MIT-BIH Long-Term ECG Database.
In this data, it is difficult to accurately capture the features of
P, T and QRS waves in the presence of strong noise, which
directly results in the inability to make correct diagnosis about
the diseases. Figures 6 and 7 show the denoised results based
on CNN, FCN and CEDN, respectively. It can be clearly
seen that CNN seems to produce a severe loss of amplitudes,
especially in Figure 6(c). This phenomenon can also be found
in FCN (Figure 6(d)), but is not as serious as in CNN. How-
ever, CEDN achieves a better denoising performance that
maintains the waveform characteristics of ECG signal well
compared to the other two methods (see magenta rectangles
in Figures 6(c), (d) and (e)). In the example 14149m.dat,
CEDN also yields a satisfactory denoised result, which is
obviously superior to the CNN and FCN. The difference
is that the overall denoising performance of the mentioned
methods is better than that in 14046m.dat. Besides, it is
worth noting that FCN has more advantage in denoising com-
pared to CNN (see black rectangles in Figures 6(c), (d) and
Figures 7(c), (d)).
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FIGURE 6. Denoised results regarding record 14046m.dat. (a) Original
ECG signal, (b) Noisy ECG signal, (c) CNN, (d) FCN, (e) CEDN.

To further demonstrate the effectiveness of the proposed
DeepCEDNet, we calculate the average of the SNR, RMSE
and PRD for all ECG records from the test set about two
datasets, which are plotted in Figures 8 and 9, respectively.
The test set consists of 3 different levels of input SNR of 0, 4,
and 8 dB. As it can be seen, CEDN obtains the higher SNR
than CNN and FCN for all records (Figures 8(a) and 9(a)),
which means that CEDN performs better in noise removal.
In Figures 8 and 9, CEDN yields the lower RMSE and
PRD, which indicates that the denoised signal after running
DeepCEDNet is closer to the original signal, in other words,
CEDN does a better job in preserving the details from ECG
signal.

IV. DISCUSSION

As an indicator, ECG signal can provide a large amount of
valuable information that can be used to diagnose early-stage
cardiovascular disorders. However, the acquisition and trans-
mission enable the collected ECG signal to be contaminated
with various types of noise, thus, it is necessary to remove
noise from ECG signal.
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FIGURE 7. Denoised results regarding record 14149m.dat. (a) Original
ECG signal, (b) Noisy ECG signal, (c) CNN, (d) FCN, (e) CEDN.

In this paper, we proposed a deep convolutional encoder-
decoder network framework, DeepCEDNet. It can learn the
sparse representation of data in the time-frequency space
in order to predict a mask that maps the noise corrupted
signal into the clean one by optimizing a loss function. The
mask determined by the deep neural network effectively
decomposes the input data into signal and noise. Experimen-
tal results show that DeepCEDNet performs clearly better
in noise removal and details preservation compared with
the traditional CNN and FCN, which can be attributed to
three aspects: (1) the difference between signal and noise
is more obvious in the time-frequency domain; (2) Deep-
CEDNet makes full use of the capability of auto-encoders
in learning a sparse representation of data; (3) the skip
connections between two corresponding convolutional and
deconvolutional layers also help to handle the problem of
gradient vanishing, improve the signal reconstruction perfor-
mance, and enhance the robustness of deep neural network.
In addition, our tests also indicate that DeepCEDNet sig-
nificantly improves the SNR with minimal distortion to the
underlying signal, which is extremely beneficial to clinical
applications. As a deep learning model, DeepCEDNet also
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FIGURE 8. Comparative performance in terms of the average of SNR,
RMSE and PRD, with CNN, FCN and CEDN for the test set from MIT-BIH
Arrhythmia Database.

provides an end-to-end mapping, which is a complicated pro-
cess. We visualize the reactions of the partial convolutional
layers from record 101m.dat in order to exhibit the learned
abstract features in CEDN, which is shown in Figure 10.
In addition, our results indicate that FCN has the slight advan-
tage over CNN in denoising performance. This may be due
to the framework of DAE, which is helpful to recover the
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FIGURE 9. Comparative performance in terms of the average of SNR,
RMSE and PRD, with CNN, FCN and CEDN for the test set from MIT-BIH
Long-Term ECG Database.

characteristics of a signal of interest during the denoising
process.

Although the denoising performance of DeepCEDNet is
impressive, it does not achieve a perfect separation of signal
and noise. Several issues should be discussed in depth, for
example, (1) the number of data segments is not sufficient,
(2) high-quality signal labels need to be taken into account,
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FIGURE 10. Visualization of the partial convolutional layers from record 101m.dat in CEDN.

(3) the network leads to a large computational burden,
(4) the parameter setting of CEDN needs further optimiza-
tion. Solving all above-mentioned problems will help to
improve the current DeepCEDNet so that it can be applied
to more complex noise suppression in the future.

V. CONCLUSION

We have developed a novel deep learning based denoising
framework for ECG signal, DeepCEDNet. This network can
learn a sparse representation of data in the time-frequency
domain and a nonlinear mapping function that aims at sig-
nal and noise separation. Experimental results indicate that
DeepCEDNet significantly outperforms the traditional CNN
and FCN in both noise removal and details preservation,
meanwhile, our network shows the higher SNR and lower
RMSE and PRD. Thus, DeepCEDNet has the potential to pro-
vide a more effective denoising tool for ECG signal process-
ing. Future work will focus on data segments, signal labels,
parameter setting optimization and computational efficiency
so that DeepCEDNet can be better applied in practice.
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