
Received March 13, 2021, accepted March 30, 2021, date of publication April 12, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072775

IDSA: An Efficient Algorithm for Skyline Queries
Computation on Dynamic and Incomplete
Data With Changing States
YONIS GULZAR 1, ALI A. ALWAN 2, HAMIDAH IBRAHIM 3, (Member, IEEE),
SHERZOD TURAEV4, SHARYAR WANI 2, ARJUMAND BANO SOOMRO1,6, AND YASIR HAMID5
1Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia
2Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100,
Malaysia
3Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
4Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
5Department of Information Security and Engineering Technology, Abu Dhabi Polytechnic College, Abu Dhabi 111499, United Arab Emirates
6Department of Software Engineering, Faculty of Engineering and Technology, University of Sindh, Sindh 76060 Pakistan

Corresponding authors: Yonis Gulzar (ygulzar@kfu.edu.sa) and Ali A. Alwan (aliamer@iium.edu.my)

This work was supported by the Deanship of Scientific Research, King Faisal University, Saudi Arabia, through the Research
Grant Program Nasher, under Grant 186331.

ABSTRACT Skyline queries have been widely used as an effective query tool in many contemporary
database applications. The main concept of skyline queries relies on retrieving the non-dominated tuples
in the database which are known skylines. In most database applications, the contents of the databases are
dynamic due to the continuous changes made towards the database. Typically, the changes in the contents
of the database occur through data manipulation operations (INSERT and/or UPDATE). Performing these
operations on the database results in invalidating the most recent skylines before changes are made on
the database. Furthermore, the presence of incomplete data in databases becomes frequent phenomena in
recent database applications. Data incompleteness causes several challenges on skyline queries such as
losing the transitivity property of the skyline technique and the test dominance process between tuples
being cyclic. Reapplying skyline technique on the entire updated incomplete database to determine the new
skylines is unwise due to the exhaustive pairwise comparisons. Thus, this paper proposes an approach, named
Incomplete Dynamic Skyline Algorithm (IDSA) which attempts to determine the skylines on dynamic and
incomplete databases. Two optimization techniques have been incorporated in IDSA, namely: pruning and
selecting superior local skylines. The pruning process attempts to exploit the derived skylines before the
INSERT/UPDATE operation made on the database to identify the new skylines. Moreover, selecting superior
local skylines process assists in further eliminating the remaining non-skylines from further processing.
These two optimization techniques lead to a large reduction in the number of domination tests due to
avoiding re-computing of skylines over the entire updated database to derive the new skylines. Extensive
experiments have been accomplished on both real and synthetic datasets, and the results demonstrate that
IDSA outperforms the existing solutions in terms of the number of domination tests and the processing time
of the skyline operation.

INDEX TERMS Dynamic database, incomplete database, pairwise comparison, skyline queries.

I. INTRODUCTION
Traditional queries operate in a very non-flexible manner as
they either return data from a database that strictly satisfies
the conditions given in the submitted query or return no

The associate editor coordinating the review of this manuscript and

approving it for publication was Arif Ur Rahman .

result if otherwise. Thus, this rigid mechanism in processing
traditional queries sometimes is impractical and might be
undesirable for manymodern database systems. A huge effort
has been made aiming at developing more flexible query
operators that attempt to relax these stringent requirements
to retrieve the most preferred tuples from a database based
on the preferences given in the submitted query, also known

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 57291

https://orcid.org/0000-0002-6515-1569
https://orcid.org/0000-0003-3279-9366
https://orcid.org/0000-0002-9900-0531
https://orcid.org/0000-0001-6812-0066
https://orcid.org/0000-0001-8239-2033

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

as user-defined preferences. These preference queries employ
preference evaluation techniques which have achieved sig-
nificant success, as they are widely used in a non-trivial
number of applications related to multi-criteria decision sup-
port systems. For almost two decades, the area of skyline
queries, which is one of the most prominent types of pref-
erence queries in database systems has received formidable
attention and become a subject of intensive research by
a large number of researchers in the database community.
This intensive focus on skyline queries reflects the fact
that skyline queries have tremendous benefits and have
been applied on various domains including but not limited
to web-based business [1], multi-criteria decision-making
system [2]–[4], crowd-sourcing databases [5]–[9], temporal
databases [10], cloud databases [11], [12] and decision sup-
port system [2], [3], [13].

Since the first introduction of skyline queries operator to
database systems in 2001 by Borzsony et al. [14] most of the
previous works are either focusing on optimizing the process
of skyline queries computation assuming that the database
is complete and all values of tuples are present [1]–[3],
[14]–[18]. Among the most remarkable variation of sky-
line technique designed for a database with complete data
are Divide-and-Conquer (D&C), Block Nested- Loop (BNL)
[14], Bitmap and Index [15], Sort Filter Skyline (SFS) [16],
Branch and Bound Skyline (BBS) [19], Linear Elimination
Sort Skyline (LESS) [17], Sort and Limit Skyline algorithm
(SaLSa) [18], Nearest Neighbor (NN) [20], ZSearch [21],
and OSPS [22].Thus, the assumption of data completeness
assures that all tuples are comparable against each other, and
performing the pairwise comparisons is straightforward and
results in identifying the skyline results.

Another group of researchers made the effort to further
investigate the challenges when processing skyline queries
on a database with incomplete data [23]–[31] in which some
values are not present during the skyline process. The focus
was given to resolve the issue of losing the transitivity prop-
erty of the skyline technique and avoid the problem of cyclic
dominance because many tuples are incomparable against
each other. The following running database example explains
the problem of losing the transitivity property of the skyline
technique and the cyclic dominance problem associated with
determining the skylines on a database with incomplete data.
Assume a bar database that consists of three dimensions (rat-
ing, entry free, distance) and contains three tuples. We also
assumed that the values of certain dimensions of the tuples
are missing (not present). The details of the three tuples
are as follows. b1(∗, 150, 5), b2(5, ∗, 7), and b3(4, 140, ∗).
The symbol (∗) indicates the missing value in a particular
dimension. Assume a person is looking for a bar with the
following preferences, the nearest in distance from his cur-
rent location, the highest in rating, and the cheapest in the
entry fee. Applying the skyline technique on the bar database
should return those tuples (skylines) which are not dominated
by any other tuples in the database. A detailed analysis of
the skyline process by performing the pairwise comparison

process between these three tuples with incomplete datamade
the following conclusion.We noticed that bar b1 dominates b2
in the 3rd non-missing dimension only where the distance of
b1 is less than bar b2. The remaining two dimensions (1st and
2nd) are incomparable since the value of d1 for bar b1 and the
value of d2 for bar b2 are both not present (missing). While
comparing bar b2 with b3 produces that b2 dominates b3 in
the common non-missing dimension d1 where b2 is having a
better rating than b3. Nonetheless, the remaining two dimen-
sions d2 and d3 are incomparable due to the missing values in
one of these dimensions. Based on the concept of transitivity
property of skyline, if b1 dominates b2 and b2 dominates b3
then as a consequence b1 should also dominate b3. However,
the results of comparisons demonstrate that b1 is not better
than b3 in any comparable dimensions. Hence, it can be con-
cluded that the transitivity property of the skyline technique
is no longer held when the database has missing values in
one or more dimensions. Most importantly, the impact of data
incompleteness is not only violating the transitivity property
of the skyline, but it also leads to making the dominance test
process among the tuples to be cyclic. From the above exam-
ple, it is clear that the value of the entry fee dimension for b3
is 140 while the value of the entry fee dimension for b1 is 150.
The comparison process indicates that b3 dominates b1 based
on the common non-missing dimensions (entry fee), while
distance and rating dimensions have been discarded as both
dimensions are incomparable. Eventually, the dominance test
process ends up with a result that depicts b1 dominates b2, b2
dominates b3, and b3 dominates b1 and retrieves an empty set
of skylines.

Most importantly, we also observed that most of the
previous works assumed that the contents of the database
are static and update operations such as insert are very
infrequent [24], [26], [27], [29], [30], [32]–[35]. However,
the update operation is among the indispensable operations
in database systems. Updating the database includes inserting
new tuples into the database and removing some existing
tuples from the database. Updates also encompass changing
the values of some existing dimensions that belong to the
tuples in the database. Update operations introduce a sig-
nificant challenge in processing skylines queries as skyline
results can be highly influenced by these updates. This effect
can be seen in the skyline result as well as the skyline com-
putation process. When an update occurs in a database by
inserting new tuples a re-evaluation for skyline result must
be achieved. This is due to the fact that some of the inserted
tuples might dominate the existing skylines and should be
included in the new skylines result. Re-evaluation of skylines
on the entire updated database is unwise due to the prohibitive
cost and the unnecessary exhaustive pairwise comparisons.

Referring to the bar database example with a different
scenario to demonstrate the issue of dynamic contents of
the database. Consider a case where a person is looking
for a bar(s) preferring bars that have the minimum entry
fee while the ratings are the highest. For simplicity and
without losing the generality, the bar database example has

57292 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 1. Example of bar dataset before insert operation.

been modified by considering the entry fee and the rat-
ing dimensions only. However, the distance dimension has
been discarded. According to the syntax rules of skyline
operators, the SQL like syntax for a skyline query should be
written as follows.

SELECT ∗ FROM Bar
Where Beach= ‘Hyams’ AND City= ‘Shoalhaven’

SKYLINE OF Rating MAX, Entry_Fee MIN;

The query engine involves a skyline operator and based on the
person’s given preferences should retrieve only those tuples
which have the highest rating and theminimum entry fee from
the bar database. Figure 1a represents the data of the bar
database in the relational (tabular) form. The relation contains
the details of 10 bars. while Figure 1b shows the graphical
representation of the bar database in 2D space. According to
the definition of the skylines technique, it can be learned that
b5, b8, and b10 are being fully dominated by b9, as b9 is better
than b5, b8, and b10 in both ratings (max) as well as in entry
fee (min) dimensions. It can be also noticed that b1 is fully
dominated by b2 whereas b3 partially dominates b1 based on
entry fee dimension only. Moreover, it is also obvious that
b2 also dominates b3 and b6 and b7 are dominated by b4.
From Figure 1, we can also notice that the entry fee of b4
is cheaper than bar b6 and b7 and the rating of b4 is higher
than b6 whereas the rating of b4 is not worse than b7. Finally,
the skyline set encompasses bars b2, b4, and b9 which are
retrieved to the end-user.

Assume a new set of tuples have been inserted into the bar
database through insert operation. The inserted tuples are b11,
b12, b13, b14, b15, b16 as depicted in Figure 2a. Inserting new
tuples into the database through insert operation would make
the skyline result before the insert to be no longer valid and a
re-evaluation for skyline queries should be conducted. Based
on the most recent information in the bar database, it can be
noticed that the bar b9 which has been reported as skyline
before the insert operation has been dominated by the newly
inserted bar b13 based on the rating dimension. This indicates
that b9 is no longer a valid skyline and should be removed
from the skyline result. Similarly, the newly added bar b15
dominates other bars and it is not worse than any other bars
in the entire database and should be reported in the new result

FIGURE 2. Example of bar dataset after insert operation.

of the skylines. We can observe that the other newly inserted
tuples b11, b12, b14, and b16 are dominated and should be
discarded. Finally, the new skyline result after the changes
made towards the initial database comprises b13, b2, b15, and
b4.
The above example demonstrates that it is necessary to

re-evaluate the skyline result every time a new tuple is
inserted into the database to make sure that the skyline result
reflects the most recent information in the database.

In the era of Internet-of-Things (IoT) data is enormous and
collected from different sensors and monitors from remote
locations. While transmission of data from these devices,
there are high chances that certain tuples have missing values
in one or more dimensions making the database to be incom-
plete. The frequent insert of new tuples from these devices
makes the contents of the database dynamic. These insert
operations performed towards the initial incomplete database
made the skylines derived before the insert operation to be
no longer valid in the new state of the database. It is unwise
and impractical to directly apply the skyline technique on the
entire database after changes are made to compute the new
skylines. This is due to the fact that not all tuples are affected
by the performed insert operation. Hence, the data incom-
pleteness and dynamism nature of data make the process
of identifying skylines a non-trivial task. Thus, an efficient
skyline method aimed at avoiding re-computing skylines on
the entire updated database is needed. The approach should
take into consideration reducing the overhead of the skyline
operationwhilemaintaining skyline results based on the latest
information in the database.

In this paper, we take the challenge to solve the problems
involved to compute the skylines over an incomplete and
dynamic database. This includes the issue of recomputing
skylines in an incomplete and dynamic database by avoiding
scanning the entire database after the update is made towards
the initial incomplete database. Furthermore, this paper also
emphasizes resolving the issue of sustaining the transitivity
property of the skyline technique and preventing the cyclic
dominance problem associated with the domination test pro-
cess in an incomplete database. The idea of the proposed
strategy concentrates on minimizing the number of pairwise

VOLUME 9, 2021 57293

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

comparisons during the domination tests process which in
turn reduces the processing time.

The main contributions of this paper are briefly explained
as follows:

• The problem of processing skyline queries in an incom-
plete and dynamic database where values of certain
dimensions of tuples are missing and the contents of the
database are frequently updated through data manipula-
tion operations (insert and update) has been highlighted.

• A detailed and comprehensive review of the most
remarkable related works in the area of skyline queries
has been carried out. The review encompasses exam-
ining the proposed solutions designed to work on both
complete and incomplete databases. The review outlines
the details of the strengths and weaknesses of each
approach.

• An efficient algorithm named IDSA that is capable
of answering skyline queries over an incomplete and
dynamic database is proposed. IDSA comprises seven
phases working towards determining the skylines of an
incomplete and dynamic database.

• An efficient data filtration technique called pruning
has been employed to eliminate the dominated newly
inserted tuples before applying the skyline process. The
idea of data pruning is very beneficial and results in a
significant reduction in the number of pairwise compar-
isons performed to identify the skylines after the changes
are made towards the initial incomplete database.

• An innovative data partitioning method has been pro-
posed which divides the inserted tuples of the database
into distinct clusters based on their domination power.
The idea of data partitioning is crucial as it assists in
minimizing the number of pairwise comparisons per-
formed to determine the skylines after the changes are
made towards the initial incomplete database.

• The efficiency of the proposed solution has been eval-
uated with numerous experiments conducted on both
real and synthetic datasets. The experiment results prove
the capability of IDSA in generating the skylines after
changes are made towards a database.

The rest of the paper is organized as follows. In Section II,
the previous works related to this research are presented
and discussed deliberately. The basic definitions and the
necessary notations related to skyline queries over dynamic
and incomplete databases, which are used in the rest of
the paper, are set out in Section III. The proposed algo-
rithm for processing skyline queries on dynamic and incom-
plete data with changing states is illustrated in Section IV.
The experimental results are presented and explained in
Section V. The conclusion is described in the final section,
Section VI.

II. RELATED WORK
Many variations of skyline techniques have been introduced
in the past two decades. The first two skyline techniques

introduced in the database systems are Block-Nested-Loop
(BNL) and Divide and Conquer (DC) which are proposed by
the work in [14]. The aim of these two approaches (BNL and
DC) was to determine the non-dominated tuples which are
also known as skylines of the database. The BNL approach
operates by employing a sorting technique to assist in avoid-
ing scanning the entire database when deriving the skylines.
While D&Coperates by exploiting the concept of dividing the
initial large database into manageable small sub-databases.
Then, it computes the skylines of these sub-databases sepa-
rately and eventually identifies the final skylines by further
comparing the skylines of these sub-databases against each
other. Generally speaking, almost all the variations of skyline
techniques proposed in the literature can be classified into
two groups, namely: BNL-based group and DC-based group.
Among the remarkable BNL-based approaches are SFS [16],
LESS [17], and SaLSa [18], while index [15], NN [20],
BBS [19], OSPS [22], ZSearch [21], and BSkyTree [36]
are DC-based approaches. These techniques concentrate on
improving the efficiency and the performance of the sky-
line process by reducing the exhaustive pairwise comparison
between tuples and minimizing the searching space. Consid-
ering the literature, it can be concluded that the searching
space constitutes the main concern of the skyline process
and is considered as the most important factor that affects
its performance. However, these techniques are proposed
with the main aim to handle issues related to optimizing
skyline computations over a database with complete data.
This includes the issue of reducing the searching space, mini-
mizing the pairwise comparisons between tuples to return the
skylines, and reducing the total execution time of the skyline
process.

In the recent past, the focus has been oriented towards
resolving issues related to skyline queries in the presence of
incomplete data. A variety of skyline approaches designed
for an incomplete database have been established. In the
following, we present and discuss the previous approaches
proposed to process skyline queries in the incomplete
database.

The early attempt on the discussion of the issue of pro-
cessing skyline queries over incomplete data has been intro-
duced in [24]. Two algorithms have been proposed tackling
the issue of processing skyline queries in incomplete data,
namely Bucket and Iskyline. The idea of the Bucket algorithm
relies on exploiting the bitmap representation to divide the
tuples of the database into distinct buckets. Each bucket con-
tains tuples with exact similar bitmap representations which
denote that these tuples have missing values in the similar
attributes. Then, the conventional skyline algorithm is uti-
lized on each bucket separately to identify the skylines of
each bucket which are also known as local skylines. Finally,
the local skylines of each bucket are further compared to
each other to identify the skylines of the entire database. The
idea of creating distinct buckets has been further improved
in the Iskyline algorithm with two optimization techniques,
virtual points, and shadow skylines, to reduce the number

57294 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

of local skylines in every bucket. Reducing the number of
local skylines is very beneficial in decreasing the number
of pairwise comparisons to be performed in identifying the
skylines. However, the idea of the Iskyline technique is rather
time-consuming as in each bucket many pairwise compar-
isons need to be performed to find the local skylines. This
is because Iskyline involves a large number of virtual points
which are derived from the local skylines of the buckets to be
placed on top of each bucket to prune the dominated local
skylines. In 2012 Arefin and Morimoto [37] proposed an
approach named Replacement Based Sets Skyline Queries
(RBSSQ) for processing skyline queries on a database with
missing values. The idea of RBSSQ relies on the concept of
the Bucket algorithm proposed in [24] to replace the missing
values with certain numbers that are larger than the domain
value to prevent losing the transitivity property of the skyline
and to avoid the issue of cyclic dominance. The RBSSQ
consists of two phases, (i) data pre-processing and (ii) sky-
line sets computation. In the data pre-processing phase the
missing values of the tuples are replaced with values beyond
the domain of each attribute. While in the skyline sets com-
putation phase, skylines are computed from the processed
data.

In 2013 Bharuka and Kumar [26], introduced a Sort-based
Incomplete Data Skyline algorithm (SIDS) to compute the
skylines on an incomplete database by exploiting the concept
of sorting proposed in [38]. The process of SIDS starts by
selecting attributes of the tuples in a round-robin fashion
and the tuple with the next best value in that attribute being
chosen for processing. This step is important to eliminate
the dominated tuples in the early stage to avoid the exhaus-
tive pairwise comparisons in determining the skylines. SIDS
assumes that all tuples in the database are candidate skylines
before removing dominated tuples from the candidate set.
Then, if a tuple has not been pruned yet and has been pro-
cessed k times, where k is the count of complete attributes
for the tuple, it is determined to be a skyline and can be
returned immediately. The rationale here is that any tuple with
k complete attributes can be dominated in at most k attributes.
Thus, SIDS can progressively return skylines whenever the
above condition is satisfied. However, SIDS assumes that
the lists have to be accessed in sequential order, and the
system has to receive the results of all lists before moving
to the next phase. Thus, increasing the number of lists may
degrade the performance of the skyline process and delay
generating the skylines for the end-user. Moreover, SIDS
lacks any optimization that could simplify the process of iden-
tifying the skylines, particularly for a database with dynamic
contents. This sequential access renders the process of pair-
wise comparisons to be exhaustive as many unnecessary
pairwise comparisons are needed to eliminate the dominated
tuples.

Bharuka and Kumar [27] have further investigated the
issue of handling skyline query computation in an incom-
plete database. They have proposed a hybrid solution named
Incomplete Data Frequent Skyline (IDFS) based on the

concept of the top-k frequent skyline technique suggested
in [3] to identify the skylines of the incomplete database. The
IDFS approach resolves the issue of controlling the size of
the skylines utilizing the concept of top-k frequent skyline
technique in [3] returning the superior skylines from the
database with missing values ordered by their fractional sky-
line frequency. However, IDFS may not be suitable to be
applied on a database with incomplete data and dynamic
contents as it has to be reapplied whenever the contents
of the database are changed due to the changes made
through the data manipulation operations such as insert and
update.

Miao et al. [39] introduced two efficient algorithms for
skyline query processing on incomplete data, in which tuples
might have missing values in one or more attributes. These
algorithms are k-SkyBand algorithms (kISB) and Virtual
Point-based algorithm (VP), which include novel concepts
such as the expired skyline, shadow skyline, and thickness
warehouse that boost the search performance. The kISB
algorithm is designed for kSB query (k-Skyband query) on
incomplete data, which employs the concepts of thickness
warehouse and expired skyline to improve the search perfor-
mance. On the other hand, the VP algorithm utilizes the con-
cept of virtual point, expired skyline, and shadow skylines to
reduce the size of the candidate set and boost the query perfor-
mance. The concept of both algorithms inspired by the work
in [24].

Alwan et al. [40] introduced an algorithm named Incosky-
line to compute the skylines of an incomplete database taking
into consideration the issue of losing the transitivity property
of the skyline technique and the problem of cyclic dominance
in deriving skylines. Incoskyline comprises of four phases,
clustering data, grouping and identifying local skylines, gen-
erating k-dom skylines, and identifying incomplete skylines.
The Incoskyline processes the skyline queries with missing
values in an intuitive way by exploiting the idea of generating
virtual tuples out of the local skylines of the clusters which
are called k-dom skylines. The derived k-dom skylines are
combined to produce one global k-dom skyline to be inserted
on top of each cluster to prevent the dominated tuples from
further processing. A list of candidate skylines is established
containing the local skylines of clusters that are not worse
than the global k-dom. Eventually, these candidate skylines
are further processed by comparing them against each other
to return the final skylines of the entire database. However,
Incoskyline is inadequate to be applied directly on a dynamic
database with incomplete data. This is because Incoskyline
is designed to work on a database with static content and
update operations such as insert, and update are very infre-
quent to be performed on the initial incomplete database.
Nevertheless, if any update has been made towards the initial
incomplete database, Incoskyline has to be reapplied on the
entire updated database. This means re-scanning the entire
database and unnecessary exhaustive pairwise comparisons
have to be performed to specify the new skylines reflecting
the most recent information of the database.

VOLUME 9, 2021 57295

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

Besides, the work in [32] has also highlighted the issue of
processing skyline queries in a database with missing data.
They have designed a framework called COBO that employs
a skyline approach named ISSA to compute the skylines in
two stages, namely: pruning compared lists and reducing
expected comparison times. The pruning compared list has
exploited the idea of the Bucket algorithm proposed in [24] to
prune the unwanted tuples from each bucket. While reducing
expected comparison times stage is responsible to find the
total sum of complete attributes of all non-dominated tuples
from each bucket and sorts those tuples in an ascending order
(smaller value considered as best). This technique minimizes
the number of pairwise comparisons and the total processing
time of the skyline queries operation.

Wang et al. [29] have also discussed the issue of process-
ing skyline queries over massive incomplete databases. They
have proposed an approach named, Skyline Preference Query
SPQ, which attempts to derive the skylines of the database
through three main steps. The first step attempts to divide the
initial massive incomplete database into two separated sub-
sets based on the priority level of the attribute. The skylines
of the first subset, which is also known as local skylines,
are retrieved using the idea of the SIDS proposed in [26].
In the second step, the concept of bitmap representation has
been adopted along with the DC strategy proposed in [14] to
return the skylines of the other subsets. Lastly, the final list of
skylines of the entire massive incomplete database is formed
by comparing the local skylines of both subsets against each
other. SQP needs to construct a large number of distinct
arrays in which each array is being processed sequentially
to specify the skylines. This large number of arrays and the
exhaustive pairwise comparisons that need to be performed to
determine the skylines incur a longer processing time. This is
because many unwanted pairwise comparisons are performed
during the process of identifying the local skylines of each
subset.

The work presented in [41] has tackled the issue of
skyline queries in probabilistic incomplete databases.
In probabilistic databases, the values of an attribute are not
completely missing, but they are present in a pre-defined
range. An algorithm named EP has been designed based
on the idea of multi-level grouping. The proposed strat-
egy adopts the concepts of bitmap representation to divide
the initial database into different buckets, then the tuples
in each bucket are sorted in descending order. Moreover,
the EP algorithm applied several pruning strategies aiming
at reducing the computational costs of the skyline process.
Lastly, the final skylines of the entire database are retrieved
by comparing the local skylines of the buckets against each
other.

Furthermore, Gulzar et al. [42] proposed an efficient
algorithm called the Sorting-based Cluster Skyline Algo-
rithm (SCSA) processing skyline queries in an incomplete
database. SCSA employs the idea of bitmap representation
introduced in [40], [24], to distribute the tuples with miss-
ing values into various distinct clusters. The clusters are

further divided into smaller manageable groups to avoid
many unwanted pairwise comparisons between the tuples to
generate the skylines. Several optimization techniques have
been incorporated in the SCSA algorithm to assist in elim-
inating many dominated tuples before retrieving the final
skylines. Removing those dominated tuples before applying
the skyline technique is very beneficial as it leads to reducing
the cost of the skyline operation.

To the best of our knowledge, the most recent work that has
tackled the issue of processing skyline queries on incomplete
databases has been contributed by [43], which proposed three
methods for probabilistic skyline computation on incomplete
data. The first method called Sorting-based Probabilistic Sky-
line on incomplete data complyingwith Independent distribu-
tion (SPISkyline). The secondmethod is called Sorting-based
Probabilistic Skyline on incomplete data complying with
Correlated distribution (SPCSkyline) and the third method
is named Sorting-based Probabilistic Skyline on incomplete
data complying with Anti-correlated distribution (SPASky-
line). Both SPISkyline and SPCSkyline methods employed
pruning strategy, optimization of the process of probability
computation, and sorting technique to improve the efficiency
of probabilistic skyline computation. While the SPASkyline
applying optimization of the process of probability computa-
tion, and sorting technique to improve the efficiency of proba-
bilistic skyline computation. While the SPASkyline applying
optimization of the process of probability computation and
sorting technique to improve the efficiency of probabilistic
skyline computation. The main reason for not applying the
pruning technique in the SPASkyline method is that it is
ineffective for incomplete data over anti-correlated databases.

From the work reviewed in this section, we can conclude
that most of the previous works have assumed that the skyline
queries process is performed on an incomplete database with
static contents. However, data manipulation operations such
as insert, and update operations are indispensable in most
modern database applications. Thus, these update operations
most likely result in invalidating the skylines produced before
the update is made towards the initial incomplete database.
It is unwise to blindly re-apply a cost-prohibitive skyline
technique on the entire updated database aiming at generating
the new skylines. This is due to the fact that many of the newly
inserted tuples might be dominated and exhaustive pairwise
comparisons between the existing and the recently added
tuples could be avoided. Nevertheless, some algorithms are
proposed specifically for a dynamic database; most of them
are based on top-k . For instance, the work presented in [44]
focuses on top-k and top-k dominating and reviews algo-
rithms for evaluating continuous preference queries under the
sliding window streaming model. Hence, an efficient sky-
line approach that avoids re-scanning the initial incomplete
database after performing the data manipulation operations
(insert and/or update) operations is extremely needed. The
approach should update the result of the skylines to reflect the
most recent information in the database while maintaining a
reasonable cost and processing time.

57296 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

TABLE 1. Symbols and description.

III. PRELIMINARIES
This section introduces the definitions and the necessary
notations related to skyline queries in dynamic and incom-
plete databases that are used throughout this paper. These
definitions and notations assist in clarifying the proposed
approach. Table 1 summarizes the symbols used throughout
the paper.
Definition 1 (Incomplete Database): A database, D, with

m dimensions, d = {d1, d2, . . . , dm} and n tuples D =
{p1, p2, . . . , pn} is incomplete denoted as DI if and only if it
contains at least a tuple pi with missing value in one or more
of its dimensions, dj, where dj ∈ d ; otherwise, it is complete.
We use the symbol ‘–’ to denote amissing value. For example,
the tuple pi(–, 6, 2, –) demonstrates that the first and fourth
dimensions have missing values.
Definition 2 (Comparable): Given a database D with n

tuples D = {p1, p2, . . . , pn}, pi and pj are said to be compa-
rable if and only if they have the same bitmap representation.
Each tuple is represented as a bitmap representation where bit
1 is used to represent the dimensions with no missing values
while bit 0 is used to represent the dimensions with missing
values. Tuples that are comparable imply either they are com-
plete, or they have missing values in the same dimension(s);
otherwise, they are said to be incomparable. For instance,
the bitmap representations of the tuples pi(–, 6, 2, –) and
pj(7, –, –, 9) are 0110 and 1001, respectively. Thus, these two
tuples are incomparable.
Definition 3 (Dominance Relationship): Given a database,

D, with m dimensions, d = {d1, d2, . . . , dm} and n tuples
D = {p1, p2, . . . , pn}, pi is said to dominate pj denoted by
pi �� pj if and only if the following condition holds: ∀dk ∈
d , pi.dk ≥ pj.dk ^∃dl ∈ d , pi.dl > pj.dl . Throughout this
paper, we assume that bigger values are preferred over smaller
ones. For instance, consider the tuples pi(7, 6, 2, 8) and pj(7,
5, 1, 8), pi �� pj as pi is better than pj in the second and
third dimensions (true on the second part of the condition),
while pi is equal to pj in the first and fourth dimensions (true
on the first part of the condition). This definition applies to
those tuples that are comparable (refer to Definition 2).

Definition 4 (Skylines): Given a database D with n tuples
D = {p1, p2, . . . , pn}, pi is a skyline ofD if there are no other
tuples pj ∈ D that dominates pi. Skylines hold the transitivity
property that means if pi dominates pj and pj dominates pk ,
this implies that pi dominates pk [27]. We use the symbol S
to denote the set of skylines of a database D. However, in an
incomplete database the transitivity property of skylines no
longer holds due to cyclic dominancewhere none of the tuples
is considered as skyline as every tuple is dominated by at least
one other tuple.
Definition 5 (Revised Bitwise): Given a database D with n

tuples D = {p1, p2, . . . , pn}, pi and pj with different bitmap
representations, i.e., pi and pj are incomparable as defined in
Definition 2. Nevertheless, pi and pj are comparable on their
revised bitwise if it is not equal to 0, which is obtained by
performing the AND operation on the bitmap representations
of pi and pj. For instance, the bitmap representations of the
tuples pi(–, 6, 2, –) and pj(7, –, –, 9) are 0110 and 1001,
respectively. Based on Definition 2, these two tuples are
incomparable. They are also incomparable based on their
revised bitwise which is obtained by performing the AND
operation on the 0110 and 1001; which results in 0000.
Definition 6 (Dominance Relationship on the Revised

Bitwise): Given a database, D, with m dimensions, d =
{d1, d2, . . . , dm} and n tuples D = {p1, p2, . . . , pn}; and two
tuples pi and pj ∈ D with different bitmap representations.
If their revised bitwise is not equal to 0, then pi is said to
dominate pj on the revised bitwise denoted by pi �� pj if and
only if the following condition holds: ∀dk ∈ d ′, pi.dk ≥ pj.dk
^∃dl ∈ d ′, pi.dl > pj.dl where d ′ is a set of dimensions whose
revised bitwise representation is 1 and d ′ ⊂ d . For instance,
consider the tuples pi(–, 6, 2, –) and pj(–, 5, –, 5), pi �� pj
as pi is better than pj in the second dimension.
Definition 7 (Dynamic Database): A database, D, is said

to be dynamic denoted as DD if the tuples in the database
keep on changing in which a new tuple(s) is inserted into the
database.
Definition 8 (Database State): Given an incomplete

database, DI (refer to Definition 1), its state is changed to
a new state, Dnew, due to the following operations:

• Insert Operation: Dnew = DI
⋃
D<insert> where

D<insert> is a set of tuples to be inserted into the initial
database, DI .

• Delete operation: Dnew = DI – D<delete> where
D<delete> is a set of tuples to be deleted from the initial
database, DI .

• Update operation:Dnew = (DI –D<delete>)
⋃
∪D<insert>

where an update operation is considered as a delete
operation followed by an insert operation.

Definition 9 (Skylines of Dnew due to D<insert>): Given a
databaseDwith n tuplesD = {p1, p2, . . . , pn}, pi is a skyline
of D if there are no other tuples pj ∈ D that dominates
pi. Assume that the set of skylines derived based on D is
S. Given the D<insert> = {q1, q2, . . . , qk}, the Dnew =
{p1, p2, . . . , pn, q1, q2, . . . , qk}, the set S is still valid iff for

VOLUME 9, 2021 57297

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 3. Phases of IDSA algorithm.

every pl ∈ S there are no tuples qk ∈ D<insert> that dominates
pl , otherwise a new set of skylines S ′ needs to be computed.

IV. IDSA ALGORITHM
This section presents the proposed algorithm named Incom-
plete Dynamic Skyline Algorithm (IDSA), which aims at
identifying skyline results over a database with incomplete
data when changes are made towards the database due to
the insert operations. The proposed solutions emphasize on
avoiding the unnecessary skyline computations to introduce
the new skyline result when new tuples are added into the
database. The process of re-computing skylines over the
update database is inevitable as the skyline results produced
earlier (before insertion) is no longer valid. However, it is
unwise to blindly reapply the skyline technique over the entire
updated database. This is due to the fact that many tuples
have been analyzed previously and might not be affected by
the changes made by the insert operations and re-examining
them results in many unwanted expensive pairwise compar-
isons. Thus, to avoid the unnecessary pairwise comparisons
while attempting to identify the skyline result after the insert
operation on the initial database, it is important to perform
a progressive scanning process considering the most can-
didate skylines in the initial incomplete database and the
newly added data items to identify the skyline results based
on updated content. Intuitively, the idea of a progressive

FIGURE 4. The initial incomplete database.

scan can lead to a significant reduction in the number of
pairwise comparisons and processing time in the subsequent
computation of skylines. The IDSA algorithm comprises of
seven phases, namely: Generating min-dom and Construct-
ing Lists, Pruning, Clustering, and Grouping, Identifying
Local Skylines, Selecting Superior Local Skylines, Identi-
fying Candidate Skylines, and Retrieving Final Skylines.
Each phase plays a crucial role in identifying the skylines
of the incomplete database. The main purpose of the IDSA
is to derive the new skylines after a change has been made
towards the initial incomplete database due to the insert
operation. Taking into consideration the issue of reducing
the search space by avoiding the re-computation process
of the skyline on the entire database. Figure 3 illustrates
the phases of the IDSA algorithm presented in this paper.
These phases are further explained in detail in the following
subsections.

57298 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 5. Skylines of the initial incomplete database (before insert
operation).

Since the IDSA algorithm is designed to work on a
dynamic incomplete database, thus, we assume that the initial
database has tuples with some missing values in one or more
dimensions as shown in Figure 4. For simplicity and to focus
on the main issue concern in this work, we assume that the
skyline result of the existing tuples of the database before
the insert operation has been identified using the skyline
technique proposed in [31]. The skylines set E-skylines of
the initial incomplete database (before insert operation) are
elucidated in Figure 5. It should be noted that the work
introduced in [31] is limited to resolve the issue of processing
skyline queries over incomplete data assuming no changes
towards the database and the skyline computation performed
only once. However, this work emphasizes dealing with the
problem of skyline queries when a database state is changed
due to the data manipulation operation(s); in which a new
tuple(s) is inserted into the database or updated from the
database. Thus, a new set of skylines should be derived to
reflects the latest changes in the database contents. To achieve
our main aim, i.e. avoiding unnecessary computations of
skylines and utilizes the skylines of the previous state of
the database (before insert and/or update operation) during
the process of identifying a new set of skylines. However,
re-computing the skylines over the entire updated database
is unwise as not only it will incur undesirable storage costs,
but also results in many exhaustive unnecessary pairwise
comparisons in the subsequent processes of skyline computa-
tions. Hence, optimizing the skyline process over a dynamic
and incomplete database is an issue to be dealt with in this
work.

To explain the functionality of the IDSA technique new
tuples have been inserted into the initial incomplete database
as elaborated in Figure 6. The figure indicates that 40 new
tuples with ID (n0 – n39) have been added into the initial
incomplete database.

A. GENERATING MIN-DOM AND CONSTRUCTING LISTS
In this section, we explain the process of how lists for each
dimension of newly inserted tuples are constructed. The con-
tents of lists are determined by comparing the newly inserted
tuples with the virtual tuple called min-dom. The entire
process of constructing the lists starts by deriving a virtual
tuple from the existing skyline set, E-skylines. Virtual tuple,
min-dommust contain the same number of dimensions as the

FIGURE 6. Newly inserted tuples to the initial incomplete database.

entire database contains. Each dimension value of min-dom
is determined by considering the lowest value in each dimen-
sion of the E-skylines set. The min-dom is represented using
the following formula.

min− dom={V .d i : V .d i=min {p.d i : p ∈ E− skylines} ,

1 ≤ i ≤ n}

where n is the dimensionality of E-skylines.
After the virtual tuple (min-dom) is derived, the process of

constructing the lists starts by comparing themin-dom dimen-
sion values with the values of the corresponding dimension
of the newly inserted tuple(s). Note that the number of lists
should be equal to the dimensionality (including dimensions
withmissing values) of the database. If the dimension value of
a newly inserted tuple is either missing or less than the value
of the corresponding dimension of min-dom then the ID of
the newly inserted tuple is added to the corresponding list.
This process continues by reading the entire newly inserted

VOLUME 9, 2021 57299

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 7. The min-dom virtual tuple derived from the skylines of the
initial incomplete database.

FIGURE 8. Lists constructed for the newly inserted tuples with their ID’s.

tuples considering all dimensions. The following equation
demonstrates the formula of generating lists based on min-
dom.

ui = {nk ∈ new− D : nk .di < V .d i,V .di
∈ min− domornk .di is missing}, 1 ≤ i ≤ n

where n is the dimensionality of E-skylines, and new-D is a
set of newly inserted data

We believe that this step is very beneficial and helps in sim-
plifying the process of identifying the skylines on a database
with incomplete data when changes are made towards the
database with insert operation. We conclude that the con-
struction of lists with the help of min-dom leads to prevent
a non-trivial number of the dominated newly inserted tuples
from further being processed. Most importantly, this step
contributes significantly to reducing the number of pairwise
comparisons that need to be performed to derive the new
skylines results after the insert operation.

Based on skyline results reported in Figure 5, we can
notice that the minimum value in dimension d1 is 4, the min-
imum value in dimension d2 is 1, the minimum value in

FIGURE 9. Algorithm for generating min-dom and constructing lists.

dimension d3 is 4, the minimum value in dimension in d4
is 8, the minimum value in dimension in d5 s 4 and d6 is 6.
Therefore, the derived min-dom virtual tuple produced based
is the skylines presented in Figure 5 is (4, 1, 4, 8, 4, 6) as
shown in Figure 7.
With the help ofmin-dom, the lists are generated containing

the tuple IDs of corresponding dimensions whose values are
either missing or less than the value of the corresponding
dimension of min-dom. Figure 8 depicts the lists generated
from the inserted tuples. From the figure, we can notice
that list u1 has been constructed based on dimension d1
which contains the ID of 18 tuples. Similarly, list u2 that
has been created based on dimension d2 includes the ID
of 7 tuples. The process ends by creating a list u3, u4, u5,
and u6 that contain the ID of tuples 21, 37, 17, and 22,
respectively.

Figure 9 presents the detailed steps of generatingmin-dom
and constructing lists algorithm. The input of the algorithm
encompasses the skylines of the initial incomplete database
(before insert),E-skylines, and the newly inserted tuples, new-
D, while the output of the algorithm is a set of constructed
lists containing the IDs of the newly added tuples, new-D. The
algorithm starts by analyzing each dimension of the skyline
tuples, E-skylines (step 1). If no value is found in dimension
di for all tuples in the skylines, E-skylines (step 2), then it
sets the value of the dimension di of min-dom to ‘∗’, which
denotes that the value of the di of min-dom is not present
(missing) (step 3). Otherwise, the value of dimension di of
min-dom is set to be the smallest value found in dimension
di concerning all tuples in the skyline result, E-skylines (step
5). Steps 1 to 5 are repeated until the min-dom virtual tuple
has been formed. Next, the lists are constructed based on
the values of the dimensions of the newly inserted tuples
as follows. First, each dimension, di, of the newly inserted
tuples, new-D, is analyzed (step 8-9).

57300 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

If the value of di of the tuple tj is either missing or less
than the value of the corresponding dimension di ofmin-dom,
then, the ID of the tuple tj is inserted into the list, Lists.ui
(steps 10 – 11). This process continues until all the tuples
in each dimension, new-D, is read (step 8-14). Lastly, the
algorithm returns the created lists containing the ID of the
newly inserted tuples, new-D (step 15).
Time complexity analysis of Algorithm 1.
Let |E-skylines| = m, |new-D| = n and |d | = k , where
|X | denotes the number of items in X . Determining if min-
dom.di = ‘∗’ or finding theminimumvalue in each dimension
di takes O(m) time. Thus, the first part of Algorithm 1 (i.e.,
lines 1-7) takes O(k × m) time. Since for each tuple tj in
new-D, it’s every dimension value tj.dimust be checked if
it is missing or less than min-dom.di, the second part of
Algorithm 1 (i.e., lines 8-15) takes O(k × n) time. Hence,
the running time of Algorithm 1, T1(m, n, k), is

T1(m, n, k) = O(k × (m+ n)).

If we assume that k = O(1), i.e., the dimensionality of
databases is fixed, then T1(m, n) = O(m+ n).

B. PRUNING
The main purpose of this phase is to eliminate the dominated
tuples of the newly inserted data to the initial incomplete
database before applying the skyline technique. To do so,
the tuples in each constructed list are scanned in sequence
to count their dominated power (dom-p) value followed by
removing those tuples with the high dom-p value from further
processing. The idea of removing those tuples with a high
dom-p value is very useful as it assists in a safe early termi-
nation for the scanning process. This is because these tuples
will be dominated by the candidate skylines or by the tuples
present in new-D. Therefore, these tuples have no potential
to form the final skylines of the updated database. Hence,
these tuples can be safely removed to avoid many unwanted
pairwise comparisons. We argue that the idea of pruning
is very beneficial and contributes to optimizing the skyline
process over an incomplete database with insert operation.

The process starts by scanning each constructed list ui
and calculating the dom-p value of each tuple based on their
appearance in the constructed lists. The dom-p value indicates
the domination value in which the tuple is being dominated by
min-dom. If the tuple has a large dom-p value, this means the
tuple has been dominated by min-dom in a large number of
non-missing dimensions and vice versa. This process ends by
generating a 2D array named dom-p-list that consists of the ID
of the tuples and their dom-p value. The following equation
demonstrates the formula for computing the dom-p value of
a newly inserted tuple ti:

dom− p (ti) =
∑
u∈Lists

χu (ti)

where u is the generated list based on the newly inserted
tuples, new-D.

The idea of the pruning technique works as follows. If the
dom-p value of the tuple ti is equal to (d − 1) where d is the
number of dimensions, then this indicates that the tuple ti is
being dominated by min-dom at least in (d − 1) dimensions.
Thus, it shows that the dominated tuple ti will not be part
of the final new skylines and can be safely removed before
applying the skyline technique. The elimination of the domi-
nated tuples will help in avoiding many unnecessary pairwise
comparisons during deriving the new skylines based on the
recent update status of the incomplete database. The idea of
pruning relies on generating a threshold value named mid-
max-dom-p based on the highest dom-p value produced in the
corresponding dom-p-list divided by 2. Then, a comparison is
performed between the mid-max-dom-p and dom-p value of
each tuple ti in dom-p-list. Notice that the mid-max-dom-p
value is rounded up to the next higher integer number if the
value is produced of mid-max-dom-p. The formal definition
of pruning is given below.
Definition 10 (Pruning): Given a tuple ti ∈ dom− p− list

of newly inserted tuples and let dom-p equal to the domination
power of ti. Then tuple ti is removed from the dom-p-list
list if and only if the following condition hold (ti.dom-p >
mid-max-dom-p). Otherwise, the tuple ti remains for further
processing.

dom_p_list={∀ti : iffdom− p of ti<mid−max−dom−p}

With the help of the proposed pruning technique, there will
be around 40% to 50% of the newly inserted tuples success-
fully removed from further processing. This means a 50%
reduction of the pairwise comparisons which further leads
to a significant reduction in the total processing time of the
skyline process.

From the running database example, the list of tuples with
their ID’s derived from the previous phase is scanned based
on their dimensions. The process begins by scanning list u1
to count the dom-p value of each tuple in list u1. The process
continues to read all tuples in lists u2, u3, u4, u5, and u6,
respectively. Eventually, a new 2D array named dom-p-list
is created which comprises of the ID of the tuple and its
corresponding dom-p value. It should be noted that every time
the tuple is read, the value of dom-p of the corresponding
tuple increases by 1. Figure 10 demonstrates the result of the
dom-p-list produced based on the running database example.
From the figure, it could be observed that the dom-p of the
newly inserted tuple n0 is equal to 3. This is because tuple n0
has appeared 3 times in many lists including u1, u4, and u6.
Similarly, the dom-p of n2 is equal to 4, indicates that n4 has
been found in 4 different lists u1, u2, u4, and u5.
One can notice that, in Figure 10, the highest dom-p value

found in dom-p-list is 5, which denotes that one ormore tuples
in dom-p-list have been examined 5 times. Hence, the mid-
max-dom-p value is equal to 3 since d5/2e = 3. Thus, all
tuples with a dom-p value greater thanmid-max-dom-p can be
safely removed from further processing. This is because these
tuples are dominated by other tuples in many non-missing
dimensions and therefore will not be listed in the skyline

VOLUME 9, 2021 57301

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 10. The domination power of the newly inserted tuples.

FIGURE 11. Result of Candidate Tuples After Pruning.

result. This process leads to a significant reduction in the
number of pairwise comparisons in identifying the skylines
based on the recently updated contents of the database due to
the elimination of many dominated tuples from further pro-
cessing. Figure 11 depicts the result of the pruning process
elucidating that many tuples ti with dom-p.ti > 3 have been
removed from the dom-p-list. This includes removing tuples
n2, n4, n9, n13, n22, n24, n29, n33, n39, n1, n6, n14, n21, n30,
n7, n16, and n37 from the dom-p-list. A total of 17 tuples out
of 40 have been removed successfully before applying the
skyline technique, which means a 43% reduction from the
total amount of newly inserted tuples. It is obvious that if
we compare these removed tuples with the skylines of the
initial incomplete database (before insertion), none of these
removed tuples can be in the skyline result of the recently
updated database as these tuples will be dominated by some
other skylines in E-skylines. Hence, to avoid this expensive
process these tuples are deleted in the early stage to prevent
the prohibitive expensive pairwise comparisons during sky-
line operation.

Figure 12 presents the detailed steps of the algorithm that
generates the dom-p-list. Given a set of lists, Lists, containing
the ID’s of tuples as an input to the algorithm, while the output

FIGURE 12. dom-p-list Algorithm.

is a list of tuples with their corresponding domination powers,
dom-p-list. The algorithm starts by reading each tuple in all
lists (steps 1-2), if the tuple has been read before (step 3), then
the domination power, dom-p of the tuple is incremented by 1.
Else, if the tuple has not been read before, then add the tuple
to the dom-p-list and set the domination power of the tuple to
be 1 (steps 5-7). This process continues until all tuples in all
lists are read (steps 1-10). The algorithm ends by returning
the dom-p-list.
Time complexity analysis of Algorithm 2
Let T2 (k, n) denote the running time of Algorithm 2. From

the analysis of Algorithm 1 above, we can assume that for
each ui in Lists, |ui| = O(n) where n = |new-D|. Since |d | =
k , we have |Lists| = k . To compute the dom-p value of each
tuple tj belonging to some ui, the algorithm scans every list in
Lists. Thus, T2(k, n) = k×O(n) = O(k×n). Since dom-p-list
may contain almost all tuples of new-D, |dom-p-list| = O(n).

Figure 13 elucidates the algorithm steps for deriving new
candidate tuples of the newly inserted tuples. The algorithm
input consists of the dom-p-list and the output of the algo-
rithm is a list of new candidate tuples. The algorithm begins
by analyzing the values of the dominated power, dom-p of
the tuples in dom-p-list to determine the maximum dom-p
value, max-dom-p, and generates the mid-max-dom-p (steps
1-2). The value of mid-max-dom-p is generated by dividing
themax-dom-p by 2 and round-up the result to the next higher
integer number. Then the algorithm scans each tuple in dom-
p-list to eliminate those tuples with a dom-p value greater than
the derived mid-max-dom-p (step 3-7). Lastly, the algorithm
returns the remaining tuples as a new set of new candidate
tuples (step 8).

C. CLUSTERING AND GROUPING
The idea of clustering and grouping implemented in this
phase has been inspired by our previous approach in [31].
The main aim of the clustering and grouping phase is further
to simplify the process of scanning the tuples present in the
candidate skyline list, CD, by dividing the tuples into differ-
ent clusters based on their domination power (dom-p) values.

57302 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 13. Algorithm for identifying the new candidate tuples.

With n distinct dom-p values, the tuples are divided into n
distinct clusters C1, C2, . . . ,Cn, where all tuples with the
same dom-p value belong to the same cluster. It is obvious that
applying the concept of the domination power on a cluster is
very beneficial and assists to avoid the unwanted comparison
among tuples with the entire candidate skyline set if those
tuples are being dominated by other tuples within the cluster.
The idea of clustering and grouping has been proven to be an
effective and practical solution for processing skyline queries
over both complete and incomplete data.

Many variations of skyline techniques have exploited the
idea of divide-and-conquer in deriving skylines [31]. Due to
the presence of data incompleteness and the frequent insert
operation towards the database, the transitivity property of
the skyline no longer holds, and the dominance relationship
will be cyclic. To prevent these challenges and ensure the cor-
rectness and completeness of the skyline result, an efficient
grouping technique proposed in [31] has been employed.
The grouping process attempts to divide the tuples in one
cluster Ci into many manageable subclusters called groups
Ci.G1, Ci.G2, . . . ,Ci.Gn, based on the bitmap representation
of the tuples. For simplicity and without loss of generality,
the results of the pruning process demonstrated in Figure 11
indicate that there are three types of tuples based on their
dom-p value. Therefore, according to the idea of clustering,
candidate tuples are divided into 3 different clusters. Cluster
C1 contains those tuples that have dom-p equal to 1. Similarly,
cluster C2 and C3 encompass tuples whose dom-p values are
2 and 3, respectively. Figure 14 depicts the result of the clus-
tering tuples process based on domination power. It should be
noted that these clusters are further partitioned into groups.
Hence, tuples with similar bitmap representation are placed
into one group to ensure that the transitivity property of the
skyline technique always holds, and the issue of the cyclic
dominance is eliminated. Figure 15 elucidates that cluster
C1 is divided into two groups, namely: C1.G1 and C1.G2
with bitmap representation 110111 and 111011, respectively.
Similarly, clusters C2 and C3 are also partitioned into six
distinct groups (C2.G1–C2.G6) and 5 groups (C3.G1–C3.G5),
respectively.

Here, we provide a brief explanation of the remaining
phases of the proposed approach for retrieving skylines on a

FIGURE 14. Clustering of tuples based on domination power.

FIGURE 15. Groups of distinct clusters.

database with dynamic and incomplete data, while the details
can be found in [31]. The input of Algorithm 2 presented
in [31] will be the candidate tuples set CDwhich contains the
IDs of the newly inserted tuples and their dom-p values.While
the output is a set of clusters containing these tuples based
on their dom-p values. This process assists in simplifying
the process of identifying the new set of skylines based on
the most recent state of the database. The input of Algorithm
3 comprises of a set of clusters for the newly inserted tuples
while the output is a new set of groups for the newly inserted
tuples.

D. IDENTIFYING LOCAL SKYLINES
This phase intends to determine the local skylines of each
cluster for the newly inserted tuples. This is achieved by,
first, deriving the skylines of each group that belongs to the
constructed clusters, then followed by identifying the skylines
of the entire cluster. This is performed by comparing the
group skylines against each other to remove the dominated
tuples and exclude them from further processing. This phase
contributes significantly to reducing the number of tuples to
be processed in the next phases which, in its turn, decreases
the number of pairwise comparisons that need to be per-
formed to identify the new skylines after the insert operation.
The process of identifying local skylines of the newly inserted
tuples presented in this section is carried out by utilizing

VOLUME 9, 2021 57303

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 16. Local skylines of clusters.

Algorithms 4 and 5 proposed in [31]. The process starts by
running Algorithm 4 on the created groups of each cluster
from the previous phase to identify the group skylines. Thus,
the algorithm’s input is the set of groups of each cluster, while
the output is a set of group skylines. This is followed by
running Algorithm 5 to retrieve the skylines of the clusters.
The algorithm input includes the skylines of all groups in
each cluster, while the output is the local skylines of the
cluster.

Figure 16 demonstrates the results of identifying local
skylines of each cluster for the newly inserted tuples. Notice
that none of the tuples are dominating one another in cluster
C1. Thus, tuples n34, n27, and n32 are identified as local
skylines of C1. In cluster C2, tuples n25, n36, n5, n11, and
n12 have been identified as the local skylines in which four
tuples have been eliminated from further processing as they
are being dominated by these local skylines of Cluster C2.
In cluster C3, three tuples have been removed, namely: n0,
n18, and n15 as these tuples have been dominated by other
tuples in cluster C3. Thus, seven tuples remain in C3 and
are reported as the local skylines of cluster C3. It should be
noticed that therewere 22 tuples before the skyline processing
technique was implemented and seven dominated tuples have
been removed successfully. It comprises of 32% of reduc-
tion of tuples before identifying the new set of the final
skylines. Hence, eliminating these dominated tuples is cru-
cial to avoid many unnecessary pairwise comparisons which
in turn results in a significant reduction in the processing
time of the skyline process to produce the new set of the
skylines.

E. SELECTING SUPERIOR LOCAL SKYLINES
This phase aims to further refine the local skylines of each
cluster of the newly inserted tuples produced in the previous
phase to identify the superior local skylines of each cluster
for those inserted tuples. The idea of identifying the superior
local skylines relies on scanning the local skylines of each
cluster aiming at identifying the highest values in any of
the non-missing dimensions. Then all local skylines with the
highest values are combined and reported as superior local
skylines of the clusters. In contrast, those local skylines with
values less than the highest values found in each dimension
can be safely removed. This is because the local skylines of
each cluster will be compared with the local skylines of other

FIGURE 17. Selecting superior local skylines of clusters.

clusters. Therefore, if these removed tuples with values less
than the highest are compared against the tuples of the other
clusters theywill be dominated.With careful analysis of those
removed tuples, we can conclude that these removed tuples
are not better than the superior local skylines and have no
contribution in forming the final skylines. Hence, the idea of
prior deletion of these dominated tuples helps in a significant
reduction in the number of pairwise comparisons that need
to be performed among the local skylines of the clusters.
We believe this refinement step facilitates in simplifying the
skyline process when the changes towards the database are
made through insert operation. The detailed steps of select-
ing superior local skylines have been outlined in Algorithm
7 in [31]. The algorithm input encompasses the local skylines
of the cluster Ci−n, while the output of the algorithm is a
set of superior local skylines of the cluster for the newly
inserted tuples. Figure 17 illustrates the detailed process
of identifying the superior local skylines of clusters for the
running database example that has been used throughout
this paper. Notice that the shaded cells denote the superior
local skylines of each cluster. For instance, n34, n27, and
n32 are the superior skylines of cluster C1 as these tuples
have the highest values in the non-missing dimensions 4,
2, and 1 respectively. Similarly, tuples n36 n5, and n11 are
reported as the superior local skylines of clusterC2. However,
the tuples n25 and n12 have been removed from further pro-
cessing due to the fact that tuples n25 and n12 are dominated
by other tuples of the cluster. Likewise, n10, n3, n23, and
n31 are reported as the superior local skylines of the cluster,
C3. While the tuples n8, n26, and n28 are eliminated from
cluster C3.
Figure 18 elucidates the final set of the superior local

skylines of the clusters for our running database example.
We argue that identifying superior local skylines has a crucial
role in eliminating a significant portion of the tuples from fur-
ther processing. It has been concluded that the total number of
tuples that could be safely removed from these three clusters,
C1, C2, and C3 is 5, which represents up to a 33% reduction
in the amount of data to be considered in the next phases.
This in turn leads to a significant reduction in the number of
pairwise comparisons performs to retrieve the final skyline
set. It is important to notice that both processes, identifying

57304 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 18. Superior local skylines of clusters.

FIGURE 19. Candidate skylines.

local skylines and selecting superior local skylines, are car-
ried out concurrently as clusters and groups are independent
of each other. The concurrent running of these two processes
is very crucial and leads to a great reduction in the processing
time.

F. IDENTIFYING CANDIDATE SKYLINES
This phase is responsible to remove the superior local sky-
lines of clusters that are dominated by the superior local
skylines of other clusters from further processing. This is
accomplished by comparing the superior skylines of clusters
against each other aiming at reducing the number of candidate
skylines. The detailed steps of the algorithm for identify-
ing candidate skylines, Algorithm 5 can be found in [31].
The input of the algorithm includes a set of superior local
skylines of clusters for the newly inserted tuples, while the
output is a set of candidate skylines for the newly inserted
tuples. For instance, the superior local skylines, n34, n27,
and n32, of cluster C1 will be compared against the superior
local skylines of clusters C2 and C3, and the superior local
skylines of C2 will be compared with the superior skylines
of cluster C3. If the superior local skylines of C1 dominate
the superior local skylines of C2 and C3 based on common
non-missing dimensions, then these superior local skylines
of C2 and C3 are removed immediately. However, if the
superior local skylines of C1 are dominated by the superior
local skylines of C2 or C3 then that tuples of C1 will be
removed at the end of the iteration. This process continues
until the candidate skylines of the entire newly inserted tuples
are returned. Figure 19 depicts the final list of the candidate
skylines of the clustersC1,C2, andC3 of the database running
example.

FIGURE 20. The final skylines.

G. RETRIEVING FINAL SKYLINES
This section presents the last phase of the IDSA algorithm
aiming at identifying the skylines of an incomplete database
when the state of a database changed due to the insert oper-
ation(s) made toward the initial incomplete database. This
phase attempts to retrieve the new skyline result based on
the most recent updated contents of the database. To this end,
the candidate skylines of the newly inserted tuples are com-
pared against the skylines of the initial incomplete database
before the insert operation.

The process of retrieving the final skyline might lead to one
of the following three cases.

1) Case 1: If the result of the pairwise comparison indi-
cates that the candidate skylines of the newly added
tuples are dominated by the skylines of the initial
incomplete database, then these candidate skylines will
not contribute to forming the new set of skylines and
can be safely removed.

2) Case 2: If the result of the pairwise comparison intro-
duces that the candidate skylines of the newly added
tuples dominate the skylines of the initial incomplete
database, then these skylines are no longer valid and
should be removed from the new set of the final
skylines.

3) Case3: if the result of the pairwise comparison denotes
that the candidate skylines of the newly inserted tuples
and the skyline of the initial incomplete data do not
dominate each other. Then, these candidate skylines of
the newly inserted tuples will be considered as part of
the new set of the final skylines.

The retrieved tuples from this process represent the skylines
of the latest state of the incomplete database after the insert
operation. The detailed steps of the algorithm (Algorithm-5)
can be found in the work in [31]. The input of the algorithm
is a set of candidate skylines of the newly inserted tuples
and the skylines of the initial incomplete database before
the insert operation. While the output of the algorithm is the
skylines set of the most recent state of the database.Figure 20
depicts the new final skylines to be retrieved to the end-user.
We can conclude that the tuples m30, m31, m29, m6, n32,
and n11 represent the new skylines of the entire database.
We can also notice that these tuples are not dominated by
any other tuples in the database including the newly inserted
tuples.

VOLUME 9, 2021 57305

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

V. RESULTS AND DISCUSSION
To measure the efficiency and the performance of the pro-
posed solution, IDSA, in processing skyline queries over
a dynamic and incomplete database, various experiments
with different parameter settings have been designed and
developed. To the best of our knowledge, this research work
is the first attempt that addresses the issue of processing
skyline queries over dynamic incomplete databases. Thus,
we compare our proposed solution with the most recent
well-known strategies that are the closest to this research,
namely: SCSA [42], SPQ [29], Incoskyline [40], SIDS [26],
and Iskyline [24]. These skyline approaches considered in this
paper are mainly proposed to handle the data incompleteness
problem when processing skyline queries. All experiments
have been conducted on a computer machine with the fol-
lowing specifications. Intel Core i3 1.6GHz processor with
3GB memory and Windows 7 32-bit platform. All algo-
rithms have been implemented using the C# programming
language.

All experiments for the previous existing algorithms con-
sidered in this work have been accomplished in the following
manner. We first run SCSA, SPQ, Incoskyline, SIDS, and
Iskyline approaches over the initial incomplete database to
retrieve the skyline result. Then, these approaches are run
again after the database state is changed with the insert oper-
ation in which a new set of tuples with incomplete data are
added to the initial incomplete database to produce the new
set of skylines. In contrast, for experimental purposes, our
proposed solution works as follows. We first run our previous
approach SCSA proposed in [42] over the initial incomplete
database to return the skylines of the database. Running the
SCSA approach over the initial incomplete database helps in
preparing the skyline set of the initial incomplete database to
be used in the subsequent steps. Then, the proposed approach
IDSA is run over the newly inserted tuples to derive the new
set of skylines. These results are compared to the results of
SCSA, SPQ, Incoskyline, SIDS, and Iskyline, based on both
datasets, namely: synthetic and real datasets. It has proven
in the literature that the skyline query process is a CPU
exhaustive process [2], [14], [24], [26], [29], [40], [45], [46]
thus, the experiments of this research work have considered
two performance metrics which are the number of pairwise
comparisons and the processing time. In all experiments,
these twometrics aremeasured by varying the total number of
dimensions including dimensions with and without missing
values, the number of dimensions with missing values, and
the total size of the database for both types of data sets (syn-
thetic and real). Two different data distributions for the syn-
thetic dataset were chosen and generated in the experiments.
First, an independent synthetic data set in which values of one
dimension are independent of the values of other dimensions.
While the second type of synthetic data set is correlated in
which the values of one dimension are correlated with the val-
ues of other dimensions. Besides, three different real-world
data sets have been involved, namely: CoIL 2000 insurance
company, NBA, and MovieLens datasets. These datasets are

TABLE 2. The Parameter Settings of the Synthetic and Real datasets.

mostly used by a large number of previous works in the area
of processing skyline queries in incomplete databases [2],
[14], [24], [26], [29], [40], [45], [46]. In all experiments,
we assume that greater values are preferable compared to
smaller ones when retrieving the skylines. Table 2 describes
the parameter settings for the synthetic and real data sets
used to evaluate the proposed approach for handling skylines
queries in incomplete databases.

A. EXPERIMENT RESULTS
This section reports and discusses the result of the experi-
ments for the IDSA solution in deriving skyline queries over
a dynamic and incomplete database, in which the state of the
database is changed due to the insert operations made towards
the initial incomplete database. In this set of experiments,
the focus is given on investigating the impact of insert new
tuples with missing values into the database on the perfor-
mance of the skyline algorithms when computing the skylines
based on the most recent state of the database. Thus, the size
of the dataset will be varying in a predefined range while the
number of dimensions remains unchanged. The experiment
concentrates on studying the impact of adding new tuples
to the initial incomplete database on the number of pairwise
comparisons that need to be performed and the processing
time of the skyline query process. It should be noted that in
this set of experiments we assume that the previous skyline
approaches (Iskyline, SIDS, Incoskyline, SPQ, and SCSA)
compare the existing skylines of the dataset with the newly
inserted tuples to identify the new set of skylines. Neverthe-
less, our approach is developed to avoid the entire scanning of
the updated dataset when recomputing the new set of skylines
after the insert operation.

1) EFFECT OF DATASET SIZE
The skyline literature evidenced that one of the crucial factors
that have a significant impact on the performance of the
skyline techniques when identifying skylines is the data set
size [2], [14], [24], [26], [29], [40], [45], [46]. Hence, this
section illustrates the experimental results of our proposed
approach, IDSA, and the previous approaches for both the

57306 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 21. The effect of dataset size on the processing time.

synthetic and real data sets with respect to the processing time
and the number of pairwise comparisons, by varying the size
of the data set size through inserting new tuples with incom-
plete data to the initial incomplete database. Figure 21(a),
21(b), 21(c), 21(d), and 21(e) present the experiment results
of the processing time consumed during the operation of
identifying the new set of skylines on a dynamic incom-
plete database on independent, correlated, CoIL 2000 insur-
ance company, NBA and MoviesLens data sets, respectively.
For independent and correlated data sets, the initial size
of the data set is 300KB and every tuple comprises seven
dimensions including dimensions with missing values. The
size of the data set increases gradually in the range of
100-600KB. Figures 21(a), and 21(b) depict the process-
ing time of each approach considered in this work for both
types of the synthetic data sets, namely: independent and
correlated when deriving skyline queries over the dynamic
incomplete database. From the figures, it can be noticed that
IDSA outperforms the previous existing approaches (SCSA,
SPQ, Incoskyline, SIDS, and Iskyline). From the figures also
it can be concluded that Iskyline is the worst compared
to the other previous approaches (Incoskyline, SIDS, and
SPQ) by consuming the longest processing time during the
skyline query process. Figure 21(c) elucidates the results
of the experiments for the CoIL 2000 insurance company
dataset, in which the initial data present in the database is
200KB and the dataset size gradually increases in the range of
50-300KB. Besides, the number of dimensions has been fixed
to 14 including the dimensions with missing data. Further-
more, Figures 21(d), and 21(e) elaborate the experiment

results of both real-world datasets, namely: NBA and Movie-
Lens. The initial size of the NBA and MovieLens datasets
is set to be 120KB and 1200KB, respectively. Then, the
sizes of these two datasets are varying in the range of
40-200KB for NBA and 400-2000KB for MovieLens. We set
the number of dimensions for NBA to be 18, while the
number of dimensions considered for the MovieLens dataset
is set to 4 including dimensions with missing values. The
experimental results of all datasets considered in this work
proved the superiority of our proposed solution in all cases
in comparison with the most recent approaches designed for
processing skyline queries over incomplete data. From the
results, we can also notice that the processing time consumed
by our proposed strategy, IDSA is almost half of the pro-
cessing time consumed by the second-best strategy, SCSA
to identify the skylines in the dynamic incomplete database.
Moreover, the results of the experiment also prove that our
proposed approach is also superior and outperforms the other
approaches (SQP, Incoskyline, SIDS, and Iskyline) in all
cases. The main reason for this significant improvement in
processing skyline queries on dynamic incomplete databases
by IDSA is due to applying the data pruning technique on the
newly inserted data to eliminate all dominated tuples before
applying the skyline process. The idea of data pruning is
very beneficial and helps in reducing the processing time
of the skyline process on dynamic and incomplete databases
significantly. In contrast, all other approaches assumed that
the skyline process should be applied again over the entire
database after the changesmade towards the database through
the insert and/or update operations. This is clearly shown in

VOLUME 9, 2021 57307

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

FIGURE 22. The effect of dataset size on the number of Pairwise comparisons.

all experiments conducted throughout this work. For instance,
in the synthetic independent dataset, the skyline process is
first applied on the initial incomplete database in which the
size is set to be 300KB. Then, when a new set of tuples is
added to the initial database which represents 100KB in this
set of experiment, the IDSA attempts to apply the skyline
process by only consider the newly added tuples. Doing so led
to avoid many unnecessary exhaustive pairwise comparisons
and reduces the number of tuples to be considered when
identifying the new set of the skylines of the recently updated
states of the database. The second reason that further improve
the performance of IDSA when processing skyline queries
on the dynamic and incomplete database is the idea of the
concurrent execution of the clustering, grouping, identifying
local skylines, and selecting superior local skylines phases
in our proposed approach. We can conclude that the impact
of inserting new tuples into the initial incomplete database
and recomputing the skylines of the recently updated database
using IDSA is insignificant.

Figure 22(a), 22(b), 22(c), 22(d), 22(e), and 22(f) present
the results of pairwise comparisons achieved by IDSA,
SCSA, SPQ, Incoskyline, SIDS, and Iskyline, based on inde-
pendent and correlated, CoIL 2000 Insurance company, NBA
and MovieLens datasets, respectively. The parameter setting
of this set of experiment is similar to the previous set of
experiments in terms of number of dimensions and dataset
size as described in Table 2. Figure 22(a) and 22(b) shows
the total number of pairwise comparisons performed by
each algorithm (IDSA, SCSA, SPQ, Incoskyline, SIDS, and
Iskyline) based on both synthetic dataset independent and

correlated, respectively. For the synthetic dataset, the ini-
tial size of the data is set to 300KB and the size of the
dataset increases continuously after adding a new set of tuples
using the insert statement. The range of the increment in
the size is varying between 100 KB to 600KB, while the
number of dimensions remains unchanged with 6 dimen-
sions including dimensions with missing values. Moreover,
Figure 22(c) depicts the numbers of pairwise comparisons
carried out by each algorithm (IDSA, SCSA, SPQ, Incosky-
line, SIDS, and Iskyline) for Coil 2000 Insurance company
real-world dataset. In this set of experiment, we assume that
the initial size of the dataset is 200KB and the size of the
dataset gradually increases by adding a new set of tuples
in the range of 50KB to 300 KB. Likewise, the number of
dimensions considered is fixed to 14. Also, Figure 22(d)
illustrate the result of the pairwise comparison performed by
each skyline method considered in this work (IDSA, SCSA,
SPQ, Incoskyline, SIDS, and Iskyline) on the NBA real-world
dataset. In this real-world dataset, the number of dimensions
is fixed to 18 including dimensions with missing values, and
the initial size of the dataset is 120KB. Then new tuples
are added through the insert operation which results in a
gradual increment in the size of the dataset between 40 KB
to 200KB.

Figure 22(e) illustrates the number of pairwise compar-
isons performed by each algorithm (IDSA, SCSA, SPQ,
Incoskyline, SIDS, and Iskyline) during the skyline query
process on the MovieLens real-world dataset. We assumed
that the initial size of the dataset is 1200KB and a new set
of tuples is added to the dataset which varies from 400 KB

57308 VOLUME 9, 2021

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

to 2000KB, while the number of dimensions is fixed to
4 including dimensions with missing values.

From Figure 22, IDSA shows a steady performance which
reflects that the number of new tuples added to the initial
incomplete database has no significant impact on the perfor-
mance of IDSA. When the number of added tuples increases,
the number of pairwise comparisons performed increases,
as reflected in the results of all the previous algorithms. The
increment shown by IDSA is trivial and IDSA achieved better
performance as compared to SCSA, SPQ, Incoskyline, SIDS,
and Iskyline, since it avoids unnecessary skyline computa-
tions by limiting the focus to only consider the skylines of the
initial database and the newly added tuples while utilising the
idea of generating min-dom and constructing lists and data
pruning processes that leads to a significant reduction in the
number of tuples to be considered during the skyline process.
The figures also indicate that the other methods, SCSA, SPQ,
Incoskyline, SIDS, and Iskyline perform pairwise compar-
isons over the entire database including the newly added
tuples after the insert operation made towards the initial
incomplete database. Doing so leads to unnecessary exhaus-
tive pairwise comparisons due to including those dominated
tuples that are not contributing towards the new set of skylines
after the changes made towards the database. Last but not
least, from the results of the experiments shown in Figure 22
it is obvious that our proposed strategy is the best in com-
parison with other strategies designed for processing skyline
queries over an incomplete database (SCSA, SPQ, Incosky-
line, SIDS, and Iskyline) in terms of number of pairwise
comparisons performed to identify the new skylines after the
insert operationmade towards the database. Themain reasons
behind this improvement accomplished by IDSA are due to
applying the idea of pruning which produce a virtual tuple
called min-dom that helps in eliminating many dominated
tuples from the newly inserted tuples before executing the
skyline process. Besides, the idea of selecting superior local
skylines incorporated in IDSA is also very beneficial as it
assists in discarding a large number of dominated tuples
from further processing which in turn leads to a significant
reduction in the number of pairwise comparisons.

VI. CONCLUSION
In this paper, a new skyline solution called IDSA is proposed
which is capable of retrieving the skylines over a dynamic
and incomplete database in which the database state changed
due to the insert operation performed towards the initial
incomplete database. The idea of the IDSA aims at avoiding
examine the entire database contents when new tuples are
added into the initial incomplete database. The IDSA relies
on limiting the re-computation of the new set of skylines
to only considering the skylines of the previous state of the
initial incomplete database and the newly inserted tuples.
The proposed approach adopts the idea of the virtual tuple,
called min-dom that is very beneficial in simplifying the
skyline process over the dynamic and incomplete database.
The idea ofmin-dom assists in removing a significant portion

of the dominated tuples from the newly inserted tuples before
applying the skyline technique. This optimization leads to a
significant reduction in the searching space when attempting
to derive the new set of skylines. Furthermore, two optimiza-
tion techniques (pruning and selecting superior local sky-
lines) have been incorporated to expedite the skyline process
by eliminating the dominated tuples in the early stages to
avoid the unnecessary pairwise comparison. The results of the
experiment demonstrate that the proposed solution is capable
of preventing many unnecessary pairwise comparisons dur-
ing skyline computations by concentrating only on the parts
of the databases that are affected by the changes.

REFERENCES
[1] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘Progressive skyline compu-

tation in database systems,’’ ACM Trans. Database Syst., vol. 30, no. 1,
pp. 41–82, Mar. 2005.

[2] C. Y. Chan, H. V. Jagadish, K. L. Tan, A. K. H. Tung, and Z. Zhang,
On High Dimensional Skylines (Lecture Notes in Computer Science: Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 3896. Berlin, Germany: Springer, 2006, pp. 478–495.

[3] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
‘‘Finding k-dominant skylines in high dimensional space,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 2006, pp. 503–514.

[4] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Continuous top-
k dominating queries in subspaces,’’ in Proc. Panhellenic Conf. Informat.,
Aug. 2008, pp. 31–35.

[5] M. B. Swidan, A. A. Alwan, S. Turaev, and Y. Gulzar, ‘‘A model for
processing skyline queries in crowd-sourced databases,’’ Artic. Indones.
J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 798–806, 2018.

[6] M. B. Swidan, A. A. Alwan, S. Turaev, H. Ibrahim, A. Z. Abualkishik,
and Y. Gulzar, ‘‘Skyline queries computation on crowdsourced-enabled
incomplete database,’’ IEEE Access, vol. 8, pp. 106660–106689, 2020.

[7] M. B. Swidan, A. A. Alwan, Y. Gulzar, and A. Z. Abualkishik,
‘‘An overview of query processing on crowdsourced databases,’’ Sci. J.
King Faisal Univ., vol. 22, no. 1, pp. 5–12, 2021.

[8] X. Miao, Y. Gao, S. Guo, L. Chen, J. Yin, and Q. Li, ‘‘Answering skyline
queries over incomplete data with crowdsourcing,’’ IEEE Trans. Knowl.
Data Eng., vol. 33, no. 4, pp. 1360–1374, Apr. 2021.

[9] X. Miao, Y. Gao, G. Chen, and T. Zhang, ‘‘K-dominant skyline queries on
incomplete data,’’ Inf. Sci., vols. 367–368, pp. 990–1011, Nov. 2016.

[10] C. Kalyvas, T. Tzouramanis, and Y. Manolopoulos, ‘‘Processing skyline
queries in temporal databases,’’ in Proc. Symp. Appl. Comput., Apr. 2017,
pp. 893–899.

[11] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. Al-Shaikhli, ‘‘Skyline query
processing for incomplete data in cloud environment,’’ in Proc. 6th Int.
Conf. Comput. Informat. (ICOCI), 2017, pp. 567–576.

[12] Y. Gulzar, A. A. A. Aljuboori, N. Salleh, and I. F. Al Shaikhli, ‘‘Identi-
fying skylines in cloud databases with incomplete data,’’ J. Inf. Commun.
Technol., vol. 18, no. 1, pp. 19–34, Jan. 2019.

[13] M. L. Yiu and N. Mamoulis, ‘‘Efficient processing of top-k dominating
queries on multi-dimensional data,’’ in Proc. 33rd Int. Conf. Very Large
Data Bases. VLDB Endowment, Vienna, Austria, 2007, pp. 483–494.

[14] S. Borzsony, D. Kossmann, and K. Stocker, ‘‘The skyline operator,’’ in
Proc. 17th Int. Conf. Data Eng., 2001, pp. 421–430.

[15] K.-L. Tan, P.-K. Eng, and B. C. Ooi, ‘‘Efficient progressive skyline com-
putation,’’ in Proc. 27th Int. Conf. Very Large Data Bases (VLDB), vol. 1,
2001, pp. 301–310.

[16] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‘‘Skyline with presorting,’’
in Proc. 19th Int. Conf. Data Eng., 2003, pp. 717–719.

[17] P. Godfrey, R. Shipley, and J. Gryz, ‘‘Maximal vector computation in
large data sets,’’ in Proc. 31st Int. Conf. Very Large Data Bases. VLDB
Endowment, Trondheim, Norway, 2005, pp. 229–240.

[18] I. Bartolini, P. Ciaccia, and M. Patella, ‘‘SaLSa: Computing the skyline
without scanning the whole sky,’’ in Proc. 15th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), Arlington, VI, USA, 2006, pp. 405–414.

[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘An optimal and progressive
algorithm for skyline queries,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), San Diego, CA, USA, 2003, pp. 467–478.

VOLUME 9, 2021 57309

Y. Gulzar et al.: IDSA: Efficient Algorithm for Skyline Queries Computation on Dynamic and Incomplete Data With Changing States

[20] D. Kossmann, F. Ramsak, and S. Rost, ‘‘Shooting stars in the sky:
An online algorithm for skyline queries,’’ in Proc. 28th Int. Conf. Very
Large Data Bases. VLDB Endowment, Hong Kong, 2002, pp. 275–286.

[21] K. C. K. Lee, W.-C. Lee, B. Zheng, H. Li, and Y. Tian, ‘‘Z-SKY: An effi-
cient skyline query processing framework based on Z-order,’’ VLDB J.,
vol. 19, no. 3, pp. 333–362, Jun. 2010.

[22] S. Zhang, N.Mamoulis, and D.W. Cheung, ‘‘Scalable skyline computation
using object-based space partitioning,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2009, pp. 483–494.

[23] G. B. Dehaki, H. Ibrahim, F. Sidi, N. I. Udzir, A. A. Alwan, and Y. Gulzar,
‘‘Efficient computation of skyline queries over a dynamic and incomplete
database,’’ IEEE Access, vol. 8, pp. 141523–141546, 2020.

[24] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, ‘‘Skyline query
processing for incomplete data,’’ in Proc. IEEE 24th Int. Conf. Data Eng.,
Apr. 2008, pp. 556–565.

[25] Y. Gulzar, A. A. Alwan, N. Salleh, I. F. A. Shaikhli, and S. I. M. Alvi,
‘‘A framework for evaluating skyline queries over incomplete data,’’ Pro-
cedia Comput. Sci., vol. 94, pp. 191–198, Jan. 2016.

[26] R. Bharuka and P. S. Kumar, ‘‘Finding skylines for incomplete data,’’ in
Proc. 24th Australas. Database Conf., vol. 137. Adelaide, SA, Australia:
Australian Computer Society, 2013, pp. 109–117.

[27] R. Bharuka and P. S. Kumar, ‘‘Finding superior skyline points from incom-
plete data,’’ in Proc. 19th Int. Conf. Manage. Data, 2013, pp. 35–44.

[28] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. Al Shaikhli, ‘‘Processing sky-
line queries in incomplete database: Issues, challenges and future trends,’’
J. Comput. Sci., vol. 13, no. 11, pp. 647–658, Nov. 2017.

[29] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, ‘‘Skyline preference
query based on massive and incomplete dataset,’’ IEEE Access, vol. 5,
pp. 3183–3192, 2017.

[30] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. A. Shaikhli, ‘‘A model for
skyline query processing in a partially complete database,’’ Adv. Sci. Lett.,
vol. 24, no. 2, pp. 1339–1343, Feb. 2018.

[31] Y. Gulzar, ‘‘Skyline query approaches in static and dynamic incomplete
databases,’’ Int. Islamic Univ. Malaysia, Selangor, Malaysia, Tech. Rep.
tQA76.9D32G971S2018, 2018.

[32] K. Zhang, H. Gao, H. Wang, and J. Li, ‘‘ISSA: Efficient skyline compu-
tation for incomplete data,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.,
2016, pp. 321–328.

[33] Y. Gulzar, A. A. Alwan, and S. Turaev, ‘‘Optimizing skyline query process-
ing in incomplete data,’’ IEEE Access, vol. 7, pp. 178121–178138, 2019.

[34] K. Zhang, H. Gao, X. Han, Z. Cai, and J. Li, ‘‘Probabilistic skyline on
incomplete data,’’ in Proc. ACM Conf. Inf. Knowl. Manage., Nov. 2017,
pp. 427–436.

[35] Y. Gulzar, A. A. Alwan, A. Z. Abualkishik, and A. Mehmood, ‘‘A model
for computing skyline data items in cloud incomplete databases,’’ Procedia
Comput. Sci., vol. 170, pp. 249–256, Jan. 2020.

[36] J. Lee and S.-W. Hwang, ‘‘Scalable skyline computation using a
balanced pivot selection technique,’’ Inf. Syst., vol. 39, pp. 1–21,
Jan. 2014.

[37] M. Shamsul Arefin, ‘‘Skyline sets queries for incomplete data,’’ Int. J.
Comput. Sci. Inf. Technol., vol. 4, no. 5, pp. 67–80, Oct. 2012.

[38] W.-T. Balke, U. Güntzer, and J. X. Zheng, ‘‘Efficient distributed skylining
for Web information systems,’’ in Proc. Int. Conf. Extending Database
Technol., 2004, pp. 256–273.

[39] X. Miao, Y. Gao, L. Chen, G. Chen, Q. Li, and T. Jiang, ‘‘On efficient k-
skyband query processing over incomplete data,’’ in Proc. 18th Int. Conf.
(DASFAA), Wuhan, China, Apr. 2013, pp. 424–439.

[40] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘An efficient approach
for processing skyline queries in incomplete multidimensional database,’’
Arabian J. Sci. Eng., vol. 41, no. 8, pp. 2927–2943, Aug. 2016.

[41] Y. Zeng, K. Li, S. Yu, Y. Zhou, and K. Li, ‘‘Parallel and progressive
approaches for skyline query over probabilistic incomplete database,’’
IEEE Access, vol. 6, pp. 13289–13301, 2018.

[42] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan,
‘‘SCSA: Evaluating skyline queries in incomplete data,’’ Appl. Intell.,
vol. 49, no. 5, pp. 1636–1657, May 2019.

[43] K. Zhang, H. Gao, X. Han, Z. Cai, and J. Li, ‘‘Modeling and computing
probabilistic skyline on incomplete data,’’ IEEE Trans. Knowl. Data Eng.,
vol. 32, no. 7, pp. 1405–1418, Jul. 2020.

[44] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Continuous
processing of preference queries in data streams,’’ in Proc. 36th Int.
Conf. Current Trends Theory Pract. Comput. Sci., ŠpindlerůvMlýn, Czech
Republic, Jan. 2010, pp. 47–60.

[45] Y. Gulzar, A. A. Alwan, H. Ibrahim, and Q. Xin, ‘‘D-SKY: A framework
for processing skyline queries in a dynamic and incomplete database,’’ in
Proc. 20th Int. Conf. Inf. Integr. Web-Based Appl. Services (iiWAS), 2018,
pp. 164–172.

[46] J. Lee, H. Im, andG.-W. You, ‘‘Optimizing skyline queries over incomplete
data,’’ Inf. Sci., vols. 361–362, pp. 14–28, Sep. 2016.

57310 VOLUME 9, 2021

