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ABSTRACT This paper proposes a novel fault classification method with application to induction motors,
which is based on integrating and combining with receiver operating characteristic (ROC) curve and
t-distribution stochastic neighbor embedding (t-SNE). According to the feature selection methods of ReliefF,
symmetrical uncertainty (SU), and fast correlation-based filter (FCBF), the significant features were verified.
Additionally, support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT) are also
considered as classifiers to identify the simulation results. To begin with, the current signals obtained from
distinctive four topologies of working conditions of the motor, which includes healthy, bearing damage,
broken rotor bar, and short circuit in stator windings, respectively. The potential feature set is extracted
by using Hilbert-Huang transform (HHT) technique. Then, three feature selection methods are adopted to
select three optimal feature subsets from the original feature set. Finally, the classification accuracy (ACC)
and ROC curve are used to demonstrate the capability of classifiers’ recognition. The results showed that the
optimal feature subsets significantly reduce the number of selected features and improve the classification
ACC and area under the curve (AUC) compared with the original feature set. In conclusion, the proposed
method can downgrade the data, demonstrate the scatter plot more intuitively, and identify various types of
faults, unlike with other fault diagnosis literature.

INDEX TERMS ROC, t-SNE, motor failure, ReliefF, SU, FCBF, feature selection, HHT.

I. INTRODUCTION
In the industrial age, automated production models have
become mainstream. Electric motors are the primary source
of power for manufacturing. Its stable operation is consid-
ered a desirable part of the production line. Because of
downtime, safety considerations, and costly machinery repair
early detection of motor’s internal faults is highly impor-
tant [1]. In the age of unattended factories, how to effec-
tively detect and identify any abnormalities, predict potential
failures, and implement management to minimize perfor-
mance degradation and economic costs to avoid dangerous
situations is necessary [2]. Data-driven based intelligent fault
pattern recognition methods have made fruitful achievements
in recent years [3]. As far as induction motors are concerned,
they can normally work in harsh environments such as high
temperatures, high dust, water (dedicated motors), and fre-
quency converters can change torque and power, which is
economical. In harsh conditions, it has been widely used in
industrial applications; however, some faults may lead to their
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failure and economic losses [4]. Therefore, this study will
discuss the more common types of faults in induction motors.
The measurement includes four conditions: healthy, bearing
damage (45%), stator (35%), and rotor (10%) [5], [6]. The
signal usually used for measurement is mainly the current
signal, that is, the electric signal. Compared with vibration
and temperature signals, it is less affected [7]. Therefore, this
article chooses to use the current signal for measurement to
facilitate subsequent analysis. After that, the three typical
classifiers were used to judge the accuracy (ACC) of the
features under different sets to obtain relevant recognition
results.

The intelligent fault diagnosis method’s performance
depends on the feature extraction of fault signals, which
requires signal processing techniques, human knowledge,
and labor [8]. In the last few decades, the types of sig-
nal analysis are quite diverse. From the earlier proposed
fast Fourier transform (FFT), wavelet transform (WT), and
then to Hilbert-Huang transform (HHT), they all have their
distinct advantages and drawbacks. However, HHT is well
suited to processing non-linear, non-stationary signals and
is not constrained by the assumptions of stationarity and
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linearity, required for the FFT, and generates both amplitude
and frequency information as a function of time [9], [10].
Its advantage lies in using the basis of a posterior definition
and has better noise immunity [11]. Through using empirical
mode decomposition (EMD) to decompose the signal. Each
intrinsic mode function (IMF) can hold specific frequency
information to capture useful features. In terms of FFT, data
needs to have periodicity. The selection of wavelet functions
required for WT conversion is also more complex [12]. FFT
and Discrete Wavelet Transform (DWT) are also not suitable
for load imbalance and asynchronous sampling, which will
result in failure fault identifiers and incorrect fault type [13].

Several works addressed extracting features through signal
analysis methods for induction motor fault data. But the
type, quantity, and impact of features cannot be quantified.
Large-scale features can easily cause system size problems
and may use excessive storage space. Also, the existing
redundant features can easily cause excessive calculations.
In order to solve these problems, the selection of fea-
tures becomes more and more critical. Using typical meth-
ods such as ReliefF, symmetrical uncertainty (SU) and
fast correlation-based filter (FCBF) for feature selection
can undoubtedly reduce the complexity of calculation and
database size so that the algorithmwill not change the original
features [14], [15]. Compared with the other categories, fea-
ture extraction projects important features to facilitate visual
observation and can reorganize subspaces and retain the orig-
inal space’s data structure. Feature extraction also plays a
vital role in data-driven fault diagnosis and dimensionality
reduction for the samples or datasets [16]. Nevertheless,
the principal component analysis (PCA) is commonly used to
find the main components of the original data and establishes
a direct relationship between the high and low dimensional
data sets, but it cannot capture the non-linear pattern [17].
Therefore, this research uses the t-distribution stochastic
neighbor embedding (t-SNE) to reduce the dimensional-
ity of nonlinear data, which can visualize high-dimensional
complex signal patterns. Compared with the original SNE,
it uses t-distribution to solve the probability distribution in
low-dimensional situations to alleviate the data crowding
problem. Simultaneously, this method uses joint probabil-
ity instead of conditional probability to recalculate KLD to
obtain symmetry [18], [19].

For current fault detection, ACC is usually used to compare
the results of different races. ACC takes the merit of simple
structure, but it has drawbacks of prone to inaccurate models
due to data skew. This study also uses the receiver operating
characteristic (ROC) curve to compare results. ROC curve
is a visual tool for classification models [20], [21]. It origi-
nated from the signal detection theory. In recent years, this
method distinguishes between negative and positive results
by dividing race into two categories and comparing them
with ACC. By plotting true positive rate (TPR) and false
positive rate (FPR) curves, a more satisfactory classification
can be obtained [22], [23], and the area under the curve (AUC)
can be calculated to make it relatively balanced. These two

indicators, they also do not depend on the impact of a partic-
ular category.

This research shows the effectiveness of traditional meth-
ods in dimensionality reduction, feature extraction and fea-
ture selection. Create a novel model with the combination
of advantages of each method. By comparing these methods
and establishing the entire system, the important features of
the motor and a better recognition rate can be effectively
obtained. Among them, the main contributions of this paper
are fourfold. First, HHT has better recognition results than
WT and FFT. Secondly, the problem of large-scale features
is studied. It turns out that three common feature selection
methods can be used to select important features. Third, it is
proposed to use the ROC curve as a reference basis and com-
pare AUC with ACC. Moreover, through the support vector
machine (SVM), K nearest neighbor (KNN) and decision
tree (DT) three machine learning algorithms to compare their
classification performance to select the most effective fault
diagnosis model. Finally, based on the advantages and disad-
vantages of feature extraction and feature selection methods,
this research achieves the system’s robustness through more
graphical visualization methods such as t-SNE. Compared
with other studies on motor fault classification methods, the
new intuitive visualization method can effectively verify the
advantages of important features and recognition rate by
combining known methods.

II. METHOD OF MEASURING MOTOR
This section will explain the specifications of AC induction
motors, and measure and analyze 4 types of current signals
including normal, bearing damage, broken rotor bar and short
circuit in stator windings. Secondly, introduce the equipment
and methods used in the experiment and the overall process
of this research to compare the differences between various
types of faults and normal motors. Finally, the results of the
identification are presented by using the analysis software
MATLAB.

A. EQUIPMENT SPECIFICATIONS
The main equipment in this study are four-pole AC induction
motors, as shown in Table 1, and the fault types are shown
in Fig. 1. By driving the power platform (composed of a
torque sensor and a servo motor), and analyzing it with the
equipment (NI PXI-1,033) and a computer, then recording
the measured data. Through the above equipment, the signal
measurement can be completed.

B. EXPERIMENT PROCESS
First of all, this research measures the current signal of AC
inductionmotors in four kinds of fault (normal, bearing, rotor,
and stator). Obtain any phase data of the motor U, V, and W
through a signal extractor. It is noted that the data sampling
time for each measurement is 100 seconds, the sampling
frequency is 1,000 Hz, and each signal is measured 100 times
for evaluation. The process is shown in Fig. 2.
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TABLE 1. Specifications of AC motor.

FIGURE 1. Type of motor fault (a) bearing damage (aperture: 1.96 mm × 0.53 mm) (b) broken rotor bar (2 holes
∮

8 mm deep: 10 mm) (c) short
circuit in stator windings (2 coil short circuit).

FIGURE 2. Flow chart of signal measurement.

FIGURE 3. The illustration of IMF components (a) normal motor (b) bearing damage motor.

Secondly, HHT was used on the personal computer for
MATLAB. Among them, the waveform, vibration, and fre-
quency of each IMF were different. Additionally, the purpose
of screening each layer of IMF is not only to eliminate the
carrier but also can make the waveform more symmetrical.
In order for the IMF decomposed by EMD to retain the
meaning of its signal, the screening criteria must be set to

determine the number of screening levels. This action will
stop when the standard deviation (SD) of the two consecutive
screening results is less than 0.1. In this research, IMF of
1 to 8 layers can be obtained by EMD. The following takes
normal and bearing damage fault motor signals as examples,
and the extracted results are shown in Fig. 3(a) and Fig. 3(b).
Meanwhile, the instantaneous amplitude and instantaneous
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TABLE 2. The feature dataset.

FIGURE 4. The experiment process and result framework diagram.

frequency of each layer can be obtained by HT. After extract-
ing the maximum, minimum, average, standard deviation and
root mean square of each layer’s instantaneous amplitude and
instantaneous frequency, a total of 80 features can be got,
as shown in Table 2. Then, the common feature selection
methods of ReliefF, SU value, and FCBF are used to generate
a total of 4 different sizes of feature sets for identification.
In order to prove that the selected feature set can produce
better recognition ability under any classifier, the SVM,
KNN, and DT are used to generate three classification results
for verification. Finally, this study uses t-SNE to transform
the features and present them in two and three dimensions.
So that the results can be observed in a more intuitive way
to prove the feature selection has reference value for the
identification of the current signal of the motor.

In short, the entire experiment uses feature extraction
and feature selection methods to obtain 4 different size
feature sets and then uses common classifiers and feature
distributions to present the research results. The process is
shown in Fig. 4. The steps of signal processing are listed as
follows:

Step 1: Input the current signal of the inductionmotor, and
process the signal through MATLAB software.

Step 2: Through EMD, the signal can be decomposed into
1 to 8 layers of IMF.

Step 3: Use HT for analysis, which can capture the max-
imum, minimum, average, standard deviation and
root mean square of instantaneous amplitude and
instantaneous frequency. A total of 80 features
(HHT feature set) are available. Steps 1 to Steps 3
are called feature extraction.

Step 4: Use the 3 feature selection methods of ReliefF,
SU, and FCBF to screen the feature set of HHT
to delete the features that affect identification.

Step 5: After feature selection, four feature sets can be
generated by HHT (without feature selection),
HHT-ReliefF, HHT-SU, and HHT-FCBF.

Step 6: Import each feature set into SVM, KNN, and DT.
They are three classifiers for identification.

Step 7: Use ACC and ROC to present the identification
results.

Step 8: Finally, use the t-SNE visualization method to
present the distribution of features to verify the
research results.

III. SIGNAL ANALYSIS AND CLASSIFICATION METHODS
Induction motors and other related equipment are used in
current society. These machines usually run for a long time
and require regular maintenance by engineers. If analysis
methods can be used to capture the beneficial features of
each failure and combining various classifiers, higher clas-
sification ACC for fault identification will be expected to
solve the fault problem of the motor. However, many signal
analysis techniques have been developed in current, and each
analysis methods have their advantages and disadvantages.
This section will explain the signal analysis method of the
HHT. In addition, the ROC algorithm will also be introduced
in the study.

A. HILBERT-HUANG TRANSFORM
HHT was jointly proposed by Norden E. Huang et al. The
analysis is designed based on the mathematical theory of the
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mathematician Hilbert in 1998 [24]. This analysis method
has better results for unstable or nonlinear signals. It mainly
focuses on the following steps [25], [26]:
1) The original signal passes through the EMD to obtain

the IMF.
2) Apply Hilbert transform (HT) to the obtained IMF to

obtain the instantaneous frequency.

1) EMPIRICAL MODE DECOMPOSITION
Before performing HHT, the original signals need to be
decomposed by EMD, and the signals become IMFs com-
pliant state through repeated screening. However, due to
HHT’s limitation of instantaneous frequency, if this process
is omitted, the original signals will not be able to obtain
a valid and complete instantaneous frequency. Therefore,
by decomposing the original data into EMD, n IMFs and a
trend function can be obtained respectively, and then HT can
be performed on the obtained IMF for subsequent calculation
of signal analysis [27]. For all function types, when the sum
of the number of local maximum and local minima is the
same as the number of zero crossings or the difference is 1.
Then, when the average line of the upper envelope defined
by local maximum and the lower envelope of upper envelope
approaches zero at any point in time. They can be classified
as IMF. The flowchart of the EMD is shown in Fig. 5.

2) HILBERT TRANSFORM
The calculation method of HT is different from the previous
analysis of non-linearity and non-steady state. For the com-
bination of IMF, when using HT, the instantaneous ampli-
tude and instantaneous frequency of the required signal can
be obtained, as shown in (1). Conjugate complex number
is constructed by xi (t) and Hi (t), as shown in (2). Where
Ci (t) is expressed as IMF. After HT operation, Hi (t) can
be obtained, where Pv represents the Cauchy principal value,
and its purpose is to avoid being the singularity of τ = t and
τ = ±∞.

Hi (t) =
1
π
Pv

∞∫
−∞

Ci (τ )
t − τ

dτ (1)

Zi (t) = Ci (t)+ jHi (t) = ai (t) e−jφi(t) (2)

As a result of the calculation of formula (2), the instan-
taneous amplitude ai (t) and instantaneous phase angle φi (t)
can be obtained, which can be converted into formulas (3) and
(4) respectively. Then the instantaneous phase φi (t) is differ-
entiated against time to obtain the instantaneous frequency
ωi (t), as shown in equation (5).

ai (t) =
√
C2
i (t)+ H

2
i (t) (3)

φi (t) = arctan
[
Hi (t)
Ci (t)

]
(4)

ωi (t) =
dφi (t)
dt

(5)

FIGURE 5. Flowchart of EMD.

Through the above-mentioned correlation calculations,
using the instantaneous amplitude ai (t) and instantaneous
frequency ωi (t), the time, frequency, and energy distribution
can be obtained. This result is called the HT spectrum.

B. RECEIVER OPERATING CHARACTERISTIC CURVES
Compared with the ACC, ROC is a visual tool for the
comparison of classification models. Its use was expanded
in the 1970s and used in the biomedical field to interpret
medical test results. In recent years, its analysis methods
have been widely used in machine learning and data min-
ing research [28], [29]. The ROC curve is constructed in
a two-dimensional image, and the discrete classifier only
predicts the category to which the tested object belongs.
There are four possible results: true positive, true negative,
false positive, and false negative. If an object is positive
and is classified as positive, it will be regarded as a true
positive (TP); if it is classified as negative, then It is a false
negative (FN). In the same way, if the subject is negative
and classified as negative, it will be regarded as true negative
(TN); if it is classified as positive, it will be classified as false
positive (FP), as shown in Fig. 6 [30]. For fair performance
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FIGURE 6. Four elements of the confusion matrix.

evaluation, this study proposes two different evaluation indi-
cators, namely ACC as shown in (6), and area under the ROC
curve (AUC), where AUC is drawn by TPR and FPR, and the
equation are shown in (7), (8) and (9).

ACC = accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

SP = specificity =
TN

TN + FP
(7)

TPR = sensitivity =
TP

TP+ FN
(8)

FPR = 1− SP =
FP

TN + FP
(9)

FIGURE 7. TP and FP will be changed by adjusting the decision-making
threshold.

Among them, the ROC curve takes FPR as the X-axis
and TPR as the Y-axis, it is necessary to set different deci-
sion thresholds at each point to obtain different FPR and
TPR, as shown in Fig. 7 [31], [32]. Finally, draw a curve
to assess the trade-off. The closer the curve is to the top,
the higher the TP, and the higher the ACC. AUC is an indi-
cator [33]. The larger the AUC, the better the performance.
However, for large-scale screening, in order to minimize

FP, each experiment follows a hierarchical 10-fold cross-
validation model, and the results obtained are average scores.

IV. FEATURE SELECTION AND DIMENSIONALITY
REDUCTION METHOD
Nowadays, most of data is presented in a high-dimensional
way during machine learning, which makes it difficult to
observe high-dimensional distribution and features from data.
When the number of features is too large, problems such
as slower processing speed, overfitting, and difficulty in
visualization may occur. Moreover, the curse of data dimen-
sionality poses a severe challenge to many existing feature
selection methods with respect to efficiency and effective-
ness [34], [35]. Therefore, feature selection and data dimen-
sionality reduction are essential preprocessing techniques in
data analysis. Feature extraction is a method of dimension-
ality reduction [36]. The following research will introduce
related applications of methods.

A. FEATURE SELECTION
Feature selection methods aim to reduce the influence of
redundant variables by selecting a subset of existing fea-
tures [37]. Evaluate the importance of each feature bymeasur-
ing the relationship between each individual function and the
output category. Feature selection assigns a weight to each
feature, which can be regarded as a ranking to produce the
feature list [38]. Therefore, the scope of this paper falls into
discussing the commonly used feature selection method Reli-
efF, SU, and FCBF. Among them, the threshold settings of the
following three feature selectionmethods are all calculated by
multiplying the total weight by 0.9 as the standard.

1) RELIEFF
The ReliefF algorithm is more robust and can handle incom-
plete and noisy data compared with Relief [39]. Start by
randomly selecting samples from its training sample set and
take K neighboring samples H of the same category, which
can be called Near-Hits. In addition, K samples M can be
found from sample sets of different categories, which can be
called Near-Misses. The distance difference is used to assign
corresponding weights to features, and the preset threshold is
used to effectively remove irrelevant features.

2) SYMMETRICAL UNCERTAINTY
The SU method uses the average amount of information
contained in the message as the basis for judgment. This
method is a form of information gain normalization, which
is based on non-linear related information variables defined
by information entropy. Used to reconstruct the degree of
correlation between random variables, the value ranges from
0 to 1.When the value is larger, the correlation betweenX and
Y is greater. When the variable is 0, it means that X and Y are
independent of each other. Otherwise, it means that there is a
strong complementarity between each other. The formula is
shown in formula (10), where H (X ) represents information
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entropy, and I (X ) is the calculation of information gain.

SU (X ,Y ) =
I (X)

H (X)+ H (Y )
(10)

3) FAST CORRELATION-BASED FILTER
FCBF uses symmetric uncertainty to replace information
gain and performs the feature selection method [40]. It is
an extended solution to SU. The advantage of the method is
that it can remove redundant features. During the screening
period, FCBF compares the two features and retains the
feature that has a higher correlationwith the target. Therefore,
it uses the features with a higher correlation to complete
the screening. This method reduces the time complexity and
achieves the efficiency of computing while filtering, which
can accelerate the calculation and also improve the recog-
nition rate at the same time. FCBF is regarded as a fast
filtering feature selection algorithm [41]. The calculation of
this method to delete redundant features is shown in Fig. 8.
Among them, F1, F2 and F4 can be regarded as similar
features, and F1 is more related to the target, so F2 and F4 are
considered redundant features; and on this basis, F6 and
F7 can be deleted by F3.

FIGURE 8. Selection method of FCBF.

B. DIMENSIONALITY REDUCTION METHOD
1) PRINCIPAL COMPONENT ANALYSIS
Principal component analysis was proposed by Pearson, K in
1901. It can be regarded as a linear algorithm. It mainly uses
the variance of each characteristic variable as a benchmark
for measurement [42]. First, this method is to normalize the
data to establish a covariance matrix and then use the singular
value decomposition (SVD) method to obtain its eigenvector
and eigenvalue. The usage is shown in formulas (11) and (12).
Finally, the obtained eigenvalues are presented in descending
order, and the original data are projected onto the eigenvectors
to obtain new eigenvalues.

However, for PCA, the related variables are transformed by
orthogonal transformation, and similar data points are placed
in a low-dimensional space. This method is easy to cause
underfitting of the features. This also means that the features
of the data after dimensionality reduction will not be able to

effectively represent the distribution of the original data.

A = U6V T (11)

6 =
1
m

m∑
i=1

X (i) × X (i)T =
1
m
× X × XT (12)

As shown in equation (11),A is anm×n ordermatrix, while
U and V T are m× m and n× n order matrixes, respectively.
This decomposition can be interpreted as the SVD of A. 6
represents the singular value matrix, which is the eigenvalue
corresponding to the A matrix. They are generally arranged
in the diagonal in descending order, and to obtain the result
of A, U is usually multiplied by the common variance matrix
of formula (12) to obtain new features.

2) STOCHASTIC NEIGHBOR EMBEDDING
Stochastic Neighbor Embedding (SNE) was proposed by
Hinton and Roweis in 2002 [43]. This method uses Euclidean
distance to convert to conditional probability, accordingly
explaining high-dimensional data through normal distri-
bution and explaining the similarity between points [44],
as shown in (13).

pj|i =
exp

(
−
∥∥xi − xj∥∥2 /2σ 2

i

)
∑

k 6=iexp
(
−‖xi − xk‖2 /2σ 2

i

) (13)

p (j|i) is the similarity between xi and xj. σi is the Gaussian
distribution centered on xi. The low-dimensional yi and yj cor-
respond to the high-dimensional xi and xj with q (j|i) consid-
ered as conditional probability. When setting σ = 1/

√
2 and

q (j|i) = 0, the result can be obtained, and is shown in (14).
Finally, the SNE algorithm also applies Kullback-Leibler
divergence (KLD) to express the degree of similarity between
the two distributions. The objective function is shown in (15).
This method is to minimize the loss function between the
two distributions. The stochastic gradient descent method is
calculated, as shown in (16).

qj|i =
exp

(
−
∥∥yi − yj∥∥2)∑

k 6=iexp
(
−‖yi − yk‖2

) (14)

C =
∑
i

KL (Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

(15)

δC
δyi
= 2

∑
j
(p (j|i)− q (j|i)+ p (i|j)− q (i|j))

(
yi − yj

)
(16)

Because the high-dimensional data cannot be completely
retained in the low-dimensional space, a commonly known
curse of dimensionality will be produced. The problems of
crowding among various ethnic groups also cannot be distin-
guished. In addition to this, KLD is asymmetric which makes
it possible for the SNE method to be optimized.

3) T-DISTRIBUTION STOCHASTIC NEIGHBOR EMBEDDING
In order to improve the curse of dimensionality in SNE
method, t-SNE has several distinct features. This method was
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proposed by Laurens van der Maaten and Geoffrey Hinton
in 2008. It illustrates that this method is a nonlinear visu-
alization method for dimensionality reduction in machine
learning [45], [46]. t-SNE is difficult to use the axis/unit of
the original high-dimensional data to explain the meaning of
the graph, but when reducing the dimensional it is a highly
used algorithm as a reference for data dimension reduction
studies. In the most diverse applications, this method always
presenting good results [47]. This paper will explain the
crowding problem and the symmetry problem separately.

a: CROWDING PROBLEM
When the data is projected into a two-dimensional space, the
distant points in the high-dimensional space have no position
for projection in the low-dimensional space. Therefore, there
are often overlap and difficulties to observe phenomena in
the low-dimensional space, which is known as the crowd-
ing problem. As a solution, t-SNE method will replace the
normal distribution used in the low-dimensional space with
a t-distribution with 1 of freedom. The probability density
function (PDF) of t-distribution is shown in (17) where v is
expressed as a degree of freedom. When v = 1, it can be
simplified to formula (18).

f (t) =
0
(
v+1
2

)
√
vπ0

( v
2

) (1+ t2

v

)− v+1
2

(17)

f (t) =
1

π
(
1+ t2

) (18)

b: SYMMETRIC SNE
This method is aimed at the problem of symmetry, using joint
probability instead of conditional probability to recalculate
KLD to obtain symmetry [18]. First of all, the equation
of qij is defined as (19). It demonstrates that this equation
has a symmetric relation. This representation method will
condense the overall algorithm, while there will be situations
where outliers are introduced. To solve this problem, the def-
inition of joint probability can be modified as equation (20)
and be substituted of the objective function (15). Further-
more, the formula of stochastic gradient descent is shown
in (21) to obtain the minimum solution of the loss function
which is commonly known as the best solution. Although
t-SNE solves the symmetry problem, this algorithm involves
quantities of calculations, which can be overwhelming for the
system.

qij =
exp

(
−
∥∥yi − yj∥∥2)∑

k 6=lexp
(
−‖yk − yl‖2

) (19)

pij =
pj|i + pi|j

2
(20)

δC
δyi
= 4

∑
j

(
pij − qij

) (
yi − yj

) (
1+

∥∥yi − yj∥∥2)−1 (21)

t-SNE can not only convert data but also present the data
in a two-dimensional or three-dimensional space for visual

observation. The main steps of t-SNE are: First, the algo-
rithm begins by calculating the similarity probability of data
points in the high-dimensional space and the similarity prob-
ability of the points in the corresponding low-dimensional
space. Secondly, to make it easier to project data into low-
dimensional space, the algorithm tries to minimize the dif-
ference in conditional probability between high-dimensional
and low-dimensional data spaces. Finally, in order to evaluate
the minimization of the t-SNE conditional probability differ-
ence sum, the gradient descent method is used to minimize
the sum of the KLD of the original distribution and the cor-
responding data. This algorithm calculation process is shown
in pseudocode 1:

Pseudocode 1 The Simple Version of t-SNE
1: Input Data
2: Calculate cost function using Eq. (15) // perplexity Perp
3: Set T, η, // T= Number of iterations, η= Learning rate
4: The target result Y T = y1, . . . , yn
5: Calculate the pj|i using Eq. (13)

//pj|i is the similarity between xi and xj
6: Calculate the pij using Eq. (20)

//the definition of the joint probability
7: for t = 1 :T
8: Calculate the qij using Eq. (19)
9: Calculate the δC

δyi
using Eq. (21)

//the formula of stochastic gradient descent
10: Y t = Y t−1 + η dCdY + α (t)

(
Y t−1 − Y t−2

)
11: end

V. RESULTS OF MOTOR FAULT IDENTIFICATION
This research measures the actual operating signals of induc-
tion motors and extracts features by HHT. However, the num-
ber and usefulness of features are unknown. To achieve the
best performance of the algorithm, the importance of feature
selection methods is gradually increasing. Among them, fea-
ture selection and feature extraction are more common [34].
Feature selection is identifying behaviors that have a signifi-
cant contribution to the classifier’s ability or finding the best
feature subset. This method will let the feature set not be
changed, keep important features, and reduce the number of
features [35]. For signal analysis, the generated information
often has invalid data, and too many repetitive or irrelevant
features will cause the classifier to produce over-fitting situ-
ations. Therefore, this study compares the feature extraction
methods including FFT, WT, and HHT. It can be found that
the features obtained by the HHT method have better recog-
nition results in each classifier, as shown in Table 3. Subse-
quently, this paper uses ReliefF, SU, and FCBF to compare
three feature selection methods. By these methods, different
feature sets are generated. Among them, FCBF can screen
out the most irrelevant features, and the selected features are
based on their importance. Finally, through the ROC curve,
different feature sets are presented graphically to facilitate
ACC’s comparison.
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TABLE 3. The ACC value of each classifier under different feature
extraction sets.

TABLE 4. Features by HHT.

In this study, the feature selection methods are used to
generate feature sets of different sizes including ReliefF, SU,
and FCBF. Compared with HHT, the number of features
can be reduced by 72.5%, 76.25%, and 87.5%, respectively,
as shown in Table 4.

A. RESULTS OF ROC CLASSIFICATION
This study proposes to use three classifiers including SVM,
KNN, and DT to classify the fault conditions of induc-
tion motors. Through these four feature sets, the unselected
(It means all features are extracted using the HHT method
and without using feature selection methods.) and three
feature selection methods (ReliefF, SU, and FCBF) in dif-
ferent classification algorithms can be displayed in ROC
curve graphs, making it easy to distinguished the perfor-
mance of each algorithm. If the area under the curve is
increased, the corresponding algorithm’s classification effect
will be better, and vice versa. To evaluate the pros and
cons of related features under the classifier after feature
selection, this study uses MATLAB software to draw ROC
curves of various fault types under different feature sets.
Taking KNN as an example, it can be found by drawing
the curve that when using this classifier, the ReliefF, SU,
and FCBF sets generated by the feature selection meth-
ods have advantages compared to the HHT. This result can
explain that too many irrelevant features will misjudge the
AUC and cause the recognition ability to decline, as shown
in Fig. 9.

This study also calculates the area under the surface AUC
in detail, as shown in Table 5. First of all, it can be seen

that although these classifiers have their distinct standards,
they may prefer different algorithms in terms of performance.
Secondly, it can be found from the calculation results that
if the ranking corresponding to the average AUC is given,
the feature set of HHT may have factors that affect the
recognition rate. It will also appear weak in rankings. Finally,
if different feature selection methods are used with different
classifiers to distinguish, the identification ability to bearing
faults can reach close to 1 (optimal). This result shows that
this fault situation is the most obvious among the 4 fault
types.

B. COMPARISON OF AUC AND ACC RESULTS
To present the results of identifying the types of induction
motor faults, this study discusses the identification results
by comparing the values of ACC and AUC. Among them,
ACC presents the ratio of the classifier’s accurate discrim-
ination. Although it can effectively reflect the classifier’s
performance, it is quite accurate in the face of extreme data
such as negative prediction. The value of ACC is substantial.
This situation shows that ACC cannot just effectively evaluate
the model without the test data; on the contrary, AUC, as a
quantitative indicator of ROC, can be drawn into a curve by
obtaining different FPR and TPR to calculate and evaluate the
value of the classifier model.

This study uses two kinds of recognition rates for cal-
culation, and the results are shown in Table 6. First of all,
we can compare the three typical classifiers and find that
using the DT classifier for identification, AUC, and ACC’s
identification ability is the best in the table. Secondly, this
study compared four feature sets of different sizes. The
result shows that the feature selection methods used in this
research can effectively delete features that are not important
to improve the recognition rate. Moreover, And AUC and
ACC identification results of the collection after three kinds
of feature selection are higher than the feature set of HHT by
calculation.

In summary, in order to show the stability of the selected
features, this research discusses the results through three
kinds of common classifiers of KNN, SVM, and DT. Among
them, the recognition results given by different classifiers
for different evaluation methods will be different. In the
comparison of AUC and ACC, it may also be distinguished
between advantages and disadvantages due to their different
calculation methods, as shown in the brackets in Table 6.
According to the effective evaluation of multiple methods,
DT-ReliefF has the best recognition results, which are 99.7%
and 99.6% respectively.

C. VERIFICATION OF t-SNE
In order to verify that the feature selection method used pro-
duces feature sets of different sizes, and also can effectively
screen out the important features of motor fault types. This
study uses t-SNE to transform the data and present the results
in two or three dimensions. By reducing the dimension,
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FIGURE 9. Use the KNN to perform ROC mapping on (a) normal (b) bearing damage (c) broken rotor bar (d) short circuit in stator
windings.

TABLE 5. The AUC value of each classifier under different feature sets.

it is possible to visually judge the validity of the algorithm
and data collection. The following will discuss two different
sizes of feature sets, HHT (not used feature selection) and
HHT-ReliefF (combined with feature selection). However,

the distance of t-SNE is meaningless, it is just a concept of
the probability distribution.

In addition to creating clusters, t-SNE can also leave a
certain distance between them, which simplifies the data
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FIGURE 10. Scatter plot of t-SNE events under HHT conditions (a) 3D (b) 2D.

FIGURE 11. Scatter plot of t-SNE events under HHT-ReliefF conditions (a) 3D (b) 2D.

visualization. This t-SNE allows simple visualization of
graphs to understand the failure of induction motors under
different feature sets. As shown in Figs. 10(a) and (b),
HHT feature set is found that no matter in the two or
three-dimensional space, only the type of bearing fault can
be easily distinguished. The other three types of faults have
no noticeable difference in data projection. This model also
shows that when feature selection is not used in this study,
the features obtained due to the wrong judgment of the
motor fault type will reduce ACC and AUC. Then, to ver-
ify the results presented by t-SNE with different collec-
tion sizes after feature selection, this research also uses the
HHT-ReliefF collection for visual observation, as shown in
Figs. 11(a) and (b). Results are found that compared with the
feature set of HHT in the three-dimensional space, the types
of faults are classified more clearly after feature screening.
If it is reduced to a two-dimensional space, 4 types of clusters
and effective classification scatter plots can be obtained.
Finally, compare the visualize ed results with the ACC and
AUC recognition rates of the motors in the aforementioned

TABLE 6. Comparison of ACC and AUC.

to verify the feature selection set. The basic idea of the t-SNE
algorithm is to express the similarity of data points by using
the joint probability between high-dimensional data points
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TABLE 7. The typical faults in the induction motor.

and analog data points corresponding to low-dimensional
space. In the most diverse applications, this method always
presenting good results. But for the t-SNE graph, the distance
is meaningless.

In order to make the advantages of the proposed method-
ology more prominent, this research also compares the intel-
ligent diagnosis methods of various types of motor faults.
As shown in Table 7. Three common failure models are con-
sidered to reduce the chance of further damage or complete
motor failure due to any specific failure.

VI. CONCLUSION
This research proposes a simple and high-performance asyn-
chronous motor fault diagnosis model based on traditional
feature extraction, feature selection, and classifier construc-
tion. In this study, the four kinds of fault (a) normal, (b) bear-
ing damage, (c) broken rotor bar, and (d) short circuit in stator
windings occurrence in three-phase inductionmotors’ current
signal are considered. The original feature extraction meth-
ods are highly reliant on the expertise and prior knowledge,
also have limited capacities for learning the relationships

between the features and data. Therefore, this research creates
a novel model with the combination of advantages of each
method. The main contributions of this study are fourfold.
Firstly, HHT is very suitable for processing nonlinear and
non-stationary signals with better recognition results than
WT and FFT. Secondly, most of the data is presented in
a high-dimensional manner. Too much quantity may cause
problems such as overfitting and difficulty in visualization.
However, the ReliefF, SU and FCBF feature selection meth-
ods are used to select the important features to generate
feature sets of different sizes. Thirdly, to show the stability
of the selected features, this study discusses the identification
results through three typical classifiers: KNN, SVM and DT.
Finally, verify the results of ACC, AUC, ROC, and t-SNE to
show. Themost advantage of this research is to propose visual
ROC and t-SNE methods and combine them with traditional
feature extraction and feature selection methods to present
important features of induction motor fault identification.
Simulation and experimental results show that:
1) This study compares feature selection methods to

improve less important or redundant features. The
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results show that more than 70% of features can be
effectively deleted under the three different screening
methods.

2) This study also proposedROC curves of different feature
screening methods, which have advantages compared
with HHT. Through a detailed calculation of AUC and
ACC, it can be proved that the recognition rate of feature
screening can be effectively increased by 2% to 3%.

3) Finally, this study also proved that regardless of the
2D or 3D scatter plot; feature selection sets have better
feature distributions to classification by using t-SNE.

In the future, we will also try to add more motor fault
types and data and use deep learning for research training.
This model will allow a reasonable comparison between the
simulation results and actual engine operation. Besides that,
multiple published databases, feature selection methods, and
other literature to comparemotor fault classification have also
become necessary.
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