
Received March 22, 2021, accepted April 6, 2021, date of publication April 12, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072653

Non-Profiled Deep Learning-Based Side-Channel
Preprocessing With Autoencoders
DONGGEUN KWON 1, HEESEOK KIM 2, AND SEOKHIE HONG 1, (Member, IEEE)
1Institute of Cyber Security and Privacy (ICSP), Korea University, Seoul 02841, Republic of Korea
2Department of Cyber Security, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea

Corresponding authors: Seokhie Hong (shhong@korea.ac.kr) and Heeseok Kim (80khs@korea.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT under Grant NRF-2019R1A2C2088960.

ABSTRACT In recent years, deep learning-based side-channel attacks have established their position as
mainstream. However, most deep learning techniques for cryptanalysis mainly focused on classifying side-
channel information in a profiled scenario where attackers can obtain a label of training data. In this paper,
we introduce a novel approach with deep learning for improving side-channel attacks, especially in a non-
profiling scenario. We also propose a new principle of training that trains an autoencoder through the noise
from real data using noise-reduced labels. It notably diminishes the noise in measurements by modifying
the autoencoder framework to the signal preprocessing. We present convincing comparisons on our custom
dataset, captured from ChipWhisperer-Lite board, that demonstrate our approach outperforms conventional
preprocessing methods such as principal component analysis and linear discriminant analysis. Furthermore,
we apply the proposed methodology to realign de-synchronized traces that applied hiding countermeasures,
and we experimentally validate the performance of the proposal. Finally, we experimentally show that we
can improve the performance of higher-order side-channel attacks by using the proposed technique with
domain knowledge for masking countermeasures.

INDEX TERMS Autoencoder, side-channel attacks, non-profiled, preprocessing, cryptography.

I. INTRODUCTION
Side-channel analysis, which exploits physical leakage
from a cryptographic device, was introduced by Kocher
in 1996 [1]. For successful side-channel attacks against
cryptographic devices, the attack generally consists of three
steps. Collecting side-channel information, such as power
consumption or electromagnetic radiation, from the target
cryptographic device, is the first step, which is highly depen-
dent on the performance of measuring instruments. Second,
preprocessing steps, such as noise reduction, trace align-
ment, dimensionality reduction, and feature selection, are
required to extract meaningful information in the measure-
ments. Finally, modeling and exploiting secret information
on the preprocessed information are performed to recover the
correct key.

In the real world, attackers could fail to extract secret
information, e.g., cryptographic key, from the power traces
obtained from the actual device, even if the side-channel
attack techniques were performed correctly. Such cases occur

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

mainly because of noise and misalignment in measurements,
also the attackers can fail due to hiding countermeasures
[2]–[4]. That’s why it is not enough to perform the side-
channel attack methods alone, the preprocessing step is
important and should be perform. In the context of side-
channel analysis, several methods have been applied to pre-
process the leakages for reducing the attack complexity in
terms of the number of necessary measurements. To briefly
review the commonly used preprocessing techniques, aver-
aging method, Singular Spectrum Analysis (SSA) [5],
Principal Component Analysis (PCA) [6] and Linear Dis-
criminant Analysis (LDA) [7] are used as preprocessing
methods for denoising. To realign the desynchronized traces,
cross-correlation for a matching pattern with sliding win-
dow [8] and elastic alignment [9], which is based on Dynamic
Time Warping (DTW), are introduced in the side-channel
context.

These methods have shortcomings that depend on the
attacker’s capability and require many parameters to be
searched manually. To overcome these difficulties, end-to-
end deep learning-based side-channel attacks have been well
investigated in recent years. The attacks have the advantage

57692 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5269-7634
https://orcid.org/0000-0001-8137-4810
https://orcid.org/0000-0001-7506-4023
https://orcid.org/0000-0001-8768-9709


D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

of obtaining similar (or better) results without requiring
any preprocessing processes, whose performances depended
on the attacker’s ability in the conventional attack. Early
research based on deep learning with regression analysis
attempted to characterize the powermodel byYang et al. [10].
Subsequently, deep learning-based attacks were mainly stud-
ied for solving the classification problem. In this case,
we assume the profiling attack scenario, that the attacker
can obtain a template device, which is similar to the target
device. The attacker trains a deep neural network through the
profiling device’s measurements and then uses the network as
the classifier to distinguish the traces from the target device.
With this deep learning technique, the attacker easily analyzes
the measurements with high performances and finds secret
information like the conventional attack [11].

Maghrebi et al. [12] showed that the preprocessing per-
formed by deep learning includes not only signal preprocess-
ing, but also preprocessing such as a combining function to be
performed in higher-order side-channel attacks. Maghrebi’s
results confirm that profiling attacks with deep neural net-
works such as Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Stacked Autoencoder (SAE), and
Long Short-Term Memory (LSTM) can be analyzed regard-
less of whether a masking countermeasure is applied or not.
Also, Cagli et al. [13] show that the secret information can be
recovered merely through deep learning-based side-channel
attacks without performing alignment preprocessing tech-
niques when we use the deep neural network with convo-
lutional layers, even if hiding countermeasures are applied
in the measurements. Hettwer et al. [14] introduced a new
architecture of the convolutional neural network, and it shows
that additional input, Domain Knowledge (DK) neurons,
which are concatenated with the output of a flatten layer, can
improve the performance of deep learning-based attacks.

While most of the studies focused on applying deep learn-
ing to perform profiling attacks, Differential Deep Learning
Analysis (DDLA), which can use the power of deep learn-
ing in the non-profiled context, is proposed by Timon [15].
DDLA is a method that uses deep learning as a distinguisher,
and it shows that different trends of training metrics, such
as loss, accuracy, sensitivity, appear depending on the key
guessed label. Using the trends, the attacker distinguishes
the right key guessed label from the wrong key label in the
non-profiling context. Timon’s study has shown that deep
learning-based side-channel attacks can be performed in non-
profiling attack scenarios.

One of the current methods related to this paper’s work
is Correlation Optimization, proposed by Robyns et al. [16],
which improves the performance of the conventional correla-
tion analysis, such as correlation power analysis and correla-
tion electromagnetic analysis. Correlation Optimization is a
novel approach that improves the conventional side-channel
attacks by encoding the leakage to maximize the correla-
tion coefficients. Another similar to our own proposed tech-
nique that preprocesses side-channel measurements using
denoising autoencoders, was proposed [17]. However, this

technique used a convolutional autoencoder in the profiling
attack scenario, and is limited because it merely applies the
autoencoder, which is usually applied in computer vision.

Due to the limitation of supervised learning, which cannot
be performed without the label corresponding to the measure-
ments, profiled deep learning-based side-channel attacks are
limited to research in the profiled context where training data
and its labels can be obtained. In this paper, therefore, we pro-
pose a novel approach for improving the performance of side-
channel analysis that can be applied even in a non-profiling
environment that does not require a strong assumption that
the attacker has a template device.

A. OUR CONTRIBUTIONS
Succinctly said, we presented a new perspective for how
to apply deep learning to non-profiled side-channel attacks,
using deep learning as preprocessing. It is a different
approach from the previous attack, DDLA. Most deep
learning-based side-channel analysis research has been
largely confined to the profiled attack scenario, which is
easy to obtain training data and corresponding labels from
template devices. However, we expend deep learning-based
side-channel analysis that can be performed even in the
assumption of weaker attackers, non-profiled. To the best
of our knowledge, our method is the second technique in
the field of non-profiled deep learning-based side-channel
attacks. We modified the training framework of autoencoders
so that it can be used in non-profiled attacks, unlike the
previous research, which used the denoising autoencoders
in the field of image processing. Also, we did not just end
with introducing the new approach. We further modified our
proposed technique so that it can be applied to implementa-
tions protected by side-channel countermeasures, by propos-
ing the new algorithm or adding the DK concept into the
autoencoders. And then, we validated that our techniques
outperform the conventional preprocessing techniques by
experimental results in open datasets.

Our contributions of this paper can be summarized as
follows.
• Presenting a new approach of deep learning-based
techniques to improve non-profiled side-channel
attacks. To the best of our knowledge, Differential Deep
Learning Analysis (DDLA), proposed by Timon [15],
is the only deep learning technique that applied in
the non-profiled side-channel attacks. DDLA is a new
framework using deep learning in non-profiled attacks,
however, it is limited in that it is difficult to compare its
performance with the conventional attacks, and it is a
huge overkill. In this paper, we propose the second non-
profiled deep learning approach with new autoencoder
architectures that can reduce the noise by modifying a
training principle to the context of side-channel analy-
sis. Our proposal can improve the performance of non-
profiling attacks by reducing the noise of measurements
with the power of deep learning. Unlike DDLA need to
train for all the 256 key guesses, our methods only need

VOLUME 9, 2021 57693



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

to train a single model. As a result, the attackers can pre-
process side-channel information with the power of deep
learning, and recover the secret key with CPA, which
is a lower time cost than DDLA. Also, our proposed
methods are easy to compare with the conventional
preprocessing methods so that the attackers can freely
choose the methods, after comparing the performance
of ours and the conventional methods. Our experimental
results show that the proposed methods outperform the
conventional preprocessing methods in the non-profiled
attack scenario.

• Extending the proposed method to realign
de-synchronized traces with convolutional autoen-
coder. In the real world, when measurements are pro-
tected by hiding countermeasures, alignment methods
are also necessary, not only noise reduction. We show
that the proposed techniques used in the noise reduction
can be extended and applied to the alignment that coun-
terbalances the hiding technique such as random delay,
jitter. While maintaining the same strategy, we achieve
meaningful results in alignment by merely changing the
label setting method.We experimentally show that when
attackers apply our proposed methods, the attackers
can recover the secret key by performing CPA with
fewer measurements than conventional preprocessing
techniques such as the sliding window method and the
dynamic time warping based elastic alignment.

• Proposing the autoencoder with Domain Knowl-
edge to denoise implementations protected by mask-
ing countermeasures. Our techniques described above
improved the performance of non-profiled attacks by
preprocessing the label data of the autoencoder using
additional information (plaintext or ciphertext) that
can be additionally obtained from the non-profiling
attack scenario, which is different from the unsuper-
vised learning scenario. We propose a new autoencoder
framework that directly transmits the additional infor-
mation to the autoencoder by the Domain Knowledge
technique, rather than preprocessing. Significant results
were obtained in the classification model using the
DK technique in previous research [14]. In this paper,
we experimentally show that the DK approach can also
be applied to the autoencoder and that the proposed
method can be performed to the masking countermea-
sure technique through experiments on ASCAD, which
ismainly used as a benchmarking dataset in side-channel
attacks.

B. ORGANIZATION
The structure of this paper is organized as follows.
Section 2 briefly describes non-profiled side-channel attacks,
deep learning, autoencoder, and denoising autoencoder.
In section 3, we introduce our novel approach for improv-
ing side-channel attacks with the autoencoder, and pro-
pose new methods that preprocess the measurements by
modifying the autoencoder framework to the context of

non-profiled side-channel analysis. Section 4 compares the
performance of noise reduction and alignment between
the classic preprocessing techniques and the proposed
method from experiments performed on traces obtained from
ChipWhisperer-Lite, and the datasets that applied the random
delays countermeasure and first-order masking countermea-
sure database. Finally, section 5 concludes this paper with a
conclusion and future works.

II. PRELIMINARIES
A. NON-PROFILED SIDE-CHANNEL ATTACK
With the universalization of Internet of Things technol-
ogy, security in environments where physical equipment
is exposed has become important, not only the mathe-
matical safety of cryptographic algorithms but also the
safety against physical attacks has become necessary. Side-
channel analysis, which is one of the physical attacks, is an
attack that analyzes the algorithm using not only the plain-
text/ciphertext of the implemented algorithm, but also side-
channel information leaked from the cryptographic device
when the cryptographic algorithm operates, which includes
power consumption, electromagnetic wave, execution time,
and sound.

Side-channel analysis is divided into profiling attacks and
non-profiling attacks according to the attack environment.
The profiling attack, such as Template Attack [18], Stochastic
Attack [19], MIA [20], is an attack that can be performed
when the profiling device, which is the same device as the
target device, is available. The attackers use the profiling
device to characterize the leakage of the device and then
recover the secret key using the collected information from
the target device.

In contrast, the non-profiled attack is a part of side-channel
attacks performed in a non-profiled context where measure-
ments can be collected only from a target device with a fixed
key. Depending on the number of traces, there are Simple
Power Analysis (SPA) [1], which analyzes through one or a
few traces, and Differential Power Analysis (DPA) [21] and
Correlation Power Analysis (CPA) [22], which perform sta-
tistical analysis through numerous traces. Especially, CPA,
originally proposed by Brier et al. in 2004, is a power analysis
using the correlation between the power consumption, which
is obtained from the target device when it performs crypto-
graphic operations, and the hypothetical power consumption
value to be calculated. The leakage model is defined as the
following:

Power = δ + HW (Data)+ Noise (1)

where δ is a fixed constant offset, HW (·) is the Hamming
Weight function, and Noise is the gaussian noise centered on
zero with a standard deviation of σ . In order to perform CPA,
the first step is that the attacker measures the power consump-
tion of the target device while calculating the cryptographic
operations, and then calculates the hypothetical consumption
with the guessing key and calculates the correlation between

57694 VOLUME 9, 2021



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

the hypothesis and power consumption. The correlation coef-
ficient between these two values is calculated as follows:

ρ(X ,Y ) =
Cov[X ,Y ]

√
Var[X ] · Var[Y ]

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

It can be deduced that the hypothetical value, which has
the largest correlation coefficient with the measurements,
is the hypothetical power consumption, which is calculated
by the right key. Thus, the attacker can recover the correct
key. Since the statistical analysis techniques are affected by
the noise of the data, noise reduction is required for successful
side-channel attacks.

SPA is an attack that infers the operation patterns or secret
information using one or a small number of side-channel
information [1]. The attackers perform SPA by using the
fact that the power consumption depends on the instruction
of the operation and the value of the data operated in devices.
The attackers can identify the operation pattern and distin-
guish the type of operation through SPA, and it can improve
the success rate of the side-channel attack.

B. DEEP LEARNING
Deep Learning is a subset of machine learning that approx-
imates a function using a neural network and is used in
various fields such as computer vision, natural language, and
recommender systems. Training is a process of modifying the
trainable parameters to approximate the neural network with
the desired function. If a label, which is the output of the
function that the attacker wants to approximate, is given, it is
called supervised learning, and if not, it is called unsupervised
learning [23]. When the neural network is a function f (x) and
the desired approximation function is f ∗(x), then f (X; θ ) is
the output of the neural network for the input X with train-
able parameters θ . To approximate the function f ∗(x) means
that it minimizes the difference between the output of the
neural network f (x; θ ) and the output of the actual function
y(=f ∗(x)), called label. The difference, called loss (or cost,
error), is described as:

Loss(X ,Y ) = L(f (X; θ ),Y ) (3)

In equation (3), L(·) is a loss function, which is also
called the error function, and usually uses Mean Squared
Error or Cross Entropy. In the training process, the neural net-
work searches the parameters θbest that minimize loss through
the training and thereby determines the optimal parameters
θbest that satisfy equation (4).

θbest = argmin
θ

(L(Y , f (X; θ ))) (4)

We usually use a gradient descent method to find the opti-
mal parameters that minimize the loss, where α is a learning
rate that decides how much to change the parameters of the
neural network with respect to the gradient. Various methods

FIGURE 1. Example of (a) Convolutional layer and (b) Pooling layer.

such as RMSProp and Adam optimizer can be used to sched-
ule the learning rate [24], [25].

1) MULTI-LAYER PERCEPTRON
Multi-Layer Perceptron (MLP), also called Artificial Neural
Network (ANN), is a basic model of the deep neural network.
Each hidden layer of MLP consists of a linear function and a
nonlinear function. MLP consists of multiple hidden layers,
and can be expressed as follows:

f (x) = s ◦ λ ◦ σ ◦ λ ◦ · · · ◦ σ ◦ λ(x) (5)

λ is called a fully-connected layer and is the linear function
that is calculated asWX + b, whereW and b are the trainable
parameters, calledweight and bias, respectively. σ is called an
activation layer and is the nonlinear function that usually uses
Sigmoid or ReLU(Rectified Linear Unit). s is a classification
layer that is slightly different from the activation layer, which
is used to re-normalize the output. It usually uses a softmax
function when the neural network is a multi-class classifier.

2) CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural network (CNN) is a particularized class
of neural networks containing convolutional layers and pool-
ing layers. Convolutional layers are linear layers that share
weights and apply convolution operation to the input. The
convolutional layer’s weights are called kernels or filters,
which can detect a feature in the input. The kernels are also
optimized by the gradient descent method. Like the MLP,
convolution layers have an activation function, which is a
nonlinear operation followed by convolution operations.

The other kind of layer, the pooling layer is usually per-
formed after the convolution layers. Pooling layers perform
down-sampling on the input dimension to output the reduced
volume by averaging the local or sub-sampling maximum.

C. BASIC AUTOENCODER
An Autoencoder is an unsupervised learning model of neural
networks in which the output of the neural network is similar
to the input. It is used for pre-training the neural network,
compression of input data, and denoising the image. In earlier
studies, where training about the deep layers was difficult,
the autoencoder was usually used to initialize and pre-train
the network’s parameters. After learning each layer’s weights
by pre-learning using the stacked autoencoder, the network is
learned by adjusting the overall weight through fine-tuning.

VOLUME 9, 2021 57695



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

However, it is not well used nowadays due to the incon-
venience of training time and design, and new initializa-
tion techniques have been proposed, such as Xavier and He
initializer [26], [27].

Secondly, an autoencoder can be used to reduce the dimen-
sions of input data. An autoencoder used for dimensionality
reduction basically consists of an encoder part for compress-
ing the input data’s dimension and a decoder part for recon-
structing the compressed data through the encoder into the
original input data. Figure 2 shows the basic architecture of
the autoencoder.

FIGURE 2. Basic architecture of autoencoder.

In Fig. 2, X = (x1, x2, . . . , xn) ∈ Rn is the input of
the autoencoder, Z = (z1, z2, . . . , zt ) ∈ Rt is called Code
that is data compressed by the encoder of autoencoder, and
Y = (y1, y2, . . . , yn) ∈ Rn is the output of the autoencoder.
A neural network consisting of hidden layers between input
and Code is called the encoder. Also, a neural network con-
sisting of hidden layers between Code and output is called the
decoder. Generally, the dimension of the code t is smaller than
the dimension of the input n, and if the autoencoder satisfies
the condition, it is called an undercomplete autoencoder.
If not, it is called an overcomplete autoencoder. The operation
of autoencoder in which the encoder and decoder are each
composed of one layer is calculated as follows:

zi = σ (
n∑
j=1

weightenc(j,i)xj + bias
enc
i ) (6)

yi = σ (
t∑
j=1

weightdec(j,i)zj + bias
dec
i ) (7)

LossAE = L(X , fD(fE (X; θ ))) (8)

θbestAE = argmin
θ

(L(X , fD(fE (X; θ )))) (9)

When the encoder is a function fE () and the decoder is
a function fD(), the loss of autoencoder is defined as (8).
If training is successful and the output Y is the same as
the input X , then X = fD(fE (X )) = fD(Z ), X = fD(Z ) :
Rt
→ Rn. This means that the compressed data, code can be

reconstructed to the original through the decoder function g,
while the dimension of the compressed data is smaller than
the dimension of input data. Therefore, the code has all of the
features of the input but is also low-dimensional data.

FIGURE 3. Architecture of denoising autoencoder.

D. DENOISING AUTOENCODER
An autoencoder that reduces the noise, called a Denois-
ing Autoencoder (DAE), was originally proposed by
Vincent et al. [28] in 2008. DAE’s structure is the same as
the traditional autoencoder, but the main difference lies in
training input data. Unlike an autoencoder that uses input data
as it is, DAE is trained through randomly added noise by an
attacker. Fig. 3 shows the basic architecture of DAE.

As shown in Fig, 3, the attacker adds noise to data X , which
is collected, to generate new data X̃ and use it as training
data. The learning is performed to minimize the loss, which
is calculated as the difference with the output of the neural
network Y , and the original data X before adding the noise.
It trains noisy data to recover the original undistorted input,
and the new training principle for an autoencoder enables the
neural network to remove the noise.

LossDAE = L(X , fD(fE (X̃; θ ))) (10)

Equation (10) represents the loss of the DAE. There are
two ways to add noise to input data in the DAE: adding
gaussian noise to the data or zeroing some elements of the
data randomly. By adding gaussian noise, the neural network
learns with X̃ to project them back into the original X , and
it can make to decide the data in the close range as the same
data. In the field of computer vision, by setting some elements
to zero (zero-masking noise [29]), the model can learn about
the whole data, rather than merely focusing on specific parts
of the data. With this framework, the autoencoder can be
trained to output noise-reduced data.

E. LIMITATIONS OF CONVENTIONAL METHODS
AND TRADITIONAL AUTOENCODERS IN
SIDE-CHANNEL ANALYSIS
PCA and LDA-based noise reduction methods are usually
used in the side-channel attacks. In terms of dimensional
reduction, PCA and LDA are the methods that project data
to a linear hyperplane, whereas an autoencoder projects data
to a non-linear hyperplane, like Isomap, and is the deep
learning-based technique with the advantage that the more
data, the higher the dimension, and the better the perfor-
mance. It is well known that if t is smaller than n, the decoder
is the linear layer, and the loss function is mean squared

57696 VOLUME 9, 2021



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

error, then an autoencoder learns to span the same subspace
as PCA [23], [30]. Therefore, conventional techniques can
theoretically be replaced by autoencoder. For similar reasons,
a DAE is applicable, and according to previous studies, better
performance can be expected when applying the DAE.

However, there are two disadvantages to using the DAE
in the side-channel attacks due to differences from the field
of image processing. First, noise from the collection already
existed in the raw trace. Suppose the attacker adds more
noise to the collected power traces, which are used as training
data. That makes class classification more difficult and pre-
vents the training of the neural network. Furthermore, hiding
countermeasures make it harder to apply the DAE. Assuming
that the power model is Equation (1) as described above,
Equation (11) is the DAE’s loss when the input data are the
power traces.

LossDAE = L(fD(fE (X̃; θ ),X )

= L(fD(fE (δ + HW (D)+ Noise+ Noise′)),

× δ + HW (D)+ Noise) (11)

where Noise is noise from the collection, and Noise′ is noise
from the attacker. If the value of Noise is low, it is not
necessary to remove the noise for the measurements. On the
contrary, when the value of Noise is high, the weight of total
noise in the training data δ+HW (D)+Noise+Noise′ becomes
heavier than before. Thus, added noise makes it challenging
to train the network with high accuracy. To solve the problem,
if the attacker sets the Noise′ too low to train the network,
the DAE will only train about low noise, reducing the effect
of noise reduction. When Noise′ is close to zero, it is not the
DAE; it is just the autoencoder.

In computer vision, when we classify an image that is a
cat or a dog, our decision is not dependent on a few pixels
at certain points on the image. However, in the context of
side-channel attacks, the cryptographic operations targeted
by the adversary are performed only at a few points in the
encryption. When training data are generated with random
sample points of 0, the training data may be generated in
which the sample related to the secret key is excluded. There-
fore, this method is not suitable for the side-channel analysis
environment. These problems make it difficult to apply the
approach of the DAE framework. In this paper, we propose a
new autoencoder framework modified to solve the problems
in the side-channel attacks.

III. SIDE-CHANNEL PREPROCESSING
USING AUTOENCODER
A. CONCEPT OF SIDE-CHANNEL AUTOENCODER
In this section, we introduce our approaches to preprocess
the measurements by modifying the training principle of
the autoencoder into the context of side-channel analysis.
Figure 4 shows the basic architecture of the autoencoder
proposed in this paper, which is called Side-Channel Autoen-
coder (SCAE). The proposed model is similar to the basic
structure of the autoencoder. However, unlike the DAE,

FIGURE 4. Architecture of side-channel autoencoder.

the input data are used as training data. Also, using prepro-
cessed data as the label, the autoencoder can be trained about
the real noise to output noise-reduced traces.

As shown in Fig. 4, input X is used as the input of the
autoencoder, and denoise trace X̂ is used as the label for the
input data. The loss of the proposed autoencoder is as follows.

LossSCAE = L(δ + HW (D),

× fD(fE (δ + HW (D)+ Noise))) (12)

In the conventional autoencoder, which denoises, the net-
work is trained to remove the newly added noise, which is
added by the attacker, but the proposal is trained to remove
the noise in the collected traces. In contrast to the loss of the
DAE in Equation (11), we calculate the loss as the differ-
ence between output Y obtained by inputting X and denoise
trace X̂ .

B. SIDE-CHANNEL AUTOENCODER FOR
NOISE REDUCTION
Many methods can be used to preprocess side-channel traces
to perform the proposedmethod, but we use themost straight-
forward and reasonable approach, i.e., average. Bymaximum
likelihood estimation in equation (1), the expectation value
is an average value of the traces with the same intermediate
value [31]. If the keyK is a fixed value, the intermediate value
D = Sbox(P ⊕ K ) is determined according to the plaintext
P, so that the traces performed with the same plaintext P
have the same intermediate value D. Since the average trace
for the same plaintext is the average trace for the same
intermediate value, the proposed preprocessing technique can
be performed even in a non-profiling attack environment in
which the intermediate value is not known. The label for
each trace can be set to the average trace corresponding
to the plaintext of the trace. Algorithm 1 summarizes the
proposed method to perform with the averaging technique.
After the preprocessing step, the secret key can be exploited
by applying side-channel attacks such as DPA, CPA, and
DDLA.

Although it is difficult to perform this method in an image
processing context, it can be done due to differences in data in
the context of side-channel analysis. For example, in an image
processing implementation that classifies handwritten digits

VOLUME 9, 2021 57697



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

Algorithm 1 Side-Channel Autoencoder’s Label Setting for
Noise Reduction

Input: Traces (Tn)0≤n≤N with corresponding plaintexts
(Pn)0≤n≤N , when 0 ≤ Pn ≤ p.

Output: Label traces Y
1: // Reference Traces Selection Step
2: for i = 0 . . . p do
3: // Grouping traces with corresponding plaintexts
4: Gi← {Tn|Pn = i}
5: // Calculate reference traces with the averagingmethod

6: Ri← 1
|Gi|

∑l
j=0 Gi[j], when l is the length of the trace.

7: end for
8: // Labeling Step
9: for i = 0 . . .N do
10: // Setting a label with corresponding the trace
11: Yi← RPi
12: end for
13: return Labels (Yn)0≤n≤N with corresponding traces

(Tn)0≤n≤N

like the MNIST database [32], 10 classes must be classified
by the attacker, and the samples that the attacker must analyze
are separated into several samples in 784 (28× 28) samples.
Therefore, two different data of the same class can have some
features at different points in the samples. Thus, the average
value of the imagewith the same digit is meaningless.We eas-
ily expect that if we use themethodwithmean trace, the traces
for a particular plaintext are always output as the same trace
(label trace). Nevertheless, such a situation does not easily
occur, except in the case of overfitting.

C. SIDE-CHANNEL AUTOENCODER FOR
TRACE ALIGNMENT
When the alignment of the traces is disturbed by hiding coun-
termeasures such as random delay and jitter [2]–[4], the point
of the samples as the attack target is different for every trace.
This makes it difficult to obtain the noise-reduced traces
through the averaging and to apply the above-described pro-
posed method. In this case, preprocessing is required to align
the de-synchronized traces rather than the noise reduction in
order to apply the conventional side-channel attack. In this
subsection, by modifying the proposed labeling technique,
we propose a simple labeling algorithm to encode the traces
into the aligned data.

In the previous description, we described the method to
obtain representative, noise-reduced traces. The following
description is a method for collecting an aligned represen-
tative trace of each class (intermediate value). Algorithm 2
summarizes the labelingmethod to obtain the realigned traces
in de-synchronized traces.

Similar to the method used for noise reduction, a rep-
resentative label for each plaintext is selected in the
de-synchronized traces having the same intermediate value.

Algorithm 2 Side-Channel Autoencoder’s Label Setting for
Alignment

Input: Traces (Tn)0≤n≤N with corresponding plaintexts
(Pn)0≤n≤N , when 0 ≤ Pn ≤ p.

Output: Label traces Y
1: // Reference Traces Selection Step
2: Set a reference trace R0← Ti where Pi = 0.
3: for i = 0 . . . p do
4: Ri ← Tj where j = argmax

k
(corr(R0,Tk )), when k ∈

{n|Pn = i}
5: end for
6: // Labeling Step
7: for i = 0 . . .N do
8: // Setting a label with corresponding the trace
9: Yi← RPi
10: end for
11: return Labels (Yn)0≤n≤N with corresponding traces

(Tn)0≤n≤N

First, one traces is selected as a reference trace in some
plaintext (like 0), and the correlation coefficient is calculated
with traces having different plaintexts (1 to 255). Next, one of
the traces with the highest correlation coefficient is selected
for each plaintext set and used as a label trace of each set.
Thereafter, additional alignment can be performed using a
conventional alignment technique for 256 traces. In this way,
it is possible to obtain labels by not performing the align-
ment, or by performing the alignment only on a small number
of traces, i.e., 255.

D. SIDE-CHANNEL AUTOENCODER FOR
MASKING COUNTERMEASURES
In the implementation applied a masking countermeasure,
then the intermediate values are changed by the masking
value, which is the unknown, so that the proposed methods
described above cannot be used. Therefore, we introduce
a new autoencoder with domain knowledge (DK) neu-
rons. The DK neurons, which were originally proposed by
Hettwer et al. [14] in 2018, provide the plaintext or ciphertext
as additional information into a neural network to learn the
leakage in regard to the secret key. Hettwer et al. ’s research
shows that better results can be obtained when using side-
channel traces with DK.We also get better results when using
the DK neurons in the autoencoder.

Although, we use one byte of the plaintext as the domain
knowledge in our experiments. Nevertheless, we encode
the plaintext into bit-encoding, not one-hot encoding.
Bit-encoding represents the plaintext as a vector of 8 variables
like binary representation, where one-hot encoding encodes
the plaintext into a vector of 256 variables. The bit-encoding
can represent data in a smaller dimension than one-hot encod-
ing, and also represent the vector of binary variables. The
basic architecture of the autoencoder with DK is shown
in Fig. 6.

57698 VOLUME 9, 2021



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

FIGURE 5. Comparison of signal-to-noise ratio results for preprocessing methods.

FIGURE 6. Architecture of autoencoder with domain knowledge.

The methods described in sections 3.1, and 3.2 are similar
to an autoencoder with domain knowledge. When the domain
knowledge technique provides additional information to the
input directly into the middle of the autoencoder, the methods
described above are the methods that insert information by
preprocessing the label trace. In the case of masking coun-
termeasures, the average method cannot be applied with-
out a side-channel attak combining function. Conventional
techniques, such as SSA, PCA, and LDA, could be used,
but we expected the DK technique to be more suitable for
autoencoders.

IV. EXPERIMENTAL RESULTS
In this section, we experimentally validate the performance
of the proposed methods. All experiments were performed
with TensorFlow (Version 1.13.1) [33] and Keras (Version
2.2.4-tf) [34] library on a single NVIDIAGeForce GTX 1080
8GB, and an Intel(R) Core(TM) i7-8700K CPU.

A. IMPLEMENTATION RESULT FOR
UNPROTECTED AES (CW-LITE)
In order to analyze the noise reduction performance of the
proposed approach, we capture the power traces of the

AES-128 implementation without side-channel counter-
measures. We gather 10,000 side-channel traces from
the first round of the software AES implementation on
the ChipWhisperer-Lite platform [35]. The target board
is an Atmel XMEGA128 with a fixed clock frequency
of 7.37MHz. The power consumption traces, which con-
tain 800 samples, are captured with a 29.538MS/s sampling
rate, which means 4 points-per-cycle.

To validate the performance of the proposed method,
we compared the Signal-to-Noise Ratio (SNR) of the traces
according to the preprocessing methods. The results are
shown in Fig. 5. In our implementation, PCA with the sliding
window technique showed the best results in window size
24, components 2, and LDA showed in window size 23,
components 21. The parameters of PCA and LDA with the
sliding window technique were obtained through exhaustive
searches. The maximum values of both SNR results, 9.5489,
and 5.9725, are higher than the original traces’ result, 5.1782.
However, as presented in Fig. 5, the maximum value of SNR
is 20.4902 in SNRproposal . These experiments indicate that the
proposed method can outperform the classic preprocessing
methods of PCA, and LDA.

B. IMPLEMENTATION RESULT FOR AES PROTECTED BY
HIDING COUNTERMEASURES (RandomDelay)
In order to validate the performance of Realignment, we used
the protected software AES implementation obtained from an
8-bit Atmel ATmega16 AVRmicrocontroller. The implemen-
tation of AES is protected by a random delay countermeasure,
which was originally proposed by Coron and Kizhvatov [2].
The measurements were performed with a LeCroyWaveRun-
ner 104MXi DSO equipped with a ZS1000 active probe,
and the details of the measurement setup and the implemen-
tation are in [36].1 We normalize the traces by min-max

1The Coron’s RandomDelay dataset is available at http://github.com/
ikizhvatov/randomdelays-traces.

VOLUME 9, 2021 57699



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

FIGURE 7. Comparison of absolute correlation coefficients for preprocessing methods.

scaling Xnew =
X−Xmin

Xmax−Xmin
. The dataset contains 50,000 traces

of 3,500 samples each, but we only use 25,000 traces as a
training set.

To validate the performance of the alignment of the
proposed method, we compared the absolute correlation
coefficient of the traces according to the preprocessing
methods. The results of the absolute correlations are illus-
trated in Fig. 7. In Fig. 5, the x-axis presents the number
of traces used in the correlation attack, the y-axis presents
the absolute correlation coefficient, and the results of the
attack are shown. The gray lines are the correlation coef-
ficient for the wrong key, and the red line is the correla-
tion coefficient for the correct key. Our experiment is firstly
performed with 100 traces, and then repeated with incre-
ments of 100 traces each time. The absolute correlation
coefficient was calculated up to 5000 traces. An SCAE with
CNN encoder means that the convolutional layers are used
in the encoder part of the autoencoder. As shown in Fig. 7,
the CPA on the raw traces failed. The maximum value of
the absolute correlation coefficient is in the SCAE with CNN
encoder, but the noise level is highest. However, considering
the number of traces required for CPA, the attack can suc-
ceed with the fewest traces using the proposed technique.
These results indicate that the proposed methods can per-
form the alignment of the measurements. Besides, the abso-
lute correlation coefficients in Figure 7 show that when the
attackers use our methods, they can recover the secret key
by CPA with fewer traces than conventional preprocessing
techniques.

In order to visually confirm the results, the 100 traces
according to the alignment technique are shown in Fig. 8.
The simple power analysis results cannot be demonstrated
exactly, but we can observe that it is clearly evident that
the raw traces and cross-correlation with sliding window-
based realigned traces did not align well. The DTW-based
realigned traces (Fig. 8c) and the proposed method-based
realigned traces (Fig. 8d) are better aligned than the previous
two results of Fig. 8a and Fig. 8b. Despite the difficulty in
clearly comparing the conventional techniques, the proposed
technique is superior to the original measurements.

C. IMPLEMENTATION RESULT FOR AES PROTECTED BY
MASKING COUNTERMEASURES (ASCAD)
In order to analyze the performance of proposed method,
we use a software Masked AES implementation obtained
from an ATMega8515 device. The dataset called
ASCAD (ANSSI SCA Database2) is introduced by
Benadjila et al. [37] to provide a benchmarking reference in
side-channel analysis, like the MNIST database in machine
learning. The ASCAD dataset contains 60,000 traces of
700 samples each, but we only use 50,000 traces as the
training set. The implement of AES is protected by the
masking countermeasure with a different masking value for
each byte. We also normalize the traces by feature scaling,
and newly add gaussian noise centered in zero with a standard
deviation 0.1 for noise reduction experiments.

2ASCAD is available at https://github.com/ANSSI-FR/ASCAD.

57700 VOLUME 9, 2021



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

FIGURE 8. Comparison of simple power analysis results for preprocessing
methods.

In our experiments, we perform a second-order correlation
power analysis with the product combining function [38]:

Cprod (L(t1),L(t2)) = (L(t1)− E[L(t1)])

×(L(t2)− E[L(t2)]) (13)

We combine points at the 140 to 190 positions as a masking
value into t1 and the 490 to 540 points as the Subbytes
value into t2, and the length of the combined traces is 2601.
In the result of the raw traces, the maximum value of the
absolute correlation coefficient is 0.109672 at 539 point, and
the maximum value of the difference between the correlation
of the correct key and the highest correlation in the wrong
keys is 0.076478. On the other hand, the maximum value of
the correlationwith our proposal is 0.193304 at 900 point, and
the maximum value of the difference between the correlation
of the correct key and the highest correlation in wrong keys is
0.136384, which is roughly twice the result of the raw traces
in Fig. 9b. Also, we cannot confirm the leakage at the result
from the raw traces at 180 point, but the correlation of the
correct key is higher than all the correlations of the wrong
key in the result of the proposal. These results show that the
proposedmethods can improve the conventional side-channel

FIGURE 9. Comparison of second-order correlation power analysis
results.

analysis, even if the masking countermeasure is applied in the
implementations.

V. CONCLUSION
One of the reasons why the study on the deep learning-based
side-channel attacks attract attention is that it is possible to
analyze without performing the preprocessing step that is
required in the conventional side-channel attacks, regardless
of whether or not the countermeasures are applied. However,
end-to-end deep learning-based attacks that simultaneously
perform preprocessing and analysis steps can only be per-
formed when the attacker already knows the intermediate
values of the traces. This limits such methods to being per-
formed only in the profiling attack context, because oth-
erwise training is required as many times as the predicted
number of a secret key, like DDLA. The present study
has demonstrated the performance of side-channel analysis
using deep learning in non-profiling attacks and the pro-
filing attack environment by separating the preprocessing
step from the attack step. Furthermore, the proposed method
can improve the performance of conventional side-channel
analysis, as was experimentally demonstrated. In this paper,
we only focused on side-channel analysis in the non-profiling
attack environment, but we expect that the performance of
the profiling attacks can be improved through the proposed
techniques. Even though the proposed training principle of
the autoencoder model is not applicable without plaintexts or

VOLUME 9, 2021 57701



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

ciphertexts, it can nevertheless improve the performance of
side-channel attacks without compromising the constraints
in the non-profiling context. In addition, the proposed tech-
niques can be used to develop a new approach for the appli-
cation of deep learning to side-channel analysis, rather than
merely classifying side-channel information.

APPENDIX A
COMPARISON OF ATTACK TIME OF PROPOSAL
WITH CPA AND DDLA
In this Appendix, we compare the execution time of SCAE
with CPA and the time of DDLA for the measurements used
in Section 4.A. And the experimental environment is the
same as described in Section 4. DDLA used the MLPexp
model of the previous paper and performed 50 epochs [15].
Our proposed method, SCAE, also performed 50 epochs.
The experimental environment is the same as in Section 4.
As can be seen in Table 1, SCAE with CPA performs faster
than DDLA, which has to train as much as the key size.
In Table 1, the execution time was considered for only one
hyperparameter without the hyperparameter optimization.

TABLE 1. Comparison of execution time of CPA, SCAE with CPA and DDLA.

REFERENCES
[1] P. C. Kocher, ‘‘Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems,’’ in Advances in Cryptology—CRYPTO.
Berlin, Germany: Springer, 1996, pp. 104–113.

[2] J.-S. Coron and I. Kizhvatov, ‘‘An efficient method for random delay gener-
ation in embedded software,’’ in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. (CHES). Berlin, Germany: Springer, 2009, pp. 156–170.

[3] J. S. Coron and I. Kizhvatov, ‘‘Analysis and improvement of the ran-
dom delay countermeasure of CHES 2009,’’ in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst. Berlin, Germany: Springer, 2010,
pp. 95–109.

[4] N. Mentens, B. Gierlichs, and I. Verbauwhede, ‘‘Power and fault anal-
ysis resistance in hardware through dynamic reconfiguration,’’ in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. Berlin, Germany:
Springer, 2008, pp. 346–362.

[5] S. M. D. Pozo and F.-X. Standaert, ‘‘Blind source separation from single
measurements using singular spectrum analysis,’’ in Cryptographic Hard-
ware and Embedded Systems—CHES, T. Güneysu and H. Handschuh, Eds.
Berlin, Germany: Springer, 2015, pp. 42–59.

[6] L. Batina, J. Hogenboom, and J. G. van Woudenberg, ‘‘Getting more
from PCA: First results of using principal component analysis for exten-
sive power analysis,’’ in Proc. Cryptographers Track RSA Conf. Berlin,
Germany: Springer, 2012, pp. 383–397.

[7] F.-X. Standaert and C. Archambeau, ‘‘Using subspace-based template
attacks to compare and combine power and electromagnetic information
leakages,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.
Berlin, Germany: Springer, 2008, pp. 411–425.

[8] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards, vol. 31. Berlin, Germany: Springer, 2008.

[9] J. G. van Woudenberg, M. F. Witteman, and B. Bakker, ‘‘Improving
differential power analysis by elastic alignment,’’ in Proc. Cryptographers
Track RSA Conf. Berlin, Germany: Springer, 2011, pp. 104–119.

[10] S. Yang, Y. Zhou, J. Liu, and D. Chen, ‘‘Back propagation neural network
based leakage characterization for practical security analysis of crypto-
graphic implementations,’’ in Proc. Int. Conf. Inf. Secur. Cryptol. (ICISC).
Berlin, Germany: Springer, 2011, pp. 169–185.

[11] Z. Martinasek, L. Malina, and K. Trasy, Profiling Power Analysis Attack
Based on Multi-layer Perceptron Network. Cham, Switzerland: Springer,
2015, pp. 317–339.

[12] H.Maghrebi, T. Portigliatti, and E. Prouff, ‘‘Breaking cryptographic imple-
mentations using deep learning techniques,’’ in Proc. Int. Conf. Secur.,
Privacy, Appl. Cryptogr. Eng. (SPACE). Cham, Switzerland: Springer,
2016, pp. 3–26.

[13] E. Cagli, C. Dumas, and E. Prouff, ‘‘Convolutional neural networks with
data augmentation against jitter-based countermeasures,’’ in Proc. Int.
Conf. Cryptograph. Hardw. Embedded Syst. (CHES). Cham, Switzerland:
Springer, 2017, pp. 45–68.

[14] B. Hettwer, S. Gehrer, and T. Güneysu, ‘‘Profiled power analysis attacks
using convolutional neural networks with domain knowledge,’’ in Proc.
Int. Conf. Sel. Areas Cryptogr. (SAC) 2018. Cham, Switzerland: Springer,
2018, pp. 479–498.

[15] B. Timon, ‘‘Non-profiled deep learning-based side-channel attacks with
sensitivity analysis,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 2, pp. 107–131, Feb. 2019.

[16] P. Robyns, P. Quax, and W. Lamotte, ‘‘Improving CEMA using correla-
tion optimization,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2019, no. 1, pp. 1–24, Nov. 2018.

[17] L. Wu and S. Picek, ‘‘Remove some noise: On pre-processing of
side-channel measurements with autoencoders,’’ IACR Trans. Cryp-
tograph. Hardw. Embedded Syst., vol. 2020, no. 4, pp. 389–415,
Aug. 2020.

[18] S. Chari, J. R. Rao, and P. Rohatgi, ‘‘Template attacks,’’ in Proc. Int. Work-
shop Cryptograph. Hardw. Embedded Syst. (CHES). Berlin, Germany:
Springer, 2002, pp. 13–28.

[19] W. Schindler, K. Lemke, and C. Paar, ‘‘A stochastic model for dif-
ferential side channel cryptanalysis,’’ in Proc. Int. Workshop Crypto-
graph. Hardw. Embedded Syst. (CHES). Berlin, Germany: Springer, 2005,
pp. 30–46.

[20] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, ‘‘Mutual information
analysis,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.
(CHES). Berlin, Germany: Springer, 2008, pp. 426–442.

[21] P. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Advances
in Cryptology—CRYPTO. Berlin, Germany: Springer, 1999, pp. 388–397.

[22] E. Brier, C. Clavier, and F. Olivier, ‘‘Correlation power analysis with a
leakage model,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. (CHES). Berlin, Germany: Springer, 2004, pp. 16–29.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[24] K. S. G. Hinton and N. Srivastava, Lecture 6E RMSPROP: Divide the
Gradient by a Running Average of Its Recent Magnitude (CSC321 Lecture
Slide). 2014.

[25] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[26] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[27] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[28] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘‘Extracting and
composing robust features with denoising autoencoders,’’ in Proc. 25th Int.
Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103.

[29] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, p. 3371–3408, Dec. 2010.

[30] E. Plaut, ‘‘From principal subspaces to principal components with
linear autoencoders,’’ 2018, arXiv:1804.10253. [Online]. Available:
http://arxiv.org/abs/1804.10253

[31] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[33] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems.

[34] F. Chollet et al., ‘‘Keras,’’ Tech. Rep., 2015.
[35] C. O’Flynn and Z. D. Chen, ‘‘ChipWhisperer: An open-source platform

for hardware embedded security research,’’ in Proc. Int. Workshop Con-
structive Side-Channel Anal. Secure Design. Cham, Switzerland: Springer,
2014, pp. 243–260.

57702 VOLUME 9, 2021



D. Kwon et al.: Non-Profiled Deep Learning-Based Side-Channel Preprocessing With Autoencoders

[36] I. Kizhvatov, ‘‘Physical security of cryptographic algorithm imple-
mentations,’’ Ph.D. dissertation, Univ. Luxembourg, Luxembourg City,
Luxembourg, 2011.

[37] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, ‘‘Deep learning
for side-channel analysis and introduction to ASCAD database,’’ J. Cryp-
tograph. Eng., vol. 10, no. 2, pp. 163–188, Jun. 2020.

[38] E. Prouff, M. Rivain, and R. Bevan, ‘‘Statistical analysis of second
order differential power analysis,’’ IEEE Trans. Comput., vol. 58, no. 6,
pp. 799–811, Jun. 2009.

[39] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-on Learning
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2018.

[40] Z. Martinasek and V. Zeman, ‘‘Innovative method of the power analysis,’’
Radioengineering, vol. 22, no. 2, pp. 586–594, 2013.

[41] Z. Martinasek, J. Hajny, and L. Malina, ‘‘Optimization of power analysis
using neural network,’’ in Smart Card Research and Advanced Applica-
tions, A. Francillon and P. Rohatgi, Eds. Cham, Switzerland: Springer,
2014, pp. 94–107.

[42] Z. Martinasek, O. Zapletal, K. Vrba, and K. Trasy, ‘‘Power analysis attack
based on the MLP in DPA contest V4,’’ in Proc. 38th Int. Conf. Telecom-
mun. Signal Process. (TSP), Jul. 2015, pp. 154–158.

[43] R. Gilmore, N. Hanley, and M. O’Neill, ‘‘Neural network based attack
on a masked implementation of AES,’’ in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), May 2015, pp. 106–111.

[44] Z. Martinasek, O. Zapletal, K. Vrba, and K. Trasy, ‘‘Power analysis attack
based on the MLP in DPA contest V4,’’ in Proc. 38th Int. Conf. Telecom-
mun. Signal Process. (TSP), Jul. 2015, pp. 223–226.

[45] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, ‘‘Methodology for
efficient CNN architectures in profiling attacks,’’ IACR Trans. Crypto-
graph. Hardw. Embedded Syst., vol. 2020, no. 1, pp. 1–36, Nov. 2019,
doi: 10.13154/tches.v2020.i1.1-36.

[46] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, ‘‘A novel evaluation metric
for deep learning-based side channel analysis and its extended application
to imbalanced data,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2020, no. 3, pp. 73–96, Jun. 2020, doi: 10.13154/tches.v2020.i3.
73-96.

[47] L. Masure, C. Dumas, and E. Prouff, ‘‘A comprehensive study of
deep learning for side-channel analysis,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, no. 1, pp. 348–375, Nov. 2019,
doi: 10.13154/tches.v2020.i1.348-375.

[48] L.Wouters, V. Arribas, B. Gierlichs, and B. Preneel, ‘‘Revisiting a method-
ology for efficient CNN architectures in profiling attacks,’’ IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020, no. 3, pp. 147–168,
Jun. 2020.

[49] M. Xu, S. Zhang, C. Zhong, J. Ma, and O. A. Dobre, ‘‘Ordinary
differential equation-based CNN for channel extrapolation over RIS-
assisted communication,’’ 2020, arXiv:2012.11794. [Online]. Available:
http://arxiv.org/abs/2012.11794

[50] S. Zhang, S. Zhang, F. Gao, J. Ma, and O. A. Dobre, ‘‘Deep learning
optimized sparse antenna activation for reconfigurable intelligent surface
assisted communication,’’ 2020, arXiv:2009.01607. [Online]. Available:
http://arxiv.org/abs/2009.01607

DONGGEUN KWON received the B.S. degree
in mathematics and the M.E. degree in informa-
tion security from Korea University, South Korea,
in 2014 and 2018, respectively, where he is cur-
rently pursuing the Ph.D. degree in information
security with the Graduate School of Cyber Secu-
rity. His research interests include cryptography,
side-channel attacks, and machine learning-based
cryptanalysis.

HEESEOK KIM received the B.S. degree in
mathematics from Yonsei University, Seoul,
South Korea, in 2006, and the M.S. and Ph.D.
degrees in engineering and information security
from Korea University, Seoul, in 2008 and 2011,
respectively. From 2011 to 2012, he was a Post-
doctoral Researcher with the University of Bris-
tol, U.K. From 2013 to 2016, he was a Senior
Researcher with the Korea Institute of Science and
Technology Information (KISTI). Since 2016, he

has been with Korea University. His research interests include side-channel
attacks, cryptography, and network security.

SEOKHIE HONG (Member, IEEE) received the
M.S. and Ph.D. degrees in mathematics from
Korea University, in 1997 and 2001, respectively.
From 2000 to 2004, he was with Security Tech-
nologies Inc. From 2004 to 2005, he conducted
postdoctoral research with COSIC, KU Leuven,
Belgium. He joined the Graduate School of Cyber
Security, Korea University. His research interests
include cryptography, public and symmetric cryp-
tosystems, hash functions, and MACs.

VOLUME 9, 2021 57703

http://dx.doi.org/10.13154/tches.v2020.i1.1-36
http://dx.doi.org/10.13154/tches.v2020.i3.73-96
http://dx.doi.org/10.13154/tches.v2020.i3.73-96
http://dx.doi.org/10.13154/tches.v2020.i1.348-375

