
Received March 4, 2021, accepted April 6, 2021, date of publication April 12, 2021, date of current version April 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072596

Rolling Bearing Fault Diagnosis Method Based on
Parallel QPSO-BPNN Under Spark-GPU Platform
LANJUN WAN 1,2, HONGYANG LI1,2, GEN ZHANG 1,2,
CHANGYUN LI 2, JUNFENG MAN1,2, AND MANSHENG XIAO1
1School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
2Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou 412007, China

Corresponding author: Junfeng Man (manjunfeng@126.com)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702177, in part
by the Natural Science Foundation of Hunan Province, China under Grant 2019JJ60048, Grant 2020JJ6086, and Grant 2019JJ60008; in
part by the National Key Research and Development Project under Grant 2018YFB1700204 and Grant 2018YFB1003401, and in part by
the Key Research and Development Project of Hunan Province under Grant 2019GK2133.

ABSTRACT Facing the massive rolling bearing vibration data, how to improve the training efficiency,
diagnosis efficiency, and diagnosis accuracy of the rolling bearing fault diagnosis model is a challenge.
Considering that the Spark-GPU platform provides powerful distributed parallel computing capabilities
and back propagation neural network (BPNN) optimized by quantum particle swarm optimization (QPSO)
algorithm has the characteristics of low computational complexity and high diagnosis accuracy, a rolling
bearing fault diagnosis method based on parallel QPSO-BPNN under Spark-GPU platform is proposed.
First, the distributed parallelization of QPSO-BPNNmodel based on Spark-GPU platform is realized, which
can improve the training efficiency and diagnosis efficiency of rolling bearing fault diagnosis model in
the big data environment. Second, in order to improve the convergence speed of fault diagnosis model,
a parameter update strategy suitable for the distributed parallel training of QPSO-BPNN model is designed.
At each iteration during training, the local parameters of each worker node are collected to the master node,
and the global parameters are updated according to the weights and synchronized to each worker node.
Third, a combination strategy of multiple QPSO-BPNN models based on ensemble learning is proposed.
The weighted voting method is adopted to combine the output results of different QPSO-BPNN models to
obtain the best fault diagnosis result of a sample, which can improve the fault diagnosis accuracy to a certain
extent. Experimental results show that the proposed method can quickly perform model training and fault
diagnosis for large-scale rolling bearing vibration data, and the fault diagnosis accuracy reaches 98.73%.

INDEX TERMS Back propagation neural network, fault diagnosis, GPU, parallelization, quantum particle
swarm optimization, rolling bearing, Spark.

I. INTRODUCTION
Rolling bearing is one of the key components of mechanical
equipment, and fault diagnosis of rolling bearing is essen-
tial to ensure long-term efficient and stable operation of
mechanical equipment [1]. The traditional rolling bearing
fault diagnosis methods based on signal processing tech-
nology have been widely used, such as enhanced singular
spectrum decomposition [2], frequency phase space empiri-
cal wavelet transform [3], adaptive generalized demodulation
[4], high-order synchrosqueezing transform [5], recycling
variational mode decomposition [6], and resonance-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

sparse signal decomposition [7], etc. The above methods
can effectively diagnose rolling bearing faults when the
time-frequency domain features of vibration signals are obvi-
ous. However, the signal processing technologies have certain
limitations to deal with the complex vibration signals with
noise and unobvious features.

In recent years, with the rapid development of machine
learning and deep learning, there are more and more
data-driven rolling bearing fault diagnosis methods based on
machine learning and deep learning, such as naive bayes algo-
rithm [8], least square support vector machine [9], iterative
random forest [10], BP neural network [11], one-dimensional
convolutional neural network [12], two-dimensional con-
volutional neural network [13], LSTM recurrent neural

56786 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7236-3589
https://orcid.org/0000-0002-5314-3019
https://orcid.org/0000-0002-3959-0680
https://orcid.org/0000-0003-3804-997X

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

network [14], deep belief network [15], generative adversar-
ial network [16], deep residual network [17], and transfer
learning [18], etc. The above researches mainly focus on
improving the accuracy, generalization, anti-noise ability, and
adaptability of rolling bearing fault diagnosis model. They
provide effective ways to mine the underlying fault features
from the complex rolling bearing vibration signals, which can
establish an effectivemapping between the complex vibration
signals and the output results of rolling bearing fault diagnosis
model. However, the fault diagnosis models of rolling bearing
based on machine learning and deep learning are generally
complex and require a long time to be trained. Especially in
the big data environment, the use of massive training samples
requires a huge computational cost. The above studies seldom
consider how to improve the training efficiency and diagnosis
efficiency of rolling bearing fault diagnosis model in the big
data environment.

With the rapid development of big data technology, many
scholars have carried out extensive research on fault diagnosis
in industrial big data scenarios [19]–[25]. For example, some
studies combine big data technology and data-driven fault
diagnosis methods to diagnose faults of mobile robot [21],
sulfur hexafluoride electrical equipment [22], power grid
equipment [23], wind turbine gearbox [24], and reciprocating
air compressor [25]. Most of the above-mentioned studies
use MapReduce [26] or Spark [27] to parallelize the fault
diagnosis models to improve the performance of industrial
equipment fault diagnosis in the big data environment. Com-
pared withMapReduce, Spark introduces resilient distributed
data set (RDD) and implements an efficient directed acyclic
graph execution engine, it has a faster processing speed, and
thus it is more suitable for efficient fault diagnosis in the big
data environment.

Due to the many-core GPU has the advantages of high-
performance, low-power, and low-cost, recently some work
has been done to explore how to combine Spark and GPU
to accelerate solving domain-specific applications, such as
urban traffic vehicle recognition [28], magnetic resonance
imaging [29], and remote sensing image processing [30], etc.
The experimental results from [28]–[30] show that combining
Spark and GPU can significantly improve the performance
of these applications, but the implementations of them are
complicated and it is difficult to port their implementation
methods to other fields. The newly released Spark 3.0 already
supports the accelerator-aware scheduling, allowing users to
discover and request GPU computing resources at Executor,
Driver, and Task levels, which simplifies the development of
applications based on Spark and GPU.

The authors’ previous work [31] proposed a rolling bear-
ing fault diagnosis method based on QPSO-BPNN and
Dempster-Shafer evidence theory, which can effectively and
accurately diagnose different types of rolling bearing faults
under different working conditions. With the expansion of
industrial production scale and the increase in the complexity
of mechanical equipment, the vibration data of rolling bear-
ing collected by multiple sensors in real time are growing

rapidly in the actual production environment. It is difficult
to efficiently perform model training and fault diagnosis for
large-scale rolling bearing vibration data using the serial
QPSO-BPNN proposed in the previous work. For the massive
rolling bearing vibration data, how to improve the training
efficiency and diagnosis efficiency of rolling bearing fault
diagnosis model is an urgent problem to be solved.

The authors’ another previous work [32] proposed a
rolling bearing fault diagnosis method based on Spark
and ACO-K-Means clustering algorithm, the ACO-K-Means
clustering algorithm is successfully parallelized on Spark
platforms, which can efficiently carry out clustering analysis
on the massive rolling bearing vibration data in parallel. The
proposed method focuses on improving the model training
efficiency and fault diagnosis efficiency by fully utilizing
all available CPU and memory resources on a Spark cluster.
Compared with Spark platform, Spark-GPU platform has
stronger distributed parallel computing ability, thus it is more
helpful for improving the model training efficiency and fault
diagnosis efficiency. Compared with ACO-K-Means cluster-
ing algorithm, QPSO-BPNN with strong non-linear mapping
ability, high self-learning and adaptive abilities can obtain a
higher and more stable fault diagnosis accuracy.

Therefore, a rolling bearing fault diagnosis method based
on parallel QPSO-BPNN under Spark-GPU platform is pro-
posed, which aims to fully exploit the powerful distributed
parallel computing capabilities provided by the Spark-GPU
platform and take advantage of QPSO-BPNN with low com-
putational complexity and high diagnosis accuracy to achieve
more efficient and accurate fault diagnosis of rolling bearing
in the big data environment. However, it is still a challenge
to efficiently implement QPSO-BPNN on a Spark-GPU plat-
form. The current work focuses on how to efficiently perform
model training and fault diagnosis for large-scale rolling
bearing vibration data using the parallel QPSO-BPNN on
Spark-GPU platforms.

The main contributions of this paper are summarized as
follows.
• The distributed parallelization of QPSO-BPNN model
based on Spark-GPU platform is realized, which signif-
icantly improves the training efficiency and diagnosis
efficiency of rolling bearing fault diagnosis model based
on QPSO-BPNN in the big data environment.

• A parameter update strategy suitable for the distributed
parallel training of QPSO-BPNN model is proposed.
At each iteration during training, the local parameters
of each worker node are collected to the master node,
and the global parameters are updated according to the
weights and synchronized to each worker node, which
improves the convergence speed of rolling bearing fault
diagnosis model in the distributed parallel environment.

• A combination strategy of multiple QPSO-BPNN
models based on ensemble learning is proposed. The
output results of QPSO-BPNN models respectively cor-
responding to the base end, drive end, and fan end of
rolling bearing are combined by weighted voting to

VOLUME 9, 2021 56787

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

obtain the best fault diagnosis result of a sample, which
improves the fault diagnosis accuracy of rolling bearing
to a certain extent.

• The effectiveness of the proposed rolling bearing fault
diagnosis method is verified by a large number of exper-
iments. Experimental results show that this method can
not only make full use of the computing resources of
the Spark-GPU platform to quickly performmodel train-
ing and fault diagnosis on the massive rolling bearing
vibration data, but also obtain a higher fault diagnosis
accuracy.

The rest of this paper is organized as follows. The
QPSO-BPNN model is introduced in Section II. The
rolling bearing fault diagnosis method based on parallel
QPSO-BPNN under Spark-GPU platform is described in
Section III. The experimental results and analysis are pre-
sented in Section IV. The conclusions and future work are
given in Section V.

II. THE PREVIOUS QPSO-BPNN MODEL
BPNN [33] is a classic multi-layer feedback forward neural
network, which is characterized by forward propagation of
signals and backward propagation of errors. Because it has
a simple network structure and a strong nonlinear mapping
ability, it is widely used to handle classification problems.
The training of BPNN is divided into two stages: signal
propagation, and weights and thresholds update. In the first
stage, at first the signals are propagated from the input layer
to the hidden layer, then the signals are propagated to the
output layer in turn according to the weights and activation
function of each neuron in the hidden layer, and finally the
output results are obtained. In the second stage, at first the
errors between the output results and targets are calculated
and backward propagated, and then the weights and thresh-
old of each neuron in each layer are corrected according to
the errors. The above two stages are executed iteratively to
complete the training of BPNN. However, BPNN has the
disadvantages of slow convergence speed and easy to trap
in local minimums, this is mainly because BPNN randomly
initializes the weights and threshold of each neuron. As a
result, recently some researchers began to adopt intelligent
optimization algorithms to improve the initialization of the
weights and thresholds of BPNN, such as genetic algorithm
(GA) [34], differential evolution (DE) algorithm [35], and
particle swarm optimization (PSO) algorithm [36], etc.

The classic PSO algorithm [37] is a swarm intelligence
random search algorithm, which searches for the optimal
solution according to the optimal particle in the solution
space through iteration. However, since PSO algorithm has
the problem of easily falling into a local optimal solution,
recently some improved PSO algorithms have been devel-
oped, such as adaptive particle swarm optimization (APSO)
algorithm [38], selective particle swarm optimization (SPSO)
algorithm [39], and QPSO algorithm [40], etc. APSO algo-
rithm adopts the nonlinear function to dynamically adjust

FIGURE 1. Process of optimizing the initial weights and thresholds of
BPNN with QPSO algorithm.

the inertia weights and the contribution of each particle to
avoid falling into the local optimal solution. SPSO algorithm
changes the search space from a real-valued space into a
set of selected values, which can reduce the computational
cost of fitness values. QPSO algorithm mainly improves the
PSO algorithm as follows. For one thing, the position of each
particle is updated according to the average best position of
quantum particle swarm, and the moving speed of the particle
is no longer considered, which increases the randomness of
the particle movement, so it can avoid falling into the local
optimal solution. For another thing, only the shrinkage factor
that controls the update of the particle position needs to be
tuned, which is easier for performance tuning and enhances
the global convergence ability. Compared with APSO algo-
rithm and SPSO algorithm, QPSO algorithm can obtain a
faster convergence speed with less computational cost, and
it is more likely to obtain the optimal initial weights and
thresholds of BPNN due to it has a stronger global conver-
gence ability. Therefore, QPSO algorithm is more suitable for
optimizing the initial weights and thresholds of BPNN.

The authors’ previous work [31] adopted QPSO algorithm
to optimize the initial weights and thresholds of BPNN,
as shown in Fig. 1. First, the random initial weights and
thresholds of BPNN are obtained and the quantum parti-
cle swarm is initialized, including the number of particles,
the dimension of particles, and the initial position of each
particle (i.e., the initial weights and thresholds of BPNN).
Second, the position of each particle is used as the weights

56788 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 2. Process of rolling bearing fault diagnosis based on parallel
QPSO-BPNN under Spark-GPU platform.

and thresholds of BPNN to train the BPNN model once.
Third, the fitness value and best position of each particle
are calculated, where the fitness value of each particle is
the error of the BPNN model training. Fourth, the global
best fitness value and the global best position of quantum
particle swarm are calculated. Fifth, the average best position
of quantum particle swarm is calculated. Sixth, the position of
each particle is updated according to the best position of each
particle, the global best position and average best position
of quantum particle swarm, and the shrinkage factor. Finally,
determining whether the max iterations is reached or a satis-
factory solution is obtained, if so, the optimal initial weights
and thresholds of BPNN are obtained; otherwise, the next
iteration is continue to be executed.

III. THE PROPOSED FAULT DIAGNOSIS METHOD OF
ROLLING BEARING
A. PROCESS OF ROLLING BEARING FAULT DIAGNOSIS
BASED ON PARALLEL QPSO-BPNN
The overall process of rolling bearing fault diagnosis based on
parallel QPSO-BPNN under Spark-GPU platform is shown
in Fig. 2, which includes the following four stages: data
preprocessing, data storage, model training and testing, and
fault diagnosis.

In the data preprocessing stage, first, the abnormal data
contained in the original vibration signals collected by the
sensors deployed on the base end, drive end, and fan end of
rolling bearing are eliminated. Second, the cleaned data are
divided into several samples. Third, each sample is standard-
ized. Finally, the wavelet packet decomposition is performed
on each sample to obtain the eigenvectors of different running
states of rolling bearing.

In the data storage stage, all eigenvectors are stored in
Hadoop Distributed File System (HDFS), and the eigenvec-
tors used for model training and testing are divided into
training set and test set.

In the model training and testing stage, first, the network
structures and training parameters of QPSO-BPNN models
respectively corresponding to the base end, drive end, and
fan end are determined. Second, the training samples corre-
sponding to the base end, drive end, and fan end from HDFS
are used as the input of these three models respectively, and
the distributed parallel trainings of these three models are
performed on Spark-GPU platform. Finally, the test set from
HDFS is used to test the three models.

In the fault diagnosis stage, first, the data to be diag-
nosed are read from HDFS. Second, the above three trained
QPSO-BPNN models are performed to diagnose these data
on Spark-GPU platform, respectively. Finally, the weighted
voting method is adopted to combine the output results of
these three models to obtain the final fault diagnosis results.

B. PARALLEL DESIGN OF QPSO-BPNN MODEL BASED ON
SPARK-GPU PLATFORM
1) OVERALL DISTRIBUTED PARALLEL DESIGN SCHEME
According to the idea of data parallelism, the overall dis-
tributed parallel design scheme of QPSO-BPNNmodel based
on Spark-GPU platform is proposed, as shown in Fig. 3.
On a Spark-GPU platform, the master node is responsible

for the task scheduling and resource management of the
entire cluster, and each worker node can use one or more
Spark executors to train one or more QPSO-BPNN mod-
els. Each Spark executor can exploit the RAPIDS library
[41] developed by means of CUDA to call GPU computing
resources to accelerate the training of QPSO-BPNN model.
When starting the QPSO-BPNN model training program on
Spark-GPU platform, firstly, a SparkContext object is ini-
tialized on the master node; secondly, the rolling bearing
training set is read fromHDFS to create an RDD; thirdly, each
Spark executor reads the data of an RDD partition to train
a QPSO-BPNN model. The distributed parallel training of
QPSO-BPNN model based on Spark-GPU platform mainly
includes the following two stages.

In the first stage, the QPSO algorithm is executed in par-
allel to optimize the initial weights and thresholds of BPNN.
In each iteration of QPSO algorithm, firstly, the fitness value
and best position of each particle are calculated. Due to the
computational tasks of different particles are independent of
each other, the computational tasks of all particles can be
reasonably allocated to each Spark executor, and multiple
Spark executors can be used to perform computational tasks
of different particles in parallel. Secondly, the fitness value
and best position of each particle are collected to calculate
the global best fitness value, global best position, and average
best position of quantum particle swarm. Finally, the position
of each particle is updated according to the best position
of each particle, the average best position of quantum par-
ticle swarm, and the shrinkage factor. Due to the updating

VOLUME 9, 2021 56789

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 3. Overall distributed parallel design scheme of QPSO-BPNN model based on Spark-GPU platform.

processes of different particles are independent of each other,
the position of each particle can be updated in parallel.

In the second stage, the QPSO-BPNN model is trained
in parallel. After obtaining the optimal initial weights and
thresholds of BPNN, the data-parallel strategy is adopted to
realize the parallel training of QPSO-BPNN model. A large-
scale training set is divided into n smaller training subsets,
and one training subset is used to train one QPSO-BPNN
model. Due to the training of each model is independent of
each other, multiple Spark executors can be used to perform
model training tasks in parallel. In each iterative training of
QPSO-BPNNmodel, firstly, each Spark executor replaces the
weights and thresholds of the current model with the new
global weights and thresholds. Secondly, each Spark executor
uses its own training subset to perform the model train-
ing once to obtain the new weights and thresholds. Finally,
the weights and thresholds of all models are collected to
update the global weights and thresholds.

Both the calculation of the fitness value of each particle
in the first stage and the training of each QPSO-BPNNmodel
in the second stage involve a large number of matrix oper-
ations, thus it is very suitable to use GPU to speed up the
training of the entire model.

2) DESIGN OF PARAMETER UPDATE STRATEGY
In the distributed parallel training of QPSO-BPNN model,
using the idea of the parameter server architecture [42],
the master node is used as the parameter server node to collect
the weights and thresholds of QPSO-BPNN model of each
worker node on Spark-GPU platform, the global weights
and thresholds are updated according to the weight of each
model, and the updated global weights and thresholds are
synchronized to each worker node.

In the t-th iterative training of QPSO-BPNN model,
the process of parameter update includes the following steps.
Step 1. On the k worker nodes, the n QPSO-BPNN

models corresponding to n training subsets are trained
in parallel according to the current weights and thresh-
olds (gt1, g

t
2, . . . , g

t
n), and the new weights and thresholds

(gt1.temp, g
t
2.temp, . . . , g

t
n.temp) and the losses (loss

t
1, loss

t
2, . . . ,

losstn) of n QPSO-BPNN models are obtained and collected
to the parameter server node, where gti represents the weights
and thresholds used for training the i-th QPSO-BPNN model
and 1 ≤ i ≤ n.
Step 2. On the parameter server node, firstly, the losses

of all QPSO-BPNN models are normalized by Min-Max
normalizationmethod. Secondly, according to the normalized
losses (lt1, l

t
2, . . . , l

t
n), the weight of each model in the global

parameter update is calculated by

ηi = (1− l ti)/
n∑
j=1

1− l tj , (1)

where ηi represents the weight of the i-th QPSO-BPNN
model and l ti represents the normalized result of the
loss obtained after the t-th iterative training of the i-th
QPSO-BPNN model. Thirdly, according to the weight ηi,
the global weights and thresholds are updated by

Gt+1 = Gt +
n∑
i=1

ηi

(
gti.temp − G

t
)
, (2)

where Gt denotes the current global weights and thresholds.
Step 3. The parameter server node broadcasts the new

global weights and thresholds Gt+1 to all worker nodes, and
the weights and thresholds of all QPSO-BPNN models on

56790 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 4. Flowchart of parallel implementation of QPSO-BPNN model based on Spark-GPU platform.

each worker node are updated synchronously, i.e., gt+11 =

gt+12 = · · · = gt+1n = Gt+1.

C. PARALLEL IMPLEMENTATION OF QPSO-BPNN MODEL
BASED ON SPARK-GPU PLATFORM
According to the above-mentioned distributed parallel design
scheme of QPSO-BPNN model based on Spark-GPU
platform, this subsection describes the parallel imple-
mentation of QPSO-BPNN model based on Spark-GPU
platform. The flowchart of parallel implementation of
QPSO-BPNNmodel based on Spark-GPU platform is shown
in Fig. 4 and the pseudo-code of that is described in
Algorithm 1, which mainly includes the following two
stages.

The first stage is the parallel implementation of QPSO
algorithm for optimizing the initial weights and thresh-
olds of BPNN based on Spark-GPU platform, including the
following steps.

Step 1. Initialize BPNN and quantum particle swarm on
the master node. Firstly, the network structure of BPNN
needs to be determined. The number of the input layer nodes
is set to 8 which is the dimension of an eigenvector. The
number of the hidden layers is set to 2, and the number of
the first and second hidden layer nodes are set to 20 and 12,
respectively, which are determined by Hofferding inequality
and [43]. The number of the output layer nodes is set to
4 which is the number of classes of rolling bearing running
states. Secondly, the weights and thresholds G1 of BPNN are
randomly initialized, and the particle number n of quantum
particle swarm and the dimension of particle are initialized.
The dimension of particle is determined by the number of
weights and thresholds of the input layer, hidden layer, and
output layer of BPNN, i.e., (8 × 20 + 20) + (20 × 12 +
12)+ (12× 4+ 4) = 484. Finally, the random initial weights
and thresholds of BPNN and initial parameters of quantum
particle swarm are broadcasted to all worker nodes.

VOLUME 9, 2021 56791

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

Algorithm 1 Parallel Implementation of QPSO-BPNN
Model Based on Spark-GPU Platform
Require: m eigenvectors, the number of particles n, the max

iterations maxIterQPSO and error goal errGoal of
QPSO, the max iterations maxIterBPNN of BPNN

Ensure: The trained QPSO-BPNN model
1: Initialize the weights and thresholds G1 of BPNN and

quantum particle swarm on the master node;
2: Broadcast G1 and the initial parameters of quantum par-

ticle swarm to each worker node;
3: Read the training set with m eigenvectors from HDFS to

create an RDD in parallel: tRDD = (E1,E2, . . . ,Em);
4: for i← 1 to maxIterQPSO do
5: for all Spark executors on GPUs in parallel do
6: if i = 1 then
7: Initialize the positions: (P11,P

1
2, . . . ,P

1
n)← G1;

8: else
9: Update the positions (Pi1,P

i
2, . . . ,P

i
n) by (3);

10: end if
11: Create or update the key-value pair RDD:

pRDD = (〈Pi1,E1〉, 〈P
i
1,E2〉, . . . , 〈P

i
n,Em〉);

12: Calculate the fitness values of all particles: (f i1, f
i
2,

. . . , f in)← BPNN((Pi1,P
i
2, . . . ,P

i
n), pRDD);

13: Calculate the best positions of all particles:
(Pi1.best ,P

i
2.best , . . . ,P

i
n.best)←

cmp((f i1, f
i
2, . . . , f

i
n), (f

i−1
1 , f i−12 , . . . , f i−1n));

14: end for
15: Calculate the global best fitness value on the master

node: f ibest ← min(f i1, f
i
2, . . . , f

i
n);

16: Calculate the global best position on the master node:
Pibest ← Pi(argmin

x∈{1,2,...,n}
f ix).best

;

17: if i ≥ 2 and f i−1best ≤ f
i
best then

18: Pibest ← Pi−1best , f
i
best ← f i−1best ;

19: end if
20: Calculate the average best position on the master node:

M i
best ←

∑n
x=1 P

i
x.best/n;

21: Broadcast Pibest and M
i
best to all worker nodes;

22: if f ibest < errGoal then break; end if
23: end for
24: Get the best initial weights and thresholds: G1

← Pibest ;
25: for i← 1 to maxIterBPNN do
26: for all Spark executors on GPUs in parallel do
27: Initialize or update the weights and thresholds of n

QPSO-BPNN models: (gi1, g
i
2, . . . , g

i
n)← Gi;

28: Create or update the key-value pair RDD:
gRDD = (〈gi1,E1〉, 〈g

i
1,E2〉, . . . , 〈g

i
n,Em〉);

29: Train n QPSO-BPNN models: (gi1.temp, g
i
2.temp,

. . . , gin.temp)← QPSO_BPNN((gi1, g
i
2, . . . , g

i
n),

gRDD);
30: end for
31: Update the global weights and thresholds Gi+1 by (1)

and (2) on the master node;
32: Broadcast Gi+1 to all worker nodes;
33: end for

Step 2. Read the training set from HDFS and use multiple
Spark executors to call GPU computing resources to create
an RDD tRDD in parallel, where each element of tRDD is an
eigenvector. tRDD can be equally divided into n RDD parti-
tions according to the particle number n, if tRDD contains m
eigenvectors, then the x-th partition of tRDD can be denoted
by (E(x−1)m/n+1,E(x−1)m/n+2, . . . ,Exm/n), where 1 ≤ x ≤ n.
Step 3. Use multiple Spark executors to call GPU com-

puting resources to initialize the positions of all particles
and create a new RDD in parallel. Firstly, G1 is adopted
to initialize the positions (P11,P

1
2, . . . ,P

1
n) of all particles,

i.e., P11 = P12 = · · · = P1n = G1. Secondly, a key-value
pair RDD pRDD is constructed by taking the position of
each particle as a key and each eigenvector of tRDD as a
value, and the x-th partition of pRDD can be represented
by (〈P1x ,E(x−1)m/n+1〉, 〈P

1
x ,E(x−1)m/n+2〉, . . . , 〈P

1
x ,Exm/n〉),

where 1 ≤ x ≤ n.
Step 4. Use multiple Spark executors to call GPU com-

puting resources to calculate the fitness values and best
positions of all particles in parallel. Firstly, the data of
each partition in pRDD is used to train a BPNN model
respectively, and each model is trained once to obtain the
fitness values (f i1, f

i
2, . . . , f

i
n), where f

i
x denotes the fitness

value obtained by the x-th particle in the i-th iteration. Sec-
ondly, the best positions (Pi1.best ,P

i
2.best , . . . ,P

i
n.best) of all

particles are determined by comparing the fitness values
(f i1, f

i
2, . . . , f

i
n) obtained by all particles in the current iteration

with the fitness values (f i−11 , f i−12 , . . . , f i−1n) obtained by all
particles in the previous iteration. If i ≥ 2 and f i−1x ≤ f ix , then
Pix.best = Pi−1x ; otherwise, Pix.best = Pix , where 1 ≤ x ≤ n.
Step 5.Calculate and broadcast the global best position and

average best position of quantum particle swarm on the mas-
ter node. Firstly, the master node collects the fitness values
and best positions of all particles. Secondly, the global best
fitness value f ibest = min(f i1, f

i
2, . . . , f

i
n) and the global best

position Pibest = Pi(argmin
x∈{1,2,...,n}

f ix).best
of quantum particle swarm

are obtained by comparing the fitness values of all particles in
the i-th iteration. Thirdly, the global best position of quantum
particle swarm is updated by comparing the global best fitness
value f ibest obtained in the current iterationwith the global best
fitness value f i−1best obtained in the previous iteration. If i ≥ 2
and f i−1best ≤ f ibest , then Pibest = Pi−1best and f ibest = f i−1best ;
otherwise, there is no need to update the global best position.
Fourthly, the average best position of quantum particle swarm

is calculated asM i
best =

n∑
x=1

Pix.best/n. Finally,P
i
best andM

i
best

are broadcasted to all worker nodes.
Step 6. Determine whether the current iteration number

reaches the max iterations or whether the global best fitness
value is lower than the error goal. If so, the iteration is termi-
nated and the optimal initial weights and thresholds of BPNN
are returned, i.e., G1

= Pibest ; otherwise, the positions of all
particles are updated and the next iteration will be continued
by going back to Step 4. The process of using multiple Spark
executors to call GPU computing resources to update the

56792 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

positions of all particles and pRDD in parallel is as follows.
Firstly, according to the best position of all particles and the
global best position and average best position of quantum
particle swarm, the latest positions (Pi+11 ,Pi+12 , . . . ,Pi+1n) of
all particles are calculated by

Pi+1x = αPix.best + (1− α)Pibest ± ϕ
∣∣∣M i

best − P
i
x

∣∣∣ ln 1
β
, (3)

where Pi+1x represents the latest position of the x-th particle
in the (i+1)-th iteration, α and β are uniform distributions on
(0, 1), and ϕ represents the shrinkage factor [44]. To increase
the randomness of the particle movement, ± is used before
the absolute term that is the distance between the average best
position of quantum particle swarm and the latest position of
the particle. Secondly, Min-Max normalization is performed
on the latest positions of all particles, and the key of each
key-value pair in pRDD is updated accordingly.
The second stage is the parallel implementation of

QPSO-BPNN model training based on Spark-GPU platform,
including the following steps.
Step 1. Use multiple Spark executors to call GPU com-

puting resources to initialize the weights and thresholds of
all QPSO-BPNN models and create a new RDD in parallel.
Firstly, the optimal initial weights and thresholds G1 are
used as the initial weights and thresholds (g11, g

1
2, . . . , g

1
n)

of all QPSO-BPNN models, i.e., g11 = g12 = · · · =
g1n = G1. Secondly, a key-value pair RDD gRDD is
constructed by taking the weights and thresholds of each
QPSO-BPNN model as a key and each eigenvector of tRDD
as a value, and the x-th partition of gRDD can be denoted
by (〈g1x ,E(x−1)m/n+1〉, 〈g

1
x ,E(x−1)m/n+2〉, . . . , 〈g

1
x ,Exm/n〉),

where 1 ≤ x ≤ n.
Step 2. Use multiple Spark executors to call GPU com-

puting resources to train all QPSO-BPNN models in par-
allel. The data of each partition in gRDD is used to train
a QPSO-BPNN model respectively, and each model is
trained once to obtain the latest weights and thresholds
(gi1.temp, g

i
2.temp, . . . , g

i
n.temp), where g

i
x.temp denotes the lat-

est weights and thresholds of the x-th QPSO-BPNN model
obtained in the i-th iteration.
Step 3. Calculate and broadcast the global weights and

thresholds according to the weight of each QPSO-BPNN
model on the master node. Firstly, the master node collects
the latest weights and thresholds of all QPSO-BPNNmodels.
Secondly, the global weights and thresholdsGi+1 are updated
by (1) and (2) and broadcasted to all worker nodes.
Step 4. Determine whether the current iteration number

reaches the max iterations. If so, the iteration is terminated
and the final QPSO-BPNN model is obtained; otherwise,
the weights and thresholds of all QPSO-BPNN models
are updated and the next iteration will be continued by
going back to Step 2. The process of using multiple Spark
executors to call GPU computing resources to update the
weights and thresholds and gRDD in parallel is as follows.
Firstly, the weights and thresholds (gi+11 , gi+12 , . . . , gi+1n) of
all QPSO-BPNN models are updated according to Gi+1,

FIGURE 5. Combination of three QPSO-BPNN models based on ensemble
learning.

i.e., gi+11 = gi+12 = · · · = gi+1n = Gi+1. Secondly, the key of
each key-value pair in gRDD is updated as the new weights
and thresholds.

D. COMBINATION STRATEGY OF MULTIPLE QPSO-BPNN
MODELS BASED ON ENSEMBLE LEARNING
The proposed rolling bearing fault diagnosis model is com-
posed of QPSO-BPNNmodels respectively corresponding to
the base end, drive end, and fan end, which can reduce the risk
of misdiagnosis caused by the wrong classification of a single
QPSO-BPNN model, and can improve the fault diagnosis
accuracy to a certain extent. The common combination strate-
gies include Dempster-Shafer (DS) evidence theory [45] and
ensemble learning [46]. Considering that ensemble learning
can avoid the explosive growth of the exponential function
and the problem of more parameters required for calculating
the basic probability distribution function in DS evidence the-
ory, a combination strategy of multiple QPSO-BPNNmodels
based on ensemble learning is proposed, as shown in Fig. 5.
In the combination of multiple QPSO-BPNNmodels based

on ensemble learning, the weighted voting method is used to
combine the classification results of multiple basic classifiers
(i.e., QPSO-BPNN models) to obtain the best fault diagnosis
result of a sample. The classification results of multiple basic
classifiers for sample x are combined by weighted voting
according to

H (x) = argmax
y∈{1,2,...,j}

s∑
i=1

ω
y
i h
y
i (x), (4)

and

ω
y
i = Accyi /

s∑
k=1

Accyk , (5)

where j represents the number of classes, s represents the
number of basic classifiers, ωyi represents the weight of the
i-th basic classifier when classifying the sample x into class
y, hyi (x) denotes the probability that the i-th basic classifier
classifies the sample x into class y, andAccyi denotes the accu-
racy of the i-th basic classifier to classify the sample whose
true classification result is class y into class y. During the
fault diagnosis, the running states of rolling bearing include

VOLUME 9, 2021 56793

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

TABLE 1. Hardware environment of the cluster.

TABLE 2. Software environment of the cluster.

TABLE 3. Description of the rolling bearing data set.

normal state, inner race fault, ball fault, and outer race fault,
thus j can be set to 4; three basic classifiers (i.e., QPSO-BPNN
models respectively corresponding to the base end, drive end,
and fan end) are used, thus s can be set to 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
The experimental platform used in this paper is a distributed
cluster. The hardware environment of the cluster is shown
in Table. 1, and the software environment of the cluster is
shown in Table. 2. In order to compare and analyze the impact
of using GPU and not using GPU on the fault diagnosis
accuracy, model training efficiency, and fault diagnosis effi-
ciency, a series of experiments are carried out on the exper-
imental platform with GPU (called Spark-GPU platform)
and the experimental platform without GPU (called Spark
platform).

The experimental data used in this paper are the vibration
data of rolling bearing in different running states provided
by the Case Western Reserve University Bearing Data Center
[47]. They are collected by sensors deployed on the base end,
drive end, and fan end of rolling bearing under different work-
ing conditions. Due to a large-scale data set is more helpful
to verify the effectiveness of the proposed fault diagnosis
method, at first the sliding window method [48] is adopted
to enhance the original vibration data, then the enhanced
data are preprocessed (see Section III-A), and finally the
three different size data sets composed of eigenvectors are
obtained. Table. 3 presents the description of the rolling
bearing data set. Each data set includes the following different
running-state monitoring data of rolling bearing: normal state

data, inner race fault data, ball fault data, and outer race fault
data. Each data set is randomly divided into the training set
and test set at the ratio of 8:2. In the training of rolling bearing
fault diagnosis model based on Spark platform or Spark-GPU
platform, the size of the training set that can be used should
consider not only the hardware resource limitations of the
cluster but also the model training efficiency. If a larger-scale
rolling bearing data set is used, more worker nodes are
required or the hardware configuration of each worker node
is needed to be enhanced.

B. ANALYSIS OF FAULT DIAGNOSIS ACCURACY
In this experiment, for DataSet 1, DataSet 2, and
DataSet 3, BPNN implemented with Spark (Spark-BPNN),
QPSO-BPNN implementedwith Spark (Spark-QPSO-BPNN),
BPNN implemented with Spark-GPU (Spark-GPU-BPNN),
and QPSO-BPNN implemented with Spark-GPU
(Spark-GPU-QPSO-BPNN) are used for training and testing
the rolling bearing fault diagnosis models, respectively. In the
training of these fault diagnosis models, the key parameter
settings of QPSO and BPNN are as follows.
• QPSO: The number of particles is set to 100, the shrink-
age factor is set to 0.8, the max iterations is set to 50, and
the error goal is set to 0.001.

• BPNN: The learning rate is set to 0.003, the momentum
is set to 0.9, and the max iterations is set to 50.

The number of particles is one of the most important
parameters of QPSO algorithm, too many particles will
increase the computational cost, but too few particles will
decrease the optimization effect. The setting of the shrinkage
factor will affect the convergence speed of QPSO algorithm,
if it is set too small, the convergence speed will be very slow;
if it is set too large, the algorithm may fail to converge to an
optimal solution. The learning rate is one of the most impor-
tant parameters of BPNN, the setting of the learning rate
will directly affect the convergence performance of BPNN,
and it is usually between 0.001 and 0.01. The setting of the
momentum will also affect the convergence speed of BPNN,
and generally a larger value of momentum will increase the
convergence speed.

Fig. 6 shows the diagnosis accuracies achieved using four
different fault diagnosis methods and three different size data
sets on the cluster described in Table. 1. As depicted in Fig. 6,
the fault diagnosis accuracy achieved with Spark-QPSO-
BPNN is 2.40% higher than that achieved with Spark-BPNN
on average, and the fault diagnosis accuracy achieved with
Spark-GPU-QPSO-BPNN is 2.41% higher than that achieved

56794 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 6. Diagnosis accuracies achieved using different fault diagnosis
methods and different size data sets.

with Spark-GPU-BPNN on average. The results show that
QPSO algorithm can effectively optimize the initial weights
and thresholds of BPNN, thereby obtaining a higher fault
diagnosis accuracy.

It can be seen from Fig. 6 that the diagnosis accura-
cies achieved with Spark-GPU-QPSO-BPNN reach 98.66%,
98.70%, and 98.73% for DataSet 1, DataSet 2, and DataSet 3,
respectively, which shows that the fault diagnosis accuracy
is improved with the increase of data set size. This is
because the fault features contained in the training samples
become more and more with the increase of rolling bearing
data set size, which helps to improve the fault diagnosis
accuracy.

It can also be seen from Fig. 6 that the fault diagnosis
accuracy achieved with Spark-BPNN and that achieved with
Spark-GPU-BPNN are almost the same, and the fault diag-
nosis accuracy achieved with Spark-QPSO-BPNN and that
achieved with Spark-GPU-QPSO-BPNN are also almost the
same. The results show that the use of GPUwill not affect the
fault diagnosis accuracy of rolling bearing. The use of GPU in
the proposed fault diagnosis method is mainly to improve the
training efficiency and diagnosis efficiency of rolling bearing
fault diagnosis model.

Fig. 7 presents the loss curves of four different fault diag-
nosis methods for DataSet 3. As shown in Fig. 7, the loss
curves of the four methods all decrease rapidly at the first
10 iterations, then they decrease slowly with the increase of
iterations, and they become stable gradually after the 40th
iteration. The results show that the fault diagnosis models are
well trained, the weights and thresholds of BPNN are contin-
uously optimized during the training period, and the optimal
weights and thresholds are obtained at the end of the training
of the models. It can be found from Fig. 7 that the loss values
of Spark-QPSO-BPNN and Spark-GPU-QPSO-BPNN are
smaller than that of Spark-BPNN and Spark-GPU-BPNN,
this is because the initial weights and thresholds of BPNN
are effectively optimized by QPSO algorithm.

FIGURE 7. Loss curves of different fault diagnosis methods for dataSet 3.

TABLE 4. Model training time and fault diagnosis time obtained under
different size data sets.

C. PERFORMANCE ANALYSIS OF MODEL TRAINING AND
FAULT DIAGNOSIS UNDER DIFFERENT SIZE DATA SETS
In order to analyze the performance of model training and
fault diagnosis achieved with the proposed fault diagnosis
method under different size data sets, for three different
size data sets, Local-QPSO-BPNN, Spark-QPSO-BPNN, and
Spark-GPU-QPSO-BPNN are used to train rolling bearing
fault diagnosis models, and then the trained models are used
for fault diagnosis. In this experiment, Local-QPSO-BPNN
uses one CPU core of a single worker node to perform model
training and fault diagnosis in local model, whereas Spark-
QPSO-BPNN and Spark-GPU-QPSO-BPNN perform model
training and fault diagnosis on the cluster with 4 worker
nodes. To better analyze the performance of fault diagno-
sis achieved with the proposed rolling bearing fault diag-
nosis method on the massive data, all the data in each
data set are diagnosed, namely the data of 8 GB, 16 GB,
and 32 GB are diagnosed respectively. For three different
size data sets, the time spent on model training and fault
diagnosis using Local-QPSO-BPNN, Spark-QPSO-BPNN,
and Spark-GPU-QPSO-BPNN, respectively, are shown
in Table. 4.

Fig. 8 shows the speedups of Spark-GPU-QPSO-BPNN
over Local-QPSO-BPNN under different size data sets. The
speedup is the ratio of the model training time or fault
diagnosis time achieved with Local-QPSO-BPNN to the
model training time or fault diagnosis time achieved with
Spark-GPU-QPSO-BPNN. As seen from Fig. 8, the pro-
posed Spark-GPU-QPSO-BPNN achieves a significant per-
formance improvement compared with Local-QPSO-BPNN.

VOLUME 9, 2021 56795

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 8. Speedups of Spark-GPU-QPSO-BPNN over Local-QPSO-BPNN.

For DataSet 1, DataSet 2, and DataSet 3, Spark-GPU-
QPSO-BPNN obtains the speedups of 324.13×, 334.91×,
and 355.88× over Local-QPSO-BPNN for model train-
ing respectively, and Spark-GPU-QPSO-BPNN obtains
the speedups of 110.48×, 124.03×, and 143.02× over
Local-QPSO-BPNN for fault diagnosis respectively. This is
mainly because Spark-GPU-QPSO-BPNN can fully utilize
many-core GPUs of multiple worker nodes to efficiently
perform model training and fault diagnosis in parallel on the
Spark-GPU platform based on memory computing, which
greatly improves the performance of model training and fault
diagnosis under large-scale data sets. Moreover, the speedup
obtained for model training is higher than that obtained for
fault diagnosis, because Spark and GPU can give full play to
their computational advantages in model training with a large
number of iterative computations.

As can also be seen from Fig. 8, the speedups obtained
for model training and fault diagnosis are gradually increased
with the increase of data set size. This is because when Spark-
GPU-QPSO-BPNN is used for model training and fault diag-
nosis on the cluster with 4 worker nodes, with the increase of
data set size, the utilization of computing resources of GPU in
each worker node is increased, and the parallel efficiencies of
model training and fault diagnosis are also increased. Thus,
the proposed fault diagnosis method is more suitable to deal
with large-scale data sets.

Fig. 9 presents the speedups of Spark-GPU-QPSO-BPNN
over Spark-QPSO-BPNN under different size data sets. The
speedup is the ratio of the model training time or fault
diagnosis time achieved with Spark-QPSO-BPNN to the
model training time or fault diagnosis time achieved with
Spark-GPU-QPSO-BPNN. As shown in Fig. 9, compared
with Spark-QPSO-BPNN, the performance of model training
and fault diagnosis achieved with Spark-GPU-QPSO-BPNN
is significantly improved for different size data sets. For
DataSet 1, DataSet 2, and DataSet 3, Spark-GPU-QPSO-
BPNN obtains the speedups of 15.88×, 16.09×, and 16.78×
over Spark-QPSO-BPNN formodel training respectively, and
Spark-GPU-QPSO-BPNN obtains the speedups of 11.24×,

FIGURE 9. Speedups of Spark-GPU-QPSO-BPNN over Spark-QPSO-BPNN.

TABLE 5. Model training time and fault diagnosis time obtained under
different size clusters.

11.66×, and 13.04× over Spark-QPSO-BPNN for fault diag-
nosis respectively. The results prove that the use of GPU
can greatly improve the speeds of model training and fault
diagnosis. This is mainly becausemost of the computations in
BPNN are matrix operations, and many-core GPUs are more
suitable for the parallel operations of large-scale matrices
than multi-core CPUs.

D. PERFORMANCE ANALYSIS OF MODEL TRAINING AND
FAULT DIAGNOSIS UNDER DIFFERENT SIZE CLUSTERS
In order to analyze the performance of model training and
fault diagnosis of the proposed rolling bearing fault diagnosis
method under different size clusters, Spark-QPSO-BPNN
and Spark-GPU-QPSO-BPNN are adopted to perform model
training and fault diagnosis respectively for DataSet 3 on the
clusters with different numbers of worker nodes.

Table. 5 presents the model training time and fault
diagnosis time obtained under different size clusters.
As seen in Table. 5, as the number of worker nodes
in the cluster increases, the model training time and
fault diagnosis time achieved with Spark-QPSO-BPNN and
Spark-GPU-QPSO-BPNN are gradually reduced. Compared
with the cluster with a single worker node, on the clus-
ters with 2, 3, and 4 worker nodes, the model training
time achieved with Spark-GPU-QPSO-BPNN are reduced
by 46.80%, 63.43%, and 72.53% respectively, and the fault
diagnosis time achieved with Spark-GPU-QPSO-BPNN are
reduced by 22.22%, 43.83%, and 59.88% respectively. The
results show that the increase of cluster size can effec-
tively improve the performance of model training and fault

56796 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 10. Speedups achieved with Spark-GPU-QPSO-BPNN for model
training.

FIGURE 11. Parallel efficiencies achieved with Spark-GPU-QPSO-BPNN
for model training.

diagnosis for the proposed rolling bearing fault diagno-
sis method. Moreover, compared with Spark-QPSO-BPNN,
the model training time and fault diagnosis time achieved
with Spark-GPU-QPSO-BPNN are significantly reduced
under different size clusters, which once again proves that the
use of GPU can significantly improve the speeds of model
training and fault diagnosis.

Fig. 10 shows the speedups achieved with Spark-GPU-
QPSO-BPNN for model training. The speedup is the ratio of
the model training time achieved with a single worker node to
the model training time achieved with multiple worker nodes.
As shown in Fig. 10, the speedups achieved with Spark-GPU-
QPSO-BPNN are increased with the increase of the number
of worker nodes in the cluster. On the clusters with 2, 3,
and 4 worker nodes, the speedups achieved with Spark-GPU-
QPSO-BPNN are 1.88×, 2.73×, and 3.64× respectively,
which shows that the QPSO-BPNN model is well distributed
and parallelized on Spark-GPU platform.

Fig. 11 presents the parallel efficiencies achieved with
Spark-GPU-QPSO-BPNN for model training. The parallel
efficiency is the ratio of the speedup obtained for model train-
ing to the number of worker nodes in the cluster. As shown
in Fig. 11, when the numbers of worker nodes in the cluster
are 2, 3, and 4, the parallel efficiencies achieved with Spark-
GPU-QPSO-BPNN reach 93.99%, 91.15%, and 91.00%
respectively, which shows that the computing resources of the

FIGURE 12. Comparison of the model training time achieved using QPSO
and without QPSO.

Spark-GPUplatform have been fully utilized. However, as the
number of worker nodes increases, the parallel efficiency is
gradually decreased. This is because the increase of cluster
size will lead to the increases of communication overhead and
task scheduling overhead between nodes, which will affect
the performance of model training.

E. ANALYSIS OF THE IMPACT OF QPSO ON THE
PERFORMANCE OF MODEL TRAINING
In order to analyze the impact of QPSO on the performance of
model training, Spark-BPNN, Spark-QPSO-BPNN, Spark-
GPU-BPNN, and Spark-GPU-QPSO-BPNN are used for
training and testing the fault diagnosis models respectively
for DataSet 3 on the cluster with 4 worker nodes.

Fig. 12 gives the comparison of the model training time
achieved using QPSO and without QPSO. The model train-
ing time achieved with Spark-QPSO-BPNN is increased
by 84.14% than that achieved with Spark-BPNN, and the
model training time achieved with Spark-GPU-QPSO-BPNN
is increased by 78.29% than that achieved with Spark-GPU-
BPNN. The main reason for the increase of model train-
ing time is that QPSO algorithm is used to optimize the
initial weights and thresholds of BPNN in Spark-QPSO-
BPNN and Spark-GPU-QPSO-BPNN, which requires more
computational cost than the weights and thresholds of BPNN
are randomly initialized in Spark-BPNN and Spark-GPU-
BPNN. Although it takes a lot of time to optimize the
initial weights and thresholds of BPNN, after obtaining
the optimal initial weights and thresholds, Spark-QPSO-
BPNN and Spark-GPU-QPSO-BPNN can converge to the
global optimal weights and thresholds at a faster speed than
Spark-BPNN and Spark-GPU-BPNN. Although using QPSO
algorithm to optimize the initial weights and thresholds of
BPNN will affect the model training efficiency, it can sig-
nificantly improve the fault diagnosis accuracy. As shown
in Fig. 6, the fault diagnosis accuracy achieved with Spark-
GPU-QPSO-BPNN is 2.11% higher than that achieved with
Spark-GPU-BPNN for DataSet 3.

VOLUME 9, 2021 56797

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

FIGURE 13. Fault diagnosis accuracies achieved with different classifiers.

F. ANALYSIS OF COMBINATION EFFECT OF MULTIPLE
QPSO-BPNN MODELS
In order to verify the effectiveness of the proposed combi-
nation strategy of multiple QPSO-BPNN models based on
ensemble learning, four different classifiers are adopted for
training and testing the fault diagnosis models respectively
for DataSet 3, including the QPSO-BPNN model of base
end (QPSO-BPNN-BA), the QPSO-BPNN model of drive
end (QPSO-BPNN-DE), the QPSO-BPNN model of fan end
(QPSO-BPNN-FE), and the ensemble classifier composed
of the above three different QPSO-BPNN models based on
ensemble learning (QPSO-BPNN-EL).

Fig. 13 presents the fault diagnosis accuracies achieved
with different classifiers. Compared with QPSO-BPNN-BA,
QPSO-BPNN-DE, and QPSO-BPNN-FE, the fault diagnosis
accuracy achieved with QPSO-BPNN-EL is increased by
1.79%, 0.85%, and 0.67% respectively. The results show
that the ensemble classifier can effectively improve the fault
diagnosis accuracy.

To further demonstrate the effectiveness of the proposed
combination strategy, a sample whose real state is the inner
race fault but that is misdiagnosed by one basic clas-
sifier is selected. Table. 6 presents the diagnosis results
of three basic classifiers and one ensemble classifier for
the sample. As seen in Table. 6, the diagnosis results
achieved with QPSO-BPNN-BA, QPSO-BPNN-DE, and
QPSO-BPNN-FE are the inner race fault, inner race fault, and
ball fault respectively, and the diagnosis result achieved with
QPSO-BPNN-EL is the inner race fault. The results show that
when the diagnosis results of different basic classifiers are
inconsistent for a sample, the ensemble classifier can obtain
the best diagnosis result according to the output results of
each basic classifier.

G. COMPARISON WITH OTHER INTELLIGENT
OPTIMIZATION ALGORITHMS
In order to better evaluate the optimization effect of QPSO
algorithm, GA [34], APSO algorithm [38], and SPSO
algorithm [39] are also adopted to optimize the initial
weights and thresholds of BPNN. Spark-GPU-GA-BPNN,
Spark-GPU-APSO-BPNN, Spark-GPU-SPSO-BPNN, and
Spark-GPU-QPSO-BPNN are respectively used to perform
model training on the cluster with 4 worker nodes for

TABLE 6. Diagnosis results of different classifiers for a sample.

TABLE 7. Comparison of different intelligent optimization algorithms.

DataSet 3. During the training period, the max iterations of
GA, APSO, SPSO, and QPSO are set to 50, and the other key
parameter settings are as follows.

• GA: The size of population is set to 100, the mutation
probability is set to 0.2, and the crossover probability is
set to 0.5.

• APSO: The number of particles is set to 100 and two
acceleration constants are set to 1.4945.

• SPSO: The number of particles is set to 100, two accel-
eration constants are set to 2, the initial weight value is
set to 0.9, and the final weight value is set to 0.4.

• QPSO: See Section IV-B.

Table. 7 presents the fault diagnosis accuracies and
model training time of different fault diagnosis methods.
The fault diagnosis accuracy achieved with Spark-GPU-
QPSO-BPNN is 1.65%, 0.26% and 0.58% higher than that
achieved with Spark-GPU-GA-BPNN, Spark-GPU-APSO-
BPNN, and Spark-GPU-SPSO-BPNN, respectively. This is
mainly because QPSO algorithm introduces the average best
position of quantum particle swarm, which has better ran-
domness and stronger global optimization ability than the
other three algorithms when optimizing the initial weights
and thresholds of BPNN.

As seen in Table. 7, the model training speed of
Spark-GPU-QPSO-BPNN is 1.73× and 1.12× as fast
as that of Spark-GPU-GA-BPNN and Spark-GPU-APSO-
BPNN, respectively. This is mainly because QPSO algo-
rithm removes the velocity attribute of the particle swarm,
which can greatly reduce the computational cost of optimiz-
ing the initial weights and thresholds of BPNN. In addi-
tion, the model training speed of Spark-GPU-QPSO-BPNN
and Spark-GPU-SPSO-BPNN is very close. The main rea-
son is that SPSO algorithm also can greatly reduce the
computational cost by shrinking the search space.

H. COMPARISON WITH OTHER FAULT DIAGNOSIS
METHODS
To further verify the effectiveness of the proposed rolling
bearing fault diagnosis method, the following four different

56798 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

TABLE 8. Network structures and hyper-parameter settings of different fault diagnosis methods based on deep learning.

TABLE 9. Comparison of different rolling bearing fault diagnosis methods
based on Spark-GPU platform.

methods are used for model training and fault diagnosis
on the cluster with 4 worker nodes: AlexNet [49] imple-
mented with Spark-GPU (Spark-GPU-AlexNet), VGG-19
[50] implemented with Spark-GPU (Spark-GPU-VGG-19),
ResNet-18 [51] implemented with Spark-GPU (Spark-GPU-
ResNet-18), and the proposed Spark-GPU-QPSO-BPNN.
For Spark-GPU-AlexNet, Spark-GPU-VGG-19, and Spark-
GPU-ResNet-18, the original vibration data are converted
into 64× 64 pixel gray-scale images, and a gray-scale image
data set with the same size as DataSet 3 is obtained. The
data set is divided into training set and test set at the ratio
of 8:2. For Spark-GPU-QPSO-BPNN, DataSet 3 is used as
the experimental data set and divided into training set and test
set at the ratio of 8:2. Moreover, Spark-GPU-QPSO-BPNN
diagnoses all the data inDataSet 3, and the three deep learning
methods diagnose all the data in the gray-scale image data set.

The network structures and hyper-parameter settings
of Spark-GPU-AlexNet, Spark-GPU-VGG-19, and Spark-
GPU-ResNet-18 are listed in Table. 8. Spark-GPU-AlexNet,
Spark-GPU-VGG-19, and Spark-GPU-ResNet-18 con-
tain 11, 25, and 23 neural network layers, respectively.
The detailed network structures of AlexNet, VGG-19, and
ResNet-18 can be found in [49], [50], and [51]. The batch
sizes of Spark-GPU-AlexNet, Spark-GPU-VGG-19, and
Spark-GPU-ResNet-18 are set to 128, 128, and 64 respec-
tively, which can achieve a better fault diagnosis accu-
racy within the limit of the available GPU memory. The
learning rate of Spark-GPU-AlexNet, Spark-GPU-VGG-19,
and Spark-GPU-ResNet-18 are set to 0.008, 0.005, and
0.003 respectively, which can provide a better convergence
performance and avoid fluctuations in model training. The
momentum of Spark-GPU-AlexNet, Spark-GPU-VGG-19,
and Spark-GPU-ResNet-18 are all set to 0.9, which can
increase the convergence speed. The number of epochs
of Spark-GPU-AlexNet, Spark-GPU-VGG-19, and Spark-
GPU-ResNet-18 are all set to 50, which can not only ensure
a higher fault diagnosis accuracy, but also prevent the model
training time from being too long.

Table. 9 presents the diagnosis accuracies, model train-
ing time, and fault diagnosis time of four different rolling

bearing fault diagnosis methods based on Spark-GPU
platform. The fault diagnosis accuracy achieved with
Spark-GPU-QPSO-BPNN is 1.11%, 1.16%, and 1.19%
lower than that achieved with Spark-GPU-AlexNet,
Spark-GPU-VGG-19, and Spark-GPU-ResNet-18, respec-
tively. However, the model training speed of Spark-GPU-
QPSO-BPNN is 4.41×, 56.70×, and 17.85× faster than
that of Spark-GPU-AlexNet, Spark-GPU-VGG-19, and
Spark-GPU-ResNet-18 respectively, and the fault diagno-
sis speed of Spark-GPU-QPSO-BPNN is 6.95×, 27.97×,
and 10.91× faster than that of Spark-GPU-AlexNet,
Spark-GPU-VGG-19, and Spark-GPU-ResNet-18 respec-
tively. Compared with AlexNet, VGG-19, and ResNet-18,
QPSO-BPNN has a simpler network structure and fewer
parameters, which can achieve higher model training effi-
ciency and fault diagnosis efficiency. Therefore, the proposed
rolling bearing fault diagnosis method not only can efficiently
performmodel training and fault diagnosis onmassive rolling
bearing vibration data, but also has good diagnosis accuracy.

V. CONCLUSION
To perform fast and accurate rolling bearing fault diagnosis
in the big data environment, a rolling bearing fault diagnosis
method based on parallel QPSO-BPNN under Spark-GPU
platform is proposed. According to the idea of data paral-
lelism, the distributed parallelization of QPSO-BPNN model
is effectively realized on Spark-GPU platform, which sig-
nificantly improves the performance of model training and
fault diagnosis under large-scale rolling bearing data sets.
In the distributed parallel training of QPSO-BPNN model,
the master node collects the local parameters of each worker
node and updates the global parameters according to the
weights, and the updated global parameters are synchronized
to each worker node, which effectively improves the conver-
gence speed of the model. The combination strategy based
on ensemble learning is adopted, and the output results of
QPSO-BPNN models respectively corresponding to the base
end, drive end, and fan end of rolling bearing are combined
according to the weighted voting method to obtain the best
fault diagnosis result of a sample. The effectiveness of the
proposed fault diagnosis method is verified through exper-
iments. The results illustrate that the proposed method can
not only make full use of the computing resources of a
Spark-GPU platform to efficiently perform model training
and fault diagnosis but also obtain a higher fault diagnosis
accuracy for the massive rolling bearing vibration data.

In the actual industrial production environments, the sen-
sors deployed on rolling bearing can continuously collect

VOLUME 9, 2021 56799

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

vibration data. Facing a large amount of rolling bearing
vibration data collected in real time, the rapid and accurate
online fault diagnosis can effectively ensure the safe oper-
ation of mechanical equipment and reduce the maintenance
cost. In future work, an online fault diagnosis method of
rolling bearing based on parallel QPSO-BPNN in the big data
environment will be explored.

REFERENCES
[1] R. Liu, B. Yang, E. Zio, and X. Chen, ‘‘Artificial intelligence for fault

diagnosis of rotating machinery: A review,’’ Mech. Syst. Signal Process.,
vol. 108, pp. 33–47, Aug. 2018.

[2] B. Pang, G. Tang, and T. Tian, ‘‘Enhanced singular spectrum decomposi-
tion and its application to rolling bearing fault diagnosis,’’ IEEE Access,
vol. 7, pp. 87769–87782, 2019.

[3] X. Huang, G. Wen, L. Liang, Z. Zhang, and Y. Tan, ‘‘Frequency phase
space empirical wavelet transform for rolling bearings fault diagnosis,’’
IEEE Access, vol. 7, pp. 86306–86318, 2019.

[4] Z. Ma, F. Lu, S. Liu, and X. Li, ‘‘An adaptive generalized demodulation
method for multimedia spectrum analysis is applied in rolling bearing fault
diagnosis,’’ IEEE Access, vol. 8, pp. 20687–20699, 2020.

[5] W. Liu, W. Chen, and Z. Zhang, ‘‘A novel fault diagnosis approach
for rolling bearing based on high-order synchrosqueezing transform and
detrended fluctuation analysis,’’ IEEE Access, vol. 8, pp. 12533–12541,
2020.

[6] T. Jiang, J. Wang, C. Shen, X. Jiang, and Z. Zhu, ‘‘Multi-bandwidth mode
manifold for fault diagnosis of rolling bearings,’’ IEEE Access, vol. 7,
pp. 179620–179633, 2019.

[7] B. Chen, B. Shen, F. Chen, H. Tian, W. Xiao, F. Zhang, and C. Zhao,
‘‘Fault diagnosis method based on integration of RSSD and wavelet
transform to rolling bearing,’’ Measurement, vol. 131, pp. 400–411,
Jan. 2019.

[8] N. Zhang, L. Wu, J. Yang, and Y. Guan, ‘‘Naive bayes bearing fault
diagnosis based on enhanced independence of data,’’ Sensors, vol. 18,
no. 2, p. 463, Feb. 2018.

[9] X. Li, Y. Yang, H. Pan, J. Cheng, and J. Cheng, ‘‘A novel deep stacking
least squares support vector machine for rolling bearing fault diagnosis,’’
Comput. Ind., vol. 110, pp. 36–47, Sep. 2019.

[10] X. Qin, J. Guo, X. Dong, and Y. Guo, ‘‘The fault diagnosis of rolling
bearing based on variational mode decomposition and iterative random
forest,’’ Shock Vib., vol. 2020, Feb. 2020, Art. no. 1576150.

[11] J. Li, X. Yao, X. Wang, Q. Yu, and Y. Zhang, ‘‘Multiscale local features
learning based on BP neural network for rolling bearing intelligent fault
diagnosis,’’Measurement, vol. 153, Mar. 2020, Art. no. 107419.

[12] L. Eren, T. Ince, and S. Kiranyaz, ‘‘A generic intelligent bearing fault
diagnosis system using compact adaptive 1D CNN classifier,’’ J. Signal
Process. Syst., vol. 91, no. 2, pp. 179–189, Feb. 2019.

[13] G. Li, C. Deng, J.Wu, Z. Chen, andX. Xu, ‘‘Rolling bearing fault diagnosis
based on wavelet packet transform and convolutional neural network,’’
Appl. Sci., vol. 10, no. 3, p. 770, Jan. 2020.

[14] M. Qiao, S. Yan, X. Tang, and C. Xu, ‘‘Deep convolutional and LSTM
recurrent neural networks for rolling bearing fault diagnosis under strong
noises and variable loads,’’ IEEE Access, vol. 8, pp. 66257–66269,
2020.

[15] S. Gao, L. Xu, Y. Zhang, and Z. Pei, ‘‘Rolling bearing fault diagnosis
based on intelligent optimized self-adaptive deep belief network,’’ Meas.
Sci. Technol., vol. 31, no. 5, May 2020, Art. no. 055009.

[16] F. Zhou, S. Yang, H. Fujita, D. Chen, and C. Wen, ‘‘Deep learning fault
diagnosis method based on global optimizationGAN for unbalanced data,’’
Knowl.-Based Syst., vol. 187, Jan. 2020, Art. no. 104837.

[17] M. Zhao, M. Kang, B. Tang, and M. Pecht, ‘‘Multiple wavelet coefficients
fusion in deep residual networks for fault diagnosis,’’ IEEE Trans. Ind.
Electron., vol. 66, no. 6, pp. 4696–4706, Jun. 2019.

[18] J. Shao, Z. Huang, and J. Zhu, ‘‘Transfer learning method based on
adversarial domain adaption for bearing fault diagnosis,’’ IEEE Access,
vol. 8, pp. 119421–119430, 2020.

[19] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, ‘‘Industrial big data for
fault diagnosis: Taxonomy, review, and applications,’’ IEEE Access, vol. 5,
pp. 17368–17380, 2017.

[20] H. Yan, J. Wan, C. Zhang, S. Tang, Q. Hua, and Z. Wang, ‘‘Industrial
big data analytics for prediction of remaining useful life based on deep
learning,’’ IEEE Access, vol. 6, pp. 17190–17197, 2018.

[21] G. Xian, ‘‘Parallel machine learning algorithm using fine-grained-mode
spark on a mesos big data cloud computing software framework for
mobile robotic intelligent fault recognition,’’ IEEE Access, vol. 8,
pp. 131885–131900, 2020.

[22] H. Miao, H. Zhang, M. Chen, B. Qi, and J. Li, ‘‘Two-level fault diagnosis
of SF6 electrical equipment based on big data analysis,’’ Big Data Cognit.
Comput., vol. 3, no. 1, p. 4, Jan. 2019.

[23] W. Shi, Y. Zhu, T. Huang, G. Sheng, Y. Lian, G. Wang, and Y. Chen,
‘‘An integrated data preprocessing framework based on apache spark for
fault diagnosis of power grid equipment,’’ J. Signal Process. Syst., vol. 86,
nos. 2–3, pp. 221–236, Mar. 2017.

[24] M. B. Imani, M. Heydarzadeh, L. Khan, and M. Nourani, ‘‘A scalable
spark-based fault diagnosis platform for gearbox fault diagnosis in wind
farms,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), San Diego, CA,
USA, Aug. 2017, pp. 100–107.

[25] W. Yu, T. Dillon, F. Mostafa, W. Rahayu, and Y. Liu, ‘‘A global manufac-
turing big data ecosystem for fault detection in predictive maintenance,’’
IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 183–192, Jan. 2020.

[26] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[27] M. Zaharia, R. S. Xin, P.Wendell, T. Das,M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, ‘‘Apache spark: A unified engine for big data
processing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[28] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, ‘‘Real-time big
data stream processing using GPU with spark over Hadoop ecosystem,’’
Int. J. Parallel Program., vol. 46, no. 3, pp. 630–646, Jun. 2017.

[29] R. N. Boubela, K. Kalcher, W. Huf, C. Našel, and E. Moser, ‘‘Big data
approaches for the analysis of large-scale fMRI data using Apache Spark
and GPU processing: A demonstration on resting-state fMRI data from the
human connectome project,’’ Frontiers Neurosci., vol. 9, p. 492, Jan. 2016.

[30] D. Lunga, J. Gerrand, L. Yang, C. Layton, and R. Stewart, ‘‘Apache
spark accelerated deep learning inference for large scale satellite image
analytics,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
no. 2, pp. 271–283, Jan. 2020.

[31] L.Wan, H. Li, Y. Chen, and C. Li, ‘‘Rolling bearing fault predictionmethod
based on QPSO-BP neural network and dempster–shafer evidence theory,’’
Energies, vol. 13, no. 5, p. 1094, Mar. 2020.

[32] L. Wan, G. Zhang, H. Li, and C. Li, ‘‘A novel bearing fault diagnosis
method using spark-based parallel ACO-K-Means clustering algorithm,’’
IEEE Access, vol. 9, pp. 28753–28768, 2021.

[33] J. Li, J.-H. Cheng, J.-Y. Shi, and F. Huang, ‘‘Brief introduction of back
propagation (BP) neural network algorithm and its improvement,’’ in
Advances in Computer Science and Information Engineering. Berlin,
Germany: Springer, 2012, pp. 553–558.

[34] Y. Wen, M. Jia, and C. Luo, ‘‘Study of fault diagnosis for rolling bearing
based onGA-BP algorithm,’’ inProc. 2nd Int. Conf. Autom., Mech. Control
Comput. Eng. (AMCCE), Beijing, China, 2017, pp. 776–781.

[35] J. Shi, X. Wu, J. Zhou, and S. Wang, ‘‘BP neural network based bearing
fault diagnosis with differential evolution & EEMD denoise,’’ in Proc.
9th Int. Conf. Model., Identificat. Control (ICMIC), Kunming, China,
Jul. 2017, pp. 1038–1043.

[36] H. Yuan, X. Wang, X. Sun, and Z. Ju, ‘‘Compressive sensing-based feature
extraction for bearing fault diagnosis using a heuristic neural network,’’
Meas. Sci. Technol., vol. 28, no. 6, Jun. 2017, Art. no. 065018.

[37] G. Venter and J. Sobieszczanski-Sobieski, ‘‘Particle swarm optimization,’’
AIAA J., vol. 41, no. 8, pp. 1583–1589, 2003.

[38] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, ‘‘Adaptive particle swarm
optimization,’’ IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 6,
pp. 1362–1381, Dec. 2009.

[39] T.M. Khalil and A. V. Gorpinich, ‘‘Selective particle swarm optimization,’’
Int. J. Multidisciplinary Sci. Eng., vol. 3, no. 4, pp. 1–4, Apr. 2012.

[40] Y. Zhang, S. Wang, and G. Ji, ‘‘A comprehensive survey on particle swarm
optimization algorithm and its applications,’’Math. Probl. Eng., vol. 2015,
Oct. 2015, Art. no. 931256.

[41] RAPIDS Development Team. (2018). RAPIDS: Collection of Libraries
for End to End GPU Data Science. Accessed: Jun. 22, 2020. [Online].
Available: https://rapids.ai

[42] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ in Proc. 11th USENIX Symp. Oper. Syst. Des.
Implement. (OSDI), Broomfield, CO, USA, 2014, pp. 583–598.

56800 VOLUME 9, 2021

L. Wan et al.: Rolling Bearing Fault Diagnosis Method Based on Parallel QPSO-BPNN Under Spark-GPU Platform

[43] D. Stathakis, ‘‘How many hidden layers and nodes?’’ Int. J. Remote Sens.,
vol. 30, no. 8, pp. 2133–2147, Apr. 2009.

[44] S. N. Omkar, R. Khandelwal, T. V. S. Ananth, G. N. Naik, and
S. Gopalakrishnan, ‘‘Quantum behaved particle swarm optimization
(QPSO) for multi-objective design optimization of composite structures,’’
Expert Syst. Appl., vol. 36, no. 8, pp. 11312–11322, Oct. 2009.

[45] K. Sentz and S. Ferson, Combination Evidence Dempster-Shafer Theory.
Albuquerque, NM, USA: Sandia National Laboratory, 2002, pp. 8–15.

[46] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and Applica-
tions. New York, NY, USA: Springer, 2012, pp. 1–30.

[47] Case Western Reserve University Bearing Data Center. (2012). Seeded
Fault Test Data. Accessed: Jun. 18, 2020. [Online]. Available: https://
csegroups.case.edu/bearingdatacenter/home

[48] U. Yun, G. Lee, and E. Yoon, ‘‘Advanced approach of slidingwindow based
erasable pattern mining with list structure of industrial fields,’’ Inf. Sci.,
vol. 494, pp. 37–59, Aug. 2019.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[50] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, 2015, pp. 1–14.

[51] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

LANJUN WAN was born in Hunan, China,
in 1982. He received the B.S. and M.S. degrees
in computer science and technology from the
Hunan University of Technology, Zhuzhou, China,
in 2005 and 2009, respectively, and the Ph.D.
degree in circuits and systems from Hunan Uni-
versity, Changsha, China, in 2016. He is currently
an Assistant Professor with the School of Com-
puter Science, Hunan University of Technology.
His research interests include industrial big data

analysis, industrial equipment fault diagnosis, high-performance computing,
and parallel computing.

HONGYANG LI was born in Heilongjiang, China,
in 1995. He received the B.S. degree in electronic
science and technology from the Tianjin Univer-
sity of Technology, Tianjin, China, in 2017. He is
currently pursuing the M.S. degree in computer
science and technology with the Hunan Univer-
sity of Technology, Zhuzhou, China. His research
interests include industrial big data analysis and
industrial equipment fault diagnosis.

GEN ZHANG was born in Anhui, China, in 1995.
He received the B.S. degree in network engineer-
ing from West Anhui University, Luan, China,
in 2019. He is currently pursuing the M.S. degree
in computer science and technology with the
Hunan University of Technology, Zhuzhou, China.
His research interests include industrial big data
analysis and industrial equipment fault diagnosis.

CHANGYUN LI was born in Hunan, China,
in 1972. He received the Ph.D. degree in computer
science and technology from Zhejiang Univer-
sity, Hangzhou, China, in 2007. He is currently
a Full Professor of computer science and the
Dean of the Graduate School, Hunan Univer-
sity of Technology, Zhuzhou, China. His major
research interests include industrial big data anal-
ysis, industrial equipment fault diagnosis, and
intelligent information perception and processing
technology.

JUNFENG MAN was born in Heilongjiang,
China, in 1976. He received the Ph.D. degree
in computer science and technology from Cen-
tral South University, Changsha, China, in 2010.
He is currently a Full Professor with the School
of Computer Science, Hunan University of Tech-
nology, Zhuzhou, China. His major research inter-
ests include industrial big data analysis, industrial
equipment fault diagnosis, industry equipment
health management, and industrial Internet.

MANSHENG XIAO was born in Hunan, China,
in 1968. He received the M.S. degree in com-
puter science and technology from Xi’an Jiao-
tong University, Xi’an, China, in 2005. He is
currently a Full Professor with the School of
Computer Science, Hunan University of Technol-
ogy, Zhuzhou, China. His major research inter-
ests include industrial big data analysis, intelligent
information processing, pattern recognition, and
image processing.

VOLUME 9, 2021 56801

