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ABSTRACT This paper proposes a classification algorithm utilizing an open set recognition concept to
conservatively detect lane change intention of surrounding vehicles. Conservatively predicting the lane
change intention of the surrounding vehicles is needed to improve adaptive cruise control (ACC) performance
and avoid possible accidents. However, existing machine learning can make incorrect decisions due to
information not included in the training data set or confused data even with probability. To cope with
this problem, we present a classification algorithm using a multi-class support vector machine applying
an open set recognition concept to detect the surrounding vehicles’ lane change intentions. Feature vectors
are constructed from lateral information obtained by a Kalman filter using only radar and in-vehicle sensors.
The open set recognition concept is adapted using Meta-Recognition based on binary classifiers scores.
Furthermore, we analyze lateral information where an object vehicle changes lanes. From experimental
results, we observe that the proposed system conservatively deals with wrong decisions and detects and
cancels detecting the closest in-path vehicle (CIPV) earlier with average times of 1.4 sec and 0.4 sec
compared with a commercial radar system, respectively.

INDEX TERMS Advanced driver assistance system, lane change intention, surrounding vehicles, machine
learning, open set recognition, classification algorithm, multi-class support vector machine.

I. INTRODUCTION
Adaptive cruise control (ACC) that implements longitudinal
speed control has been commercially available and is widely
used in autonomous vehicles (AVs) beyond advanced driver
assistance systems (ADASs). An essential function of ACC
is to detect the closest in-path vehicle (CIPV) in front of the
ego vehicle [1]. A front radar is mainly used because of the
accuracy of its longitudinal information obtained from the
Doppler effect to detect the CIPV [2]. On the other hand,
the conventional radar system has low-resolution limits for
lateral information. Moreover, the intrinsic latency time of a
radar system causes late detection and, in a situation where
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the ego vehicle’s speed should be rapidly reduced if the
object vehicle cut-in at a close distance to the ego vehicle,
may cause a collision. A rapid change in longitudinal speed
could make passengers of the ego vehicle feel uncomfortable.
Furthermore, when passengers notice an object trying to cut-
in, but the ego vehicle does not respond appropriately, they
may feel anxiety until the ego vehicle starts to reduce its
speed. Therefore, detection of the CIPV is in significant need
of improvement for optimal ACC performance.

Detecting the CIPV is commonly based on motion predic-
tion of surrounding vehicles to decide whether one of the
surrounding vehicles is changing lanes to the ego vehicle’s
lane or not. Motion prediction of surrounding vehicles is a
core technology for preventing collisions in ADASs and AVs.
The primary method for predicting the driving motion of
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the surrounding vehicles is to use a constant velocity, accel-
eration, or turn model [3], [4]. However, the model cannot
reflect motion, such as lane changes of the object vehicles
or mutual driving motion between vehicles, correctly. For
this reason, artificial intelligent models, machine learning,
and deep learning methods have recently drawn attention
to predicting the driving intention of surrounding vehicles,
such as graphical modeling and unsupervised learning tech-
niques [5], amulti-class support vectormachine (MSVM) [6],
a convolution neural network (CNN) [7], a multilayer percep-
tron [8], a recurrent neural network (RNN) [9], a long short
termmemory (LSTM) [10], and a trajectory proposal network
(TPNet) [11]. These methods utilize real-world driving data
collected on public roads with standard production sensors.

Detecting the CIPV is one of the most important factors to
conservatively predict the lane change intentions of surround-
ing vehicles to improve ACC performance and avoid possi-
ble accidents. It is well known that existing learning-based
researches can be easily scaled, and its model can be adapted
using data [12]. The classification model may be preferred
over the regression model to predict the lane change intention
since the ACC system requires a deterministic decision about
the lane change intention, e.g., whether the CIPV exists or
not. However, machine learning, such as deep learning, can-
not make conservative detection, though it is based on the
probabilistic decision with the SoftMax layer. For example,
since deep learning requires full handcrafted data details,
it can make incorrect decisions for information not included
by the training data set or confused data even with probabil-
ity [13]–[15]. Additionally, a massive data set is necessary
to catch the corner cases, but it has not been proven how to
cope with such corner cases [16]. Therefore, an algorithm
detecting lane change intention of the surrounding vehicles
overcoming these limitations should be developed to be deter-
ministic but conservative for ACC performance.

This paper first presents a feature extraction method to
enhance the classification performance of the prediction of
lane change intention of surrounding vehicles. In our previous
work [6], we presented an MSVM classification method that
can detect the lane change intention of the object vehicle.
First, we divide an object vehicle’s driving motion into seven
types and then detect the CIPV according to each motion.
Classifying the lane change intention of an object vehicle
is made using feature vectors that consist of defined rel-
ative lateral distances and velocities based on the circular
motion estimation obtained by only a commercial front radar
and in-vehicle signal’s time-window. However, the previous
work [6] could not correctly deal with a low-resolution prob-
lem for lateral information of the commercial radar. Thus, this
paper presents a feature vector extraction method, including a
Kalman filter, to overcome the radar’s lateral low-resolution
limits and obtain a newly defined relative lateral velocity not
accessible from the radar system. This paper shows improved
classification performance using the presented feature vector.
However, classification algorithms, including the MSVM,
have a limitation that can make mistaken decisions on

decision boundaries for the classification problem. In that
case, conservatively predicting the lane change intention of
surrounding vehicles is needed to improve ACC performance
and avoid possible real driving accidents. To this end, we pro-
pose an MSVM classification method applying the open
set recognition concept to conservatively detect lane change
intentions of surrounding vehicles. The open set recognition
concept is adapted using Meta-Recognition and allows for
confusing classification [14]. To develop the MSVM classi-
fication containing the open set, we utilize binary SVM clas-
sifiers scores if the input is far from known training data. The
proposed algorithm is validated with a data set not included
in the training data set. We observe that the proposed system
copes conservatively with wrong decisions. A comparative
study with a commercial radar is quantitatively made to show
the effectiveness of the proposed method. From the experi-
mental results, the proposed system could detect and cancel
detecting the CIPV earlier with average times of 1.4 sec and
0.4 sec, respectively. Furthermore, we constructed a confu-
sion matrix to evaluate the proposed method’s accuracy and
achieved an accuracy of 92.2%.

In summary, the main contributions of this paper are as
follows:

1) We present a feature extraction method based on only
radar and in-vehicle sensors, including a KF to extract
the velocity, not accessible from the radar, and fil-
ter out noise in the raw data. The feature extraction
method facilitates the classification by considering the
ego vehicle’s yaw rate motion.

2) We propose an MSVM classification algorithm utiliz-
ing an open set recognition concept to conservatively
detect lane change intention of surrounding vehicles.
Introducing the open set recognition for CIPV enables
the ACC system to cope conservatively with wrong
decisions.

3) We analyze defined feature vectors where an object
vehicle changes lanes and experimental results of the
proposed method in the case of confusing situations for
lane change intention of the object vehicle.

II. FEATURE VECTOR EXTRACTION
To begin with, we explain the overall structure of the pro-
posed system for lane change intention classification of the
object vehicle described in Fig. 1. In this study, we focus on
using only radar and in-vehicle sensors. A feature vector is
extracted with time-windowing and a Kalman filter based on
newly defined lateral information. It is used for training a
classification model and predicting the object vehicle’s lane
change intention. In this paper, we utilize the MSVM for the
classification model. However, almost all machine learning,
including the MSVM, can predict the object vehicle’s lane
change intention, but it might be difficult to make a conser-
vative decision. To resolve this problem, we propose amethod
applying the open set recognition concept in the MSVM.
Conclusively, the proposed system classifies the open set data
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FIGURE 1. The overall structure of the proposed system: This paper focuses on using only radar and in-vehicle sensors. A feature vector is
extracted with time-windowing and a Kalman filter based on newly defined lateral information. It is used for training a classification model and
predicting the object vehicle’s lane change intention. In this paper, we utilize the MSVM for the classification model. We also propose a method
applying the open set recognition concept in the MSVM. Conclusively, the proposed method’s prediction results classify the open set data such as
unknown or confusing data.

FIGURE 2. Description of each class over driving situation of: (a) left cut-in (LCI), (b) right cut-in (RCI), (c) left cut-out (LCO), (d) right cut-out (RCO),
(e) left parallel (LP), (f) right parallel (RP), and (g) center parallel (CP) [6].

such as unknown or confusing data. To this end, we first
introduce driving motion types of the object vehicles’ lane
change and a method for extracting the feature vector in this
section.

A. DRIVING MOTIONS OF OBJECT VEHICLE
For lane change intention classification of an object vehicle,
possible motions are presented in Fig. 2 [6]. We divided the
classes into seven types of driving motions of the object
vehicle based on the ego vehicle. Assuming that the ego
vehicle is keeping the lane, the driving situationwith an object
vehicle can be divided into three cases: 1) The object vehicle
cuts-in toward the ego vehicle, 2) The object vehicle cuts-out
away from the front of the ego vehicle, and 3) The object
vehicle and the ego vehicle drive parallel. Then, the cut-in
case can be thought of as two situations where an object
vehicle cuts-in from the left or right direction. Likewise,
the cut-out case considers two situations where the object
vehicle cuts-out to the left or right direction in front of the ego
vehicle. Finally, the parallel case takes into account a situation
in which an object vehicle runs parallel to the left or right
of the ego vehicle, and one in which the object vehicle runs
parallel to the front of the ego vehicle in the same lane. As an

application using these seven driving motions of the object
vehicle, whether the object vehicle is in the ego vehicle’s
path or not can be determined. In other words, the CIPV
is detected as the closest object vehicle in the path of the
ego vehicle when ‘Left Cut-in,’ ‘Right Cut-in,’ and ‘Center
Parallel’ corresponding to ‘Class 1,’ ‘Class 2,’ and ‘Class 7,’
respectively; otherwise, it is not selected.

B. FEATURE EXTRACTION
Most machine learning, such as the MSVM, uses a feature
vector to classify each class using the salient feature. The
feature vector is a set of numerical values of the elements
showing different properties for each class. When predicting
the object vehicle’s motion described previously, the feature
vector can use information such as relative lateral distance
and velocitymeasured from a radar system. However, it might
not be useful to use raw data of the relative lateral distance
and velocity given by the radar system due to its low lateral
resolution. Furthermore, it is necessary to consider the road
curvature to effectively predict the object vehicle’s driving
motion on a curved road.

A commercial radar system gives a relative longitudinal
distance rx and a relative lateral distance ry as depicted
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FIGURE 3. Illustration of the four variables rx , ry , r̃y , eyrx in the vehicle
coordinate system {xy }.

TABLE 1. Tendencies to relative lateral distance and velocity.

in Fig. 3 and their velocities in the vehicle coordinate frame.
In this paper, we define the lateral offset at the relative
longitudinal distance to effectively estimate its relative dis-
tance from the ego vehicle’s lane on a curved road. With
the assumption that the ego vehicle is driving with a circular
motion [17], the lateral offset at the relative longitudinal
distance eyrx is obtained by

eyrx =
ρv

2
rx2 =

ψ̇

2Vx
rx2 (1)

where ρv is the circular curvature of the lane drawn by the
path of the ego vehicle, and ψ̇ and Vx are the yaw rate
and the longitudinal velocity of the ego vehicle, respectively.
After that, we introduce two new variables, the relative lateral
distance at the relative longitudinal distance r̃y by

r̃y = ry − eyrx (2)

where the variables r̃y, ry, eyrx are described in Fig. 3, and
its velocity ˙̃ry. However, ˙̃ry does not directly come from
the vehicle sensor, and it is obtained through the estimator
described in section II-C. Table 1 shows how the variables
distinguish the presented driving motions of the object vehi-
cle. In practice, when the object vehicle cuts-in or cuts-
out, the relative lateral distance and velocity have a certain
arbitrary value with a sign. If the ego vehicle and the object
vehicle drive parallel, the relative lateral distance also has a
certain arbitrary value with a ‘+’ or ‘−’ sign, but the relative
lateral velocity has a value close to zero. Therefore, using
two variables of r̃y and ˙̃ry as the features is helpful to classify

FIGURE 4. Definition of time-window and time-window size.

driving motions of the object vehicle. More exact values for
training and these analyses will be researched in section IV-A.
The object vehicle’s driving behavior quite depends on the

driver’s experience and environmental situation such as traffic
congestion and road curvature during cut-in or cut-out. It is
not simple to classify the driving motion based on the relative
lateral distance and velocity relationship at each sample time.
Furthermore, it is very challenging to model human factors
over the lane change. To this end, a time-window method is
used for establishing the feature vectors as shown in Fig. 4 [6],
[18]. In discrete-time with a sampling period Tr of the radar
system at time t = kTr , the feature vector xs is defined as
follows

xs(k) =
[
r̃y(k)T , ˙̃ry(k)T

]T
∈ R2Nr (3)

where

r̃y(k) = [r̃y(k − (Nr − 1)), · · · , r̃y(k − 1), r̃y(k)]T

˙̃ry(k) = [ ˙̃ry(k − (Nr − 1)), · · · , ˙̃ry(k − 1), ˙̃ry(k)]T

andNr is the number according to a time-window size. In this
paper,Nr is 20 samples for a time-window over 1 second with
a radar sampling time Tr of 0.05 second.

C. KALMAN FILTERING
This section describes how feature vectors based on the cir-
cular motion estimation are made using a KF to obtain ˙̃ry
not available from commercial radar. Also, a low-cost radar
system has poor resolution of lateral motion, e.g., 0.5 degree,
due to its cost and algorithm characteristics dealing with
multi-targets based on electromagnetic waves and using the
doppler effect. Methods using high-resolution radar and fus-
ing multi-radars to improve the lateral motion accuracy are
researched in [19], [20], respectively, but it is not yet easy to
be applied to a commercial radar system due to its cost.

Therefore, we estimate ˙̃ry and filter out r̃y using the KF
by considering the constant velocity model. Without the loss
of generality, let us define the state xf =

[
r̃y ˙̃ry

]T
and the

measurement output yf = r̃y. In addition, we can assume that
the two noise sources, system and measurement noises, ωk
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and υk are independent (E[ωiυTj ] = 0). Then we can model
the motion of object vehicle assuming constant velocity as

xf (k + 1) = 8xf (k)+ ω(k)

yf (k) = Cxf (k)+ υ(k) (4)

where

8 =

[
1 Tr
0 1

]
, C =

[
1 0
]
,

ωk ∼ N (0,Q), υk ∼ N (0,R).

The optimal state estimator minimizing the variances of the
estimation error will then be the KF as

x̄f (k + 1) = 8x̂f (k)

x̂f (k) = x̄f (k)+ L(yf (k)− Cx̄f (k)). (5)

Observer gain L is solved by using the discrete-time algebraic
Riccati equation [21] as

Y = 8Y8T
−8YCT (CYCT

+ R)
−1
CY8T

+ Q (6)

where L = YCT (CYCT
+ R−1). Using the discrete-time

model (4) and the KF (5), ˆ̃ry and
˙̂r̃y can be estimated. The Q

andR are the covariancematrices of the correspondingωk and
υk , respectively, which are the system noise andmeasurement
noise under the assumption that both are white and Gaussian
with known covariances. The detailed analysis of the radar
system is presented in [22].

III. MULTI-CLASS SUPPORT VECTOR MACHINE BASED
ON OPEN SET RECOGNITION CONCEPT
For the classification problem, since almost all machine
learning needs full handcrafted data, it can make wrong
decisions for information not included in the training data
set or by confused data even with probability [13], [14].
Furthermore, a massive data set is necessary to catch the
corner cases, but it is not proven how to cope with such corner
cases [16]. To conservatively detect the CIPV, we introduce
an MSVM classification method utilizing the open set recog-
nition concept in this section.

A. BINARY-CLASS SUPPORT VECTOR MACHINE
The SVM is a type of machine learning used for data clas-
sification when the data has two classes [23], [24]. It has
been used in various industrial applications because it is more
practical than other deep learning methods due to its low
computational power requirements and high performance.
Let us consider a binary classification problem. From now
on, we will refer to SVM binary-class SVM (BSVM) to
avoid confusion with MSVM. A data set is given the training
vectors xi ∈ Rm and the label vector yi ∈ {−1, 1} in two
classes for i = 1, . . . , n. Then, the function fs(·) ∈ R is

fs(x) = 〈ϕ(x), α〉 + β = 0 (7)

where ϕ(x) ∈ Rm is a nonlinear mapping function of x, α ∈
Rm is the weight vector, and β ∈ R is the bias. Also, 〈·, ·〉
means the inner product. Then, the best separating hyperplane

FIGURE 5. Support vectors and the hyper-plane.

is obtained by solving the problem maximizing the following
optimization problem as

maximize : J =
n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjζ (xi, xj)

subject to :
n∑
i=1

λiyi = 0 (λ1, · · · , λn ≥ 0)

kernel : ζ (xi, xj) = 〈ϕ(xi), ϕ(xj)〉

= exp(− 1
2σ 2
∥∥xi − xj∥∥2). (8)

In this paper, Gaussian radial basis function is adapted as the
kernel function [25] as represented by (8) to accommodate
nonlinear behavior of the object vehicle such as a lane change.

B. MULTI-CLASS SUPPORT VECTOR MACHINE
The BSVM classifies binary classes based on their original
maximummargins. However, because there are various actual
driving situations, it is often necessary to classify three or
more categories. MSVM generally splits the problem into
several binary problems that can be applied immediately to
the BSVM and then reassemble. Let us consider N categories
for the MSVM. First, the MSVM requires the design of a
classification matrix Ms ∈ RN×L where L is the number of
binary learners that determines the classes. For the matrix
Ms, each element ms,pq consists of ms,pq ∈ {1, 0,−1} for
p = 1, 2, . . . ,N and q = 1, 2, . . . ,L. Additionally, the num-
ber of L complies with the split method such as the One-
Against-All method or the One-Against-One method [26],
[27]. In this paper, we use the One-Against-One method for a
more accurate classification performance, and thus L = 7C2.

Then, a loss-weighted based class prediction method is
used to determine the resulting class. It is well known that
the method improves the classification accuracy by keeping
the loss values for all classes in the same dynamic range [28].
The loss-weighted function aggregates the binary classifiers’
results, which produces the minimum average of the binary
losses. Using the loss-weighted function, the MSVM scores
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Algorithm 1 The MSVM Classification Algorithm Based on
the Open Set Recognition Concept
Require: Means µp and libMR models ρp = (τp, λp, κp)

about each true BSVM score vector
Require: α, the number of ‘‘top’’ classes to revise
1: Measure s = (s1, s2, . . . , sL), z = (z1, z2, . . . , zN )
2: Let a(i) = argsort(zp); Let ωp = 1
3: for i = 1, . . . , α do

4: ωa(i) = 1− α−i
α
e
−

(
‖s−τa(i)‖
λa(i)

)κa(i)
5: end for
6: Define ẑ0 = 6izi(1− ωi)
7: Update MSVM scores ẑp = zp · ωp
8: Return p̂ = argminpẑp

zp(·, ·) is represented as follows

zp(ms, sq) =

∑L
q=1 |ms,pq|g(ms,pq, sq)∑L

q=1 |ms,pq|
,

for p = 1, 2, . . . ,N , (9)

where
• ms,pq: element (p, q) of the classification matrixMs (i.e.,
corresponding to class p of binary learner q)

• sq: BSVM score of binary learner q for an observa-
tion (i.e., sq = fs,q(x))

• g(·, ·): binary loss function.
For the binary loss function, we use the hinge loss function as
g(ms,pq, sq) = max(0, 1− ms,pq · sq). Consequently, the pre-
dicted class is determined as the class p taking a minimized
value zp of N classes.

C. MULTI-CLASS SUPPORT VECTOR MACHINE BASED ON
OPEN SET RECOGNITION CONCEPT
Since the MSVM is a deterministic classification method
based on the training data set, it could make wrong decisions
due to information not included by the training data set
or due to confused data on decision boundary [13]. There-
fore, when detecting a lane change intention, classification
results near the decision boundary can be confused due to
uncertainty, and it might be difficult to make conservative
detection. To cope with this problem, we present an MSVM
classification method, including an open set recognition con-
cept. The open set recognition concept is adapted using
Meta-Recognition and allows for classification of ‘‘fooling’’
and unrelated open set data presented to the system [14].
To apply the open set recognition concept in the MSVM,
we utilize the BSVM scores about if the input is ‘‘far’’ from
known training data. The proposed method can formally
handle unknown or confusing classes during operation.

Algorithm 1 summarizes the steps for the MSVM clas-
sification computation. To develop an MSVM classifica-
tion algorithm including open set, let ρp be a vector of
meta-recognition models for each class, which includes
parameters τ for shifting the data as well as the Weibull

FIGURE 6. The experiment places: (a) to obtain the training data set and
(b) to validate lane change intention of the object vehicle.

FIGURE 7. ˙̃ry analysis for the lane change of the object vehicle.

shape and scale parameters, κ and λ, respectively (see [14] for
details). For convenience, we define the unknown/confusing
class to be at index 0. We use the Weibull cumulative dis-
tribution function (CDF) probability (line 4 of Algorithm 1)
on the distance between s and µ for the score of the uncertain
estimation. The model ρ is computed using the BSVM scores
associated with class p, namely, scores that were classified
correctly during the training process. We expect the extreme
value theorem (EVT) function of distance to provide a mean-
ingful revised score only for few top ranks. Thus, in line
3 of Algorithm 1, we compute weights for the α largest
activation classes and use it to scale the MSVM scores based
on theWeibull CDF. We then compute revised MSVM scores
with the top scores changed and a pseudo-activation for the
unknown/confusing class, keeping the total activation level
constant. Thus, the open set recognition concept provides the
revisedMSVM scores that support uncertain estimationwhen
the unknown/confusing class (p̂=0) has the smallest revised
score.
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FIGURE 8. Comparison of relative lateral distance-velocity plot: (a) ry -ṙy measured from the radar directly, (b) ˆ̃ry - ˆ̇r̃y obtained by the KF, and (c) ˆ̃ry - ˆ̇r̃y
trajectory and the proposed MSVM classification results at each sample time using the validation data. (a) and (b) used the same training data set
according to the time-window that the gradation from a light to a dark color represents the flow of time. The feature extraction method facilitates
the classification by considering the ego vehicle’s yaw rate motion. (c) shows that classification for unknown class on decision boundaries is needed
in a real driving situation.

IV. EXPERIMENTS AND RESULTS
This section introduces experimental data and analyzes them
to conservatively detect lane change intention of surrounding
vehicles. Then, experiment results show that the proposed
system outperforms the detecting performance of commercial
radar systems.

A. EXPERIMENTAL TRAINING DATA AND ITS ANALYSIS
The experiment used two test vehicles: one for the ego vehicle
and the other for the object vehicle. The ego vehicle is a lux-
ury passenger car, Genesis from Hyundai Motors. The front
radar system, in which a long-range radar and a mid-range
radar are embedded, mounted on the ego vehicle’s grille, and
transmitted information of objects through a Controller Area
Network (CAN) communication system. The object vehicle
used in the experiment is a small Sport Utility Vehicle (SUV),
Tucson from Hyundai Motors. The training data set was col-
lected on a local curved road which is a two-lane road at the
rear of Hanyang University, as shown in Fig. 6 (a). Regarding
seven driving motions, each driving motion was tried about
30 times to obtain 240 data sets. Then, for validation of the
presented algorithm, experiments to validate the lane change
intention classification of the object vehicle were conducted
on a different road, the Jungbunaeryuk-Expressway, which
is a two-lane road, as shown in Fig. 6 (b). On two roads,
the first lane and the second lane are defined as innermost
and outer lanes. The two vehicles’ velocities were set from
30 ∼ 40 kph for the training data set and from 70 ∼ 90
kph for the validation data set. The seven driving situations
and the number of experiments for each situation is depicted
in Fig. 2 are described as follows:

1) LEFT CUT-IN (LCI), ‘‘32 TIMES’’
The ego vehicle was moving in the first lane while the object
vehicle was riding in the second lane. The object vehicle
changed its lane ahead of the ego vehicle. The LCI is labeled

FIGURE 9. Two scenarios to be used for algorithm verification.

as true when ˆ̃ry is negative and become more than a half of

the lane width, and ˆ̇r̃y is more than cLCI .

2) RIGHT CUT-IN (RCI), ‘‘31 TIMES’’
The ego vehicle was in the second lane while the object
vehicle was in the first lane. The object vehicle changed its
lane ahead of the ego vehicle. The RCI is labeled as true when
ˆ̃ry is positive and become less than a half of the lane width,

and ˆ̇r̃y is less than cRCI .

3) LEFT CUT-OUT (LCO), ‘‘30 TIMES’’
Both the ego and the object vehicles were in the same lane,
the second lane. The object vehicle in the front of the ego
vehicle cut out into the first lane. The LCO is labeled as true
when ˆ̃ry is positive and become more than a half of the lane

width, and ˆ̇r̃y is more than cLCO.

4) RIGHT CUT-OUT (RCO), ‘‘27 TIMES’’
Both the ego and object vehicles were in the same lane,
the first lane. The object vehicle in the front of the ego vehicle
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FIGURE 10. Plots of the relative lateral distances and velocities in Scenario 1 and 2, respectively. From (a) and (b), ry (blue dashed line) is
measured from the radar sensor, r̃y (green dash-dotted line) is obtained from Eq. (2), and ˆ̃ry (red dotted line) is filtered by Kalman filter. Left and
right lane offsets (black and grey solid lines), L and R c0’s, were measured from the external camera sensor for comparison with which the ego

vehicle is driving with a circular motion. Further, from (c) and (d), ˆ̇r̃y (red dotted) is estimated by Kalman filter.

cut out into the second lane. The RCO is labeled as true when
ˆ̃ry is negative and become more than a half of the lane width,

and ˆ̇r̃y is less than cRCO.

5) LEFT PARALLEL (LP), ‘‘31 TIMES’’
The ego vehicle was in the second lane while the object
vehicle was in the first lane. Both vehicles proceeded in each
lane without changing lanes. The LP is labeled as true when
ˆ̃ry is positive and about the lane width, and the absolute value

of ˆ̇r̃y is less than 0.2 m/s.

6) RIGHT PARALLEL (RP), ‘‘29 TIMES’’
The ego vehicle was in the first lane while the object vehicle
was in the second lane. Both vehicles were running in each
lane without changing lanes. The RP is labeled as true when
ˆ̃ry is negative and about the lane width, and the absolute value

of ˆ̇r̃y is less than 0.2 m/s.

7) CENTER PARALLEL (CP), ‘‘60 TIMES’’
Both vehicles were in the same lane, either the first or
second, without changing lanes. The CP is labeled as true
when absolute values of ˆ̃ry and ˆ̇r̃y are less than 0.2 m
and 0.2 m/s.

Above presented variables ci for i = {LCI, RCI, LCO,
RCO} can be chosen by analyzing tendency of ˆ̇r̃y during lane
change of the object vehicle as shown in Fig. 7. This data
presents the normal distribution of ˆ̇r̃y using the experimental
data when the object vehicle arrives at a half of the lane width
measured from a camera sensor, lw, during lane change of
the object vehicle. In Fig. 7, µi and σi denote expectation and
standard deviation of the distributions for each lane change
situation, respectively. The details of the values are presented

TABLE 2. Normal distribution analysis of ˙̃ry for the lane change of the
object vehicle.

in Table. 2. Using the information, the boundaries ci are
designed to cover reasonable ˆ̇r̃y for the experimental training
data.

Each feature vector consists of a set of ( ˆ̃ry,
ˆ̇r̃y) for a

time-window period of one second. In other words, each
set of (r̂y, ˆ̇ry) for one second is labeled. Figure 8 shows
the comparison of relative lateral distance-velocity plots that
(a) is ry-ṙy measured from the radar directly and (b) is ˆ̃ry-

ˆ̇r̃y
obtained by feature extraction using the KF. (a) and (b) used
the training data set according to the time-window that the
gradation from a light to a dark color represents the flow of
time. Figure 8 (c) shows ˆ̃ry-

ˆ̇r̃y trajectory and the proposed
MSVM classification results at each sample time using the
validation data. It is obvious that it is not easy to classify
the driving mode without using the Kalman filter proposed
in this paper. We can see that the proposed feature extraction
method can be modeled easily for machine learning such as
SVM and improve the performance classifying lane change
intention of the object vehicle. If ry-ṙy, as plotted in Fig. 8
(a), are used as the feature vectors, it is challenging to classify
driving motions between LCI and RCO or between RCI and
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FIGURE 11. Results of the proposed method for Scenario 1:
(a) loss-weighted scores of the MSVM, (b) scores based on the open set,
(c) classes including the open set, and (d) results about the CIPV
application.

LCO using the MSVM. Therefore, as plotted in Fig. 8 (b),
using ˆ̃ry and ˆ̇r̃y is more well-suited to classify lane change
intention of the object vehicle. However, classification in real
driving should also be taken into account on boundaries since
the classification results make confusing decisions. To this
end, we propose an MSVM classification utilizing an open
set recognition concept and showing MSVM classification
results as shown in Fig. 8 (c). The details of the classifi-
cation results will be covered in the following experiment
results.

B. EXPERIMENT RESULTS
We validated the proposed algorithm using data measured
from a different place not included in the data set used
for training. The two scenarios to cover all the driving
situations are described below. Each scenario is shown
in Fig. 9.

FIGURE 12. Results of the proposed method for Scenario 2:
(a) loss-weighted scores of the MSVM, (b) scores based on the open set,
(c) classes including the open set, and (d) results about the CIPV
application.

1) SCENARIO 1
• S.1-A (RP, CIPV off): The ego vehicle rides in the first
lane, and the object vehicle rides in the second lane.

• S.1-B (LCI, CIPV on): The object vehicle cuts-in from
the second lane to the first lane.

• S.1-C (CP, CIPV on): The object vehicle and the ego
vehicle ride front and back in parallel in one lane.

• S.1-D (RCO, CIPV off): The object vehicle cuts-out
from the first lane to the second lane.

• Then, the situation returns to S.1-A again.

2) SCENARIO 2
• S.2-A (LP, CIPV off): The ego vehicle rides in the sec-
ond lane, and the object vehicle rides in the first lane.

• S.2-B (RCI, CIPV on): The object vehicle cuts-in from
the first lane to the second lane.
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FIGURE 13. A grouped box chart for cut-in/out performance distribution
compared with the radar. In the chart, groups 0 and 1 are relative times
for detecting and canceling the CIPV, respectively, i.e., detected times of
the proposed method minus detected times by the radar. The chart shows
that the proposed method detects or cancels the CIPV earlier than the
commercial radar system.

• S.2-C (CP, CIPV on): The object vehicle and the ego
vehicle ride front and back in parallel in one lane.

• S.2-D (LCO, CIPV off): The object vehicle cuts-out
from the second lane to the first lane.

• Then, the situation returns to S.2-A again.

In these scenarios, lane changing was performed at 80 kph
on a curved road in the validation place so that the execution
time from the starting lane changed to its completion. Both
vehicles maintained a relative longitudinal distance rx of
about 50 ∼ 70 m. Detailed information is also observed
in Figs. 14 and 15. Figure 10 shows plots of the relative lateral
distances and velocities in Scenarios 1 and 2, respectively.
From Fig. 10 (a) and (b), we can see that r̃y compensates
for the curved road with respect to ry measured from the
radar system and ˆ̃ry filters out r̃y. Without compensation of
the curved road, ry could go beyond the lane offset even
through both vehicles are keeping the lane. Fig. 10 (c) and (d)
show ˆ̇r̃y estimated by Kalman filter since it is difficult to
measure.

Both Figs. 11 and 12 show the classification results of
the lane change intention of the object vehicle using the
proposed method. The predicted class and the classification
result are determined as the class taking a minimized score in
(a) and (b). Without the open set classification, the MSVM
can predict faulty results. The proposed method predicts
unknown/confusing classes to help control the vehicle con-
servatively. Furthermore, the classification problem is con-
fusing on boundaries between classes. The results show that
the proposed method has confusing classes on these bound-
aries. The trajectories over two results are also described
in Fig. 8 (c). If it is used, it can enable more conservative
vehicle control to improve ACC performance and avoid a
collision. In Figs. 11 (c) and 12 (c), we applied a method

TABLE 3. The confusion matrix of the performance by MSVM.

keeping the ‘‘OpenSet’’ result at the last sample time as one of
the applications utilizing open set results to detect the CIPV
in Figs. 11 (d) and 12 (d). It is shown with a solid blue line,
the ‘‘Proposed’’ result, in Figs. 11 (c) and 12 (c). True data,
the dashed cyan line, was handcrafted using perimeter limits
as described for the training data set. With the true data,
a confusion matrix of the presented algorithm is presented
in Table 3. Through the confusion matrix, we obtained an
accuracy of 92.2% as well as significant precision and recall
results for each situation.

Moreover, compared with the CIPV of a commercial radar
system, we also show that the presented algorithm detects
and cancels detecting the CIPV faster than radar. Figure 13
shows a grouped box chart for the statistical performance of
the CIPV detection compared with commercial radar. In the
chart, groups 0 and 1 are relative times for detected and
canceling the CIPV, respectively, i.e., detecting times of the
proposed method minus detected times by the radar. In the
case of the object vehicle cut-in tests performed 40 times for
all scenarios in 1 and 2, the algorithm has a median time of
1.37 s, minimum 0.1 s, and a maximum of 2.3 s. When the
object vehicle cuts-out 39 times, a median 0.4 s, minimum 0.1
s, and maximum 1.45 s are shown in Fig. 13. Additionally,
the upper and lower points at the blue boxes mean 75% and
25% bounds of each group data, respectively. Furthermore,
4 representative driving motions in Scenarios 1 and 2 are
described in Figs. 14 and 15. Blue and red vehicles are ego
and object vehicles measured from the front radar sensor,
respectively. The blue dashed line is plotted using lane offset
c0, heading offset c1, road curvature c2, and the derivative
of road curvature c3 measured from a camera sensor, and
the broken red line is plotted using ρv in Eq. 1 and lane
width ±1.7m is applied in this paper. We can see again that
the proposed algorithm detects and cancels the CIPV before
the radar sensor, even on a curved road in each motion of
the object vehicle.
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FIGURE 14. Driving motions in Scenario 1: (a) left cut-in motion and (b) right cut-out motion. Blue and red vehicles are ego and object vehicles
measured from radar sensor, respectively. The blue dashed line is plotted using lane offset c0, heading offset c1, road curvature c2, and the
derivative of road curvature c3 measured from camera sensor and the red broken line is ploted using ρv in Eq. 1 and lane width ±1.7 m is
applied in this paper. In each motion situation of the object vehicle, we can see again that the proposed algorithm detects and cancels the CIPV
before radar sensor even on a curved road.
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FIGURE 15. Driving motions in Scenario 2: (a) right cut-in motion and (b) left cut-out motion. Blue and red vehicles are ego and object vehicles
measured from radar sensor, respectively. The blue dashed line is plotted using lane offset c0, heading offset c1, road curvature c2, and the
derivative of road curvature c3 measured from camera sensor and the red broken line is ploted using ρv in Eq. 1 and lane width ±1.7 m is
applied in this paper. In each motion situation of the object vehicle, we can see again that the proposed algorithm detects and cancels the CIPV
before radar sensor even on a curved road.
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V. CONCLUSION
This paper proposed a classification method utilizing an open
set recognition concept to conservatively detect lane change
intention of surrounding vehicles. To this end, we first divided
the driving motions of an object vehicle into seven types and
then detected the CIPV according to eachmotion. Classifying
the lane change intention of an object vehicle was made using
salient feature vectors that consist of defined relative lateral
distances and velocities based on the circular motion esti-
mation obtained by a commercial front radar and in-vehicle
signal’s time-window. In that case, we used a KF to overcome
the low-resolution limits for lateral information of the radar
sensor and to obtain the relative lateral velocity not avail-
able from the radar system. Then, we presented the MSVM
classification algorithmwith the open set recognition concept
for the classification algorithm to conservatively detect lane
change intention of the surrounding vehicles. The proposed
algorithm was validated with a data set not included in the
training data set. We observed that the proposed system con-
servatively copes with wrong decisions. A comparative study
with commercial radar was quantitatively made to show the
effectiveness of the proposed method. From the experimental
results, we also observed that the proposed system could
detect and cancel detecting the CIPV earlier with median
times of 1.4 sec and 0.4 sec, respectively. Furthermore,
we constructed a confusion matrix to evaluate the proposed
method’s accuracy and achieved an accuracy of 92.2%.
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