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ABSTRACT The color and contrast of objects in the image will be affected by meteorological factors,
especially rain and snow will block part of the image, which will change the information contained in the
image. Image restoration under bad weather conditions has practical application value. At present, most of
the research focuses on the removal of fog, and the research on complex rain and snow is relatively less. Rain
has more prominent features in gradient domain, and it is more distinct from non-rain image texture. In this
paper, Generative Adversarial Networks is used to combine the information of image in gradient domain
and spatial domain to get better performance of rain removal. Gradient aided coding is used in the generator
to generate depth features that are more conducive to rain removal. In the discriminator, the gradient is
used as an additional input to provide more recognizable rain and non-rain information, which enhances the
discriminator’s ability to distinguish the image generated by the generator and the ground truth. Bymodifying
the network structure of the expanded spatial pyramid pooling (ASPP), the abnormal rain removal results
produced by the generator are reduced. Experimental results show that the proposed method improves the
performance of rain removal and the visual quality of the generated image.

INDEX TERMS Image restoration, GAN, meteorology, rain.

I. INTRODUCTION
Target detection [1], tracking [2] and identification [3]
systems are widely used in modern city construction, cri-
sis prevention and treatment, security and other fields,
including unmanned driving technology which is developing
continuously with the rise of artificial intelligence. In these
applications, it is often hoped that the clear image or image
sequence can be obtained to better realize the detection, track-
ing and recognition of the target. However, images or image
sequences obtained by imaging equipment in outdoor
environment are easily affected by various meteorological
environmental factors, resulting in the decrease of visual
effects, data quality and application value of images or image
sequences. For example, snow will block local targets in the
image, and sometimes even block the content of the image
containing important information: although raindrops are
translucent, their transmission to light is limited, so they will
also partially block useful targets in the image, making them
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blurred [4], [5].In the case of heavy rain, not only obvious
rain lines appear in the image, but also accumulated rain
forms Haze-like Effect, which reduces image contrast and
leads to image color distortion [4], [6], [7].This situation has a
greater impact on the information contained in the image, and
even overwhelms the useful tiny features in the image, which
makes the performance of some computer vision algorithms
based on tiny features of the image lower. The southern region
is mainly affected by rain and fog, so to make the target mon-
itoring, tracking and identification system can work stably,
eliminate the impact of these weather is crucial.

The existing rain-removal methods based on deep learning
are usually designed and trained for a specific training set
and test set containing similar rain-lines to remove a certain
type of rain [6]–[11]. One of the biggest limitations of these
methods lies in its extension (Generalization Performance)
performance is inferior, that is to say, when enadversarial
other types of rain grain, the performance of these methods
will be markedly reduced. One challenge of these approaches
is to deal with rain streaks with wide and fuzzy edges.
In view of the above problems, this paper trains a Generative
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Adversarial Networks that is sensitive to the shape and size
of rain stripes to deal with more challenging rain stripes.
Therefore, the network proposed in this paper has better
expansibility and processing ability for different types of rain
stripes. Considering that the complex rain pattern can damage
the image background, the rain removal network is a very
important aspect for the restoration ability of background
texture. Gradient is a direct and effective tool to reflect image
texture. It has been widely used in other computer vision
tasks, such as super-resolution of images [12]. In order to
improve the texture of degraded images, gradients are widely
used in this paper to assist the training of Generative Adver-
sarial Networks. In addition, extensive experiments have
found that Global Features can impair performance for low-
level computer vision tasks.

The main contributions of this paper are as follows.
1) A novel RASPP network structure was established to

extract multi-scale features of rain images. RASPP
brings the benefits of ASPP to lower-level computer
vision tasks by overcoming the image black block effect
introduced by global features.

2) In this paper, the residual network structure is modified
to generate depth features that keep the scale constant,
which makes it possible to use the superior residual
structure in low-level computer vision tasks.

3) A gradient-guided GAN rain removal network is estab-
lished in this paper. Gradient-assisted coding, optimiza-
tion, and discrimination are introduced to help identify
rain-removal results and ground truth.

II. RELATED WORK
As a dynamic weather factor, rain has complex shapes and
scales. It is difficult to fully extract the characteristics of
rain by a single scale convolutional layer. References [8]
and [6] use dense connection blocks with multi-scale and
expansive convolution (Atreus Convolution) to extra multi-
scale features of rain images. Atreus spatial pyramid pool-
ing [13] (ASPP), which is widely used in mid/high-level
computer vision tasks, is used to extract the multi-scale fea-
tures of images in this paper. Compared with the expansive
convolution used in [6], ASPP contains a point-wise convo-
lution layer. This convolutional layer is similar to the cut-
path in the residual network [14], which is used to maintain
the depth characteristics of the original scale. In addition,
ASPP includes an extraction layer of global features to obtain
more comprehensive depth features. Pooling and usually
space pyramid [15] (Spatial Pyramid Pooling, SPP) than
ASPP can get by adjusting the convolution parameters and
the original images with the same depth of multi-scale feature
of size.

For low-level rain removal tasks, using ASPP directly does
not yield very good results. A large number of experiments
have found that the depth characteristics obtained in the large
receptive field have impaired the performance of the low-
level computer vision algorithms sensitive to local image
details. Some bad image effects will inevitably appear in the

final result of the rain. Therefore, the algorithm in this paper
removed the layer of extracting global features from ASPP
and the adjacent expansive convolutional layer with large
Atrous rate, and searched for Atrous rate suitable for rain
removal task to form a newASPP structure, whichwas named
RASPP for convenience. In experiments, RASPP solves the
problem of singularity in the image. In addition, symmetric
filling is used instead of 0 filling in the convolutional layer to
obtain more accurate image edges. For the network structure,
the algorithm in this paper modifies the residual network [14]
(ResNet) as the encoder. In order to adapt to the image
recognition task, the original residual structure ADAPTS to
the low-level computer vision task by modifying the resid-
ual network to obtain the depth feature with the same size.
In addition, all the convolution filling modes in the residual
network are changed to symmetric filling.

Rain pattern will distort the texture and detail of the back-
ground image, so texture recovery is essential in lossless
background restoration. In the spatial domain, background
content will affect the image’s rain-removal performance,
so some work to restore image details at high frequencies of
the image [16], [17]. However, extensive experiments show
that the rain information is more obvious in the gradient
domain, and the background texture features are also more
prominent. Based on this, the algorithm in this paper uses the
generator in gradient-assisted GAN network to extract depth
features more conducive to rain removal. At the same time,
the MSE cost of establishing a gradient domain is optimized
in the process of backward propagation to optimize the gener-
ator’s network parameters. In addition, gradient information
promotes the convergence of network training. In the absence
of gradient, the proposed network converges after 45 epochs,
and the convergence of the network with gradient information
requires only 13 epochs. In this paper, the gradient-assisted
feature extraction structure is named GRASPP.

With GRASPP, good rain-removal performance has been
obtained. However, for some rain images, a little texture
may still not be recovered and some rain pattern traces still
exist in the final result of rain removal. In order to further
improve the performance, Adversarial Training is introduced
into the network [18]. As mentioned before, the texture and
rain pattern of the image show better Discrimination in the
Discriminator. Therefore, the Discriminator is also trained
with the assistance of the gradient, so that the network can
recognize the result produced by the generator and the cor-
responding ground truth from both the spatial domain and
the gradient domain. Higher recognition accuracy leads to
better generator performance. Therefore, in this paper, a gra-
dient guided Conditional Generative Adversarial Network
(CGAN) is established to realize the rain removal task in a
single image.

The content of this paper is arranged as follows:
Section 3 systematically introduces the proposed algorithm
and network structure as well as the corresponding train-
ing details; In section 4, the proposed algorithm is exper-
imentally verified and compared with existing methods in
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FIGURE 1. Network Architecture, the generator consists of three main parts: the encoder, RASPP, and the feature fusion block. The encoder is a
modified RESnet-18 to extract scale invariant features; RASPP contains three parallel paths, each of which contains an expansive convolutional layer
and a point-by-point convolutional layer; Feature fusion module contains three common convolutional layers; The loss function of the training
network is composed of three parts: 2-norm MSE loss (L2loss) in the spatial domain to restore the overall image content, 2-norm MSE loss (GG loss)
in the gradient domain to repair the damaged image texture, and the gradient-guided adversarial loss to identify the result of rain elimination and
the corresponding ground truth.

subjective and objective aspects, and ablation experiments are
conducted. Section 5 summarizes the whole paper.

III. GENERATIVE ADVERSARIAL NETWORKS BASED
ON GRADIENT ASSISTANT
In order to remove rain streaking from the single image,
resnet-18 [63] was used as the backbone of the rain removal
network to extract depth features with the assistance of gra-
dient. In order to keep the scale of depth feature unchanged
to adapt to the task of rain removal, the stride of all down
sampling in the residual network was reset to 1. In addition,
the pre-trained model in the residual network is used to
initialize the modified residual network to accelerate the
convergence of the network and obtain more robust fea-
tures. A modified ASPP network structure was introduced
to diversify the extracted depth features to adapt to the
changeable rain pattern. In addition, two MSE cost func-
tions from the spatial domain and the gradient domain are
combined to optimize the network parameters to restore the
image background. Rain pattern is more obvious in gradi-
ent region, which is more conducive to the identification of
rain and non-rain background. Therefore, a gradient-assisted
discriminator is introduced to form the performance of the
adversary training promotion generator. Because of the exten-
sive auxiliary role of gradient in the whole network train-
ing, the rain elimination network in this paper is named
gradient-assisted generation adversarial network based on
modified ASPP.

A. GRASPP-GAN
The rain-removing frame in this paper consists of four main
parts: feature encoder, modified ASPP block, multi-scale fea-
ture fusion module, and discriminator. The concrete structure
is shown in Figure 1. In addition, three cost functions are
used to optimize the rain-removing network in the adversarial
training: 2-norm MSE loss (L2 loss) in the spatial domain is
used to recover the approximate image content, such as the

intensity information of color and pixel; MSE loss (GG loss)
of a gradient domain is used to repair the background detail
texture. Gradient-guided adversarial loss further promotes
network performance. In the training, these three loss are used
to optimize the network parameters with different weight
correlation.

The encoder takes a single RGB rain image I as input and
outputs depth feature spectrum f1 through training. In this
process, a convolution layer of Sobel gradient is built to
obtain the gradient of rain image I in both horizontal and
vertical directions. This gradient is used to guide the encoder
encoding depth features to help eliminate rain. Then, RASPP
module applies the expansion convolution with different
expansion rates to extract the multi-scale feature f2 from
the depth feature f1 to adapt to the scale variability of rain
pattern. Finally, the feature fusion module acts like a decoder
to fuse multi-scale feature f2 and generate the result d of rain
removal.

The following loss function is adopted in training:

Loss = L2 + αLg + βLgan (1)

where, α, β are the weights, L2 = ‖d − g‖2 is used to mea-
sure the difference between the precipitation result d in the
spatial domain and the corresponding ground truth g. Lg and
Lgan are gradient domain losses and gradient guidance adver-
sarial losses.

B. GRASPP
1) ENCODER
The problem of eliminating rain is different from other com-
puter vision tasks that are processed pixel by pixel and do
not require a deep network to achieve good results. It can be
verified by using ResNet-18, ResNet-34 and ResNet-50 [14]
as the main encoder of the algorithm in this paper. The exper-
imental results showed that they had similar rain-removal
performance, and the maximum difference between PSNR
and SSIM was 0.03dB and 0.004, respectively. Therefore,
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Resnet-18, which has fewer layers, is used to reduce the
run time and the number of network parameters. However,
ResNet is mainly used in medium/advanced computer vision
tasks and requires down-sampling to learn depth features.
In order to introduce ResNet’s superior performance into low-
level computer vision tasks that require constant feature scale,
the following modifications were made to ResNet in this
paper:
(1) Set all the steps of the convolutional layer of the lower

sample to 1 to keep the resolution of the depth feature
unchanged.

(2) In general, the zero-padding method used in convolution
is replaced by symmetric padding to obtain better image
boundary estimation.

(3) The modified linear units (ReLUs) are all replaced by
Leaky Corrected Linear Units (Leaky relu) to relieve
Dead Neuron [19].

(4) The pre-training model of the residual network is used to
initialize the modified encoder to accelerate the conver-
gence.

(5) Before the residual network is a Sobel gradient con-
volution layer to calculate the vertical and horizontal
gradients of rain image I . This gradient is also input into
the residual network together with the rain image f so
that the network can also extract depth features from the
gradient domain of the rain image

2) ASPP MODULE
Inspired by the excellent performance of Deeplab V3+ [20]
and DORN [99], this paper also applies the module of atrous
spatial pyramid pooling (ASPP) to extract the multi-scale
features of rain images. ASPP extracts large-scale depth
features in a large acceptance domain and also contains a
global feature, but experiments have shown that large-scale
features can damage low-level rain elimination tasks (detailed
experiments will be shown in the following sections). There-
fore, the last two layers of the original ASPP structure were
removed from the algorithm in this paper, and the expansion
rates of the remaining three layers were set to 1, 2, and 4.
Experiments have verified that this is the most conducive to
the performance of rain removal and the avoidance of image
anomalous effects of the expansion rate.

3) FEATURE DECODING MODULE
As a depth feature decoder, the feature decoder module
contains three convolutional layers, all of which have a
convolution kernel size of 3 × 3 and a step size of 1. These
convolutions are always filled with symmetry, and the first
two convolution layers are followed by a Batch Normaliza-
tion and a ReLU activation layer.

C. SIMILARITY MEASURE IN GRADIENT DOMAIN
At present, most rain elimination networks based on deep
learning are trained by minimizing the difference between
rain removal results and the corresponding ground truth in
the space city. This restores most of the image content, such

as color and pixel intensity, but some tiny image textures
are often over looked. It is found that the texture details and
rain pattern are usually more distinct in the gradient domain.
This can be regarded as a prior information of the rain image
in the gradient domain. An example is shown in Figure 3.
Therefore, depth feature extraction and network optimization
in gradient domain can make up for the shortage of spatial
domain operation.

Because of the prior knowledge of rain pattern and back-
ground texture in gradient domain, the encoder can extract the
depth feature of rain image from gradient domain. Similarly,
the parameters of the generator network are optimized by
complementing the spatial domain and the gradient domain.
The network is optimized by minimizing the difference
between rain removal results and ground truth in the spatial
domain. By minimizing the difference between rain removal
results in gradient domain and the corresponding ground
truth, the network was further optimized to restore the fine
image texture.

Before introducing the specific cost function, the differ-
ence of image information carried by gradient domain and
spatial domain is firstly analyzed. In fact, the gradient domain
and the spatial domain are to some extent complementary,
as shown in Figure 2. (a) and (b) are rain images and corre-
sponding ground truth, respectively. (c) and (d) are gradient
spectra of rain images and corresponding ground truth in
horizontal direction. (e) is the rain layer needed to synthesize
the rain image. By comparing (a)(b) with their corresponding
gradient (c)(d), it is found that the spatial domain and the
gradient domain respectively emphasize different informa-
tion content. The spatial domain mainly reflects the over-
all content, color and pixel intensity of the image, while
the gradient domain focuses on displaying some texture
information of the image that is not obvious in the spatial
domain.

FIGURE 2. Comparison of image features between spatial domain and
gradient domain;(a) and (b) are RGB images with and without rain,
respectively: (c) and (d) are gradient spectra of the horizontal direction
(x axis) corresponding to (a) and (b) respectively; (e) is the rain layer.

Therefore, during the training process, an MSE loss func-
tion Lg is added in the gradient domain to assist in optimizing
the proposed rain removal network and recover the tiny image
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details and textures lost in the spatial domain:

Lg =
1
n

n∑
i=1

[
‖∇x (di)−∇x (gi)‖2 +

∥∥∇y (di)−∇y (gi)∥∥2]
(2)

where, ∇x and ∇y represent the gradient operators in the
horizontal and vertical directions respectively, and n is the
number of training samples. The Sobel convolutional layer
is designed to extract the gradient in the horizontal and ver-
tical direction of the image. Sobel convolution layer takes
Sobel operator [21] (Operator) as the convolution kernel, and
the parameters are set to remain unchanged in the training
process.

D. GRADIENT-ASSISTED DISCRIMINATOR
In order to further improve the network performance,
an effective gradient-assisted adversarial training is intro-
duced. The gradient provides more rain and non-rain infor-
mation to help the discriminator identify rain image and
ground truth. The reason for using gradients is also that rain
bands are more pronounced in gradient regions as mentioned
above. Specifically, after the generator GRASPP produces
rain removal results, the rain removal results /ground truth
and their corresponding gradient spectrum cascades are com-
bined as the input of discriminator, and finally a score is
obtained. This rating table indicates the probability that the
input is the rain result or the corresponding ground truth.
The discriminator is optimized by maximizing the proba-
bility of correctly assigning tags. In the generation adver-
sarial training, the discriminator and generator are trained
synchronously according to the following formula:

min
G

max
D

V (G,D)

=Ez∈ζ [log(D(z,S(z)))]+Ex∈χ [log(1−D(G(x),S(G(x))))]
(3)

where, x = [x1, . . . , xn] is the input RGB rain image,
z = [g1 . . . gn] is the corresponding ground-truth. S (•) is
Sobel convolution layer. χ and ζ are the distribution of input
rain image and corresponding ground truth. D and G are
discriminators and generators. The discriminator is a binary
classifier, so Cross Entropy Loss is used as the cost function
of discriminator training.

The detailed network structure of the discriminator is
shown in Figure 3. It consists of four convolution blocks,
a global average pooling layer, and a full connection layer.
The first convolution block contains a convolutional layer
with a kernel size of 4 × 4 and a layer of Leaky ReLU
activation functions. The next three convolution blocks all
contain a convolution layer, a batch standardization layer, and
a Leaky ReLU activation function layer. All convolutional
layer steps are set to 2. Themathematical expression of Leaky
ReLU is as follows:

Leaky ReLU(x) = max(0, x)+ negativeslope ∗min(0, x)

(4)

FIGURE 3. The network structure of discriminator.

where, negativeslope is set to 0.2 in this paper. The gradient
guidance adversarial loss:

Lgan = Ex∈χ [log(D(G(x),S(G(x))))] (5)

IV. EXPERIMENTS AND ANALYSIS
In order to evaluate the performance of different methods,
PSNR and SSIM [22] are used as objective evaluation indi-
cators. For qualitative evaluation, visual results on synthetic
rain images and real rain images are presented respectively.
As there are many literatures on rain removal, this algorithm
adopts a reasonable way to compare with the existing litera-
tures on rain removal: three robust and widely used literatures
[8,16,110] and three recent literatures [7], [9], [11] are used
to compare with the proposed method.

In the process of training, 128 × 128 image blocks are
intercepted from each training sample to form the training
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sample of the input network. All image blocks are randomly
intercepted from the original training pair. Adam optimizer is
adopted to train the network, and the initial learning rate of
generator and discriminator network is set to 0.001 and 0.1
respectively. When the network training stops convergence,

0.1 times the previous learning rate is used to adjust the
learning rate until the network convergence. During the train-
ing process, the generator first conducts two separate training
sessions for epochs and then adds the discriminator to the
training process. The rain removal network in this paper is
trained on a computer equipped with NVIDIA1080TiGPU,
and the specific network framework is built on PyTorch. Each
batch contains 4 sets of images during training. α and β in the
loss function (Eq. (1)) are set to 1 and 0.001 respectively.

A. DATASET
In the experiment, a training set was prepared according
to the method in reference [23]. This training set consisted
of 20800 groups of training samples, and the rain images
in each training sample were synthesized by Screen Blend
Mode.

In order to more fairly test the performance and
extensibility of the proposed method, the benchmark set in
literature [8], [16], [10] constitutes the first test set of the
algorithm in this paper, Rain-I. Literature [6] syntheses two
test sets Rain100L and Rain100H, which respectively contain
100 sample pairs. In this paper, Rain100H, which is more
challenging, is selected as the second test set Rain-II. In addi-
tion, it is difficult to remove wider rain lines and blurry edges.
Therefore, the third test data set, Rain-III, is composed of
another 400 samples containing wider rain-lines and blurry
rain-line edges. The actual rain images in the experiment were
taken from previous rain removal literature or downloaded
from Google. They contain rich image content, including
natural scenery, urban buildings, human faces and so on.

B. COMPARATIVE EXPERIMENT
Table 1 shows the comparison test results between the
selected method and the method proposed in this paper.
In Rain-I and Rain-III, the method in this paper is supe-
rior to other methods in terms of two objective indicators.
On Rain-II, the objective index of this algorithm is the second
best. The best performance comes from the literature [10],
because this literature is trained on the training set corre-
sponding to this test set. In addition, the literature [7] is also
trained on the training set corresponding to Rain-II, but the
performance of the method in this paper exceeds that of this
algorithm on this test set.

In order to compare the performance of different methods
more fairly, the selected literature is retrained on the training
set used by the algorithm in this paper, and the test results
are shown in Table 2. Note that reference [7], [9] requires
additional ground truth configuration during training, so it is
impossible to train on the training set in this paper. Although
literature [8] also needs ground truth of rain density in train-
ing, in the process of retraining, the parameters of rain density

TABLE 1. A comparative experiment on three test sets.

TABLE 2. A comparative experiment on three test sets after re-trained.

estimation module are kept unchanged, and only the network
parameters of rain removal module are updated through train-
ing. Therefore, table 2 contains the comparison results of
the four literatures. It can be seen that when training on the
training set in this paper, the proposedmethod produces better
objective performance on all three data sets.

C. ASSESSMENT OF THE VISUAL QUALITY OF RAIN
ELIMINATION
Figure 4 shows some of the results on the composite rain
image and their corresponding horizontal gradients. These
three images are from the three test sets in this chapter, and
it can be found that the method presented in this chapter
produces the best visual effects. References [16] and [8] are
good at processing the synthetic Rain image in the test set

96026 VOLUME 9, 2021



M. Jingyi et al.: Image Restoration Network Under Complex Meteorological Environment: GRASPP-GAN

FIGURE 4. The results of different methods on the synthetic rain image, (a) composite rain image; (b)-(h) Results of
rain elimination using [16], [7]–[11] and method proposed; (i) ground truth. In order to see the texture of the image
more clearly, the gradient of the corresponding image in the horizontal direction is shown here.

Rain-I, because the Rain pattern in this data set is relatively
fine. In the case of rain-II data set with high pixel intensity or
wide edges with fuzzy rain-lines, these two methods cannot
produce good rain-removing effect. The literature [7], [10] is
specially trained on the training set corresponding to Rain-II

of the test set, so the literature [80] can remove most Rain
patterns from the test set Rain-II, but the literature [7] still
leaves out some obvious Rain patterns. These two litera-
tures do not produce very good results when encountering
dense drizzle, such as the first rain image. In addition, all
the selected literatures failed to remove relatively wide rain
stripes. As can be seen from the third figure, fine rain stripes
were removed, but wide rain stripes were still left in the final
rain removal result. References [9] will obviously change the
color tone of some of the dewatering images, and some dis-
tinct rain patterns will remain in the final dewatering image.
References [11] is not very good for some challenging rain
streaks. In contrast, the approach presented in this chapter
produces better rain pattern processing, with most of the
rain pattern removed, and the image details restored with
significantly more fidelity. These visual results demonstrate
the good scalability of the proposed method.

The results of rain removal and the corresponding gra-
dient on the three challenging real rain images are shown
in Figure 5. The first rain image contains a face covered by
the rain. Although the rain lines in this image are thinner,
the edges of the rain lines are blurry. The second rain image
has wider rain streaks with the same blurry edges. The rain
lines in the third image are relatively thin, but they all over-
lap. With the exception of literature [16], [10], [11] which

produced good results for the third image, the other methods
selected did not produce good results for the three images.
In addition, the results of [9] are affected by the block effect,
such as the second figure. By comparison, the methods in this
chapter produce better rain removal effects and demonstrate
better scalability.

D. ABLATION EXPERIMENT
The network in this paper adopts the combination of residual
network Resnet-18 and RASPP as the backbone network of
the generator network. Gradient is used to assist depth feature
extraction, network structure optimization, and discrimina-
tor discrimination. Finally, adversarial training is introduced
to further improve the performance of the network. There-
fore, two additional ablation experiments can be performed
to prove the effectiveness of the trunk generator network,
gradient, and discriminator. The first ablation experiment
is gradient removal auxiliary and discriminator adversarial
training, retaining only the role of generator, which is named
RASPP. The second is a guide that adds a gradient during
training, which is called GRASPP. The third was added to
the adversarial training, and was named GRASPP-GAN.

Table 3 shows the PSNR and SSIM of RASPP, GRASPP
and GRASPP -GAN on the three test sets respectively. It can
be seen that RASPP on the main network produces satisfac-
tory rain-removing results, and its performance even exceeds
that of some selected literatures, such as literature [8].
This is because the residual network effectively restricts
the gradient disappearance in the network training process,
so as to obtain better rain-removal features. In addition, the
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FIGURE 5. The results of different methods on real rain image, (a) real rain image; (b)-(h) Results of rain elimination using
[16], [7]–[11] and method proposed. In order to see the texture of the image more clearly, the gradient of the corresponding.

TABLE 3. Results of ablation experiment.

modified RASPP network structure can obtain multi-scale
depth characteristics reflecting the shape and size of rain.
After the introduction of gradient information (GRASPP),
PSNR and SSIM achieved consistent improvement in the
three data sets.

The gradient accelerates the training process of the net-
work. In the absence of gradient, the network converges after
45 epochs, and the addition of gradient information only
requires 13 epochs, which means that the gradient helps the
encoder to form the characteristics of rain removal faster.
Adversarial training often has a positive effect on perfor-
mance improvement by progressively improving the quality
of the rain-removal results generated by the generator by
continuously determining whether the rain-removal results
contain residual rain-lines. Therefore, the performance of
GRASPP-GAN has been further improved.

Figure 6 and Figure 7 show the rain eliminating results
of the ablation subjects on the synthesized and actual rain
images, respectively. For most rain images, GRASPP-GAN
and its two variants can obtain good rain removal results.
Consider the second image in Figure 6 and the two actual
rain images in Figure 7. However, there are still significant

FIGURE 6. The visual results of the different subjects in the ablation
experiment on the composite rain image, (a) input image; (b) The result
of RASPP; (c) The result of GRASPP; (d) The result of GRASPP-GAN;
(e) Ground truth. The gradient is also shown here to better illustrate the
restoration of the image texture.

differences among the three for some images, such as the first
image in Figure 6. It was found that RASPP lost some of the
image details and the lost details were gradually recovered
with the addition of gradient and adversarial training.

E. THE INFLUENCE OF LARGE-SCALE FEATURES
ON THE TASK OF RAIN REMOVAL
Through extensive experiments, it is found that global fea-
tures and large-scale features will cause bad effects in
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FIGURE 7. The visual results of the different subjects in the ablation
experiment on real rain image, (a) Input image; (b) The result of RASPP;
(c) The result of GRASPP; (d) The result of GRASPP-GAN;. The gradient is
also shown here to better illustrate the restoration of the image texture.

low-level computer vision tasks. This effect will seriously
affect the PSNR and SSIM indexes of the algorithm as well
as the visual quality. The proposed algorithm modifies the
original ASPP structure by removing the global scale and
large scale feature extraction layer. By comparing the perfor-
mance of the original ASPPwith that of the modified RASPP,
the effect of large-scale characteristics on the rain removal
task of low-level computers was studied. The experimental
results are shown in Table 4, and the visual results are shown
in Figure 8. It can be seen from Table 4 that the objective
index of ASPP is significantly less than RASPP. The reason
is that large-scale features will produce abnormal black block
effect in the final result of rain removal, as shown in the last
three columns in Figure 8. Therefore, large scale features are
not conducive to the task of rain removal sensitive to local
image details.

FIGURE 8. Effects of large-scale depth features on low-level computer
rain removal tasks, the first line is an actual image of rain; the second
row is the result of using the original ASPP; the third row is the result
given by RASPP.

In this algorithm, the last two layers of the original ASPP
structure are deleted, and the expansion rates of the remaining

TABLE 4. Comparison of PSNR and SSIM between ASPP structure and
modified RASPP structure.

three layers are set to 1, 2 and 4. These expansions are not ran-
domly selected, but the expansions that are most beneficial to
rain removal performance and avoid abnormal image effects
are verified by extensive experiments. In order to verify the
impact of expansion ratio combination on the performance of
ASPP module, we designed a group of comparative experi-
ments to compare the performance of network models with
different expansion ratio combinations. The experimental
results are shown in Table 5. It can be seen from table 5 that
the network performs best when the expansion rate is 1, 2
and 4. Large scale features are not conducive to the task of
rain removal which is sensitive to local image details.

TABLE 5. Comparison of PSNR and SSIM between different expansion
rates of ASPP.

V. CONCLUSION
In this paper, a gradient-assisted generative adversarial net-
work (GRASPP-GAN) is proposed to remove the influence of
rain from a single rain image. The modified ResNet network
structure can effectively constrain the gradient disappearance
in the backward propagation. In order to adapt to the varied
shapes and sizes of rain patterns, a modified RASPP structure
was used to extract multi-scale depth features of rain images.
In addition, the rain pattern has more obvious features in the
gradient domain, so the extraction and optimization of the
depth features of the generator are completed under the assis-
tance of the gradient, so as to generate better rain-removal
features. For image gradient extraction, the gradient convolu-
tion layer of Sobel is specially designed to facilitate the estab-
lishment of the network. Finally, the objective performance
and visual quality of rain removal are further improved by
gradient-guided discriminator. Extensive experiments show
that the method proposed in this paper produces better rain
removal performance than existing methods.

REFERENCES
[1] M. Li, Y. Du, Z. Gao, Y. Zhang, and Z. Qin, ‘‘Research and application

of object recognition method of visual grasping robot based on deep
learning,’’ in Proc. 3rd Int. Conf. Electron Device Mech. Eng. (ICEDME),
May 2020, pp. 652–656, doi: 10.1109/ICEDME50972.2020.00154.

VOLUME 9, 2021 96029

http://dx.doi.org/10.1109/ICEDME50972.2020.00154


M. Jingyi et al.: Image Restoration Network Under Complex Meteorological Environment: GRASPP-GAN

[2] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, ‘‘Robust visual track-
ing via hierarchical convolutional features,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 41, no. 11, pp. 2709–2723, Nov. 2019, doi: 10.1109/
TPAMI.2018.2865311.

[3] Guo, Guodong, and N. Zhang, ‘‘A survey on deep learning based face
recognition,’’ Comput. Vis. Image Understand., vol. 189, Dec. 2019,
Art. no. 102805, doi: 102805.1-102805.37.

[4] K. Garg and S. K. Nayar, ‘‘Vision and rain,’’ Int. J. Comput. Vis., vol. 75,
no. 1, pp. 3–27, Jul. 2007.

[5] S. K. Nayar and S. G. Narasimhan, ‘‘Vision in bad weather,’’ in Proc.
7th IEEE Int. Conf. Comput. Vis., Sep. 1999, pp. 820–827, doi: 10.1109/
ICCV.1999.790306.

[6] W.Yang, R. T. Tan, J. Feng, Z. Guo, S. Yan, and J. Liu, ‘‘Joint rain detection
and removal from a single image with contextualized deep networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 6, pp. 1377–1393,
Jun. 2020, doi: 10.1109/TPAMI.2019.2895793.

[7] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, ‘‘Deep joint
rain detection and removal from a single image,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1685–1694, doi:
10.1109/CVPR.2017.183.

[8] H. Zhang and V. M. Patel, ‘‘Density-aware single image de-raining using a
multi-stream dense network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., Jun. 2018, pp. 695–704, doi: 10.1109/CVPR.2018.00079.

[9] R. Li, L.-F. Cheong, and R. T. Tan, ‘‘Heavy rain image restoration:
Integrating physics model and conditional adversarial learning,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1633–1642, doi: 10.1109/CVPR.2019.00173.

[10] X. Li, J.Wu, Z. Lin, H. Liu, andH. Zha, ‘‘Recurrent squeeze-and-excitation
context aggregation net for single image deraining,’’ in Computer Vision—
ECCV (Lecture Notes in Computer Science), vol. 11211, V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham, Switzerland:
Springer, 2018, doi: 10.1007/978-3-030-01234-2_16.

[11] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. H. Lau, ‘‘Spatial
attentive single-image deraining with a high quality real rain dataset,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12262–12271, doi: 10.1109/CVPR.2019.01255.

[12] W. Yang, J. Feng, J. Yang, F. Zhao, J. Liu, Z. Guo, and S. Yan, ‘‘Deep
edge guided recurrent residual learning for image super-resolution,’’ IEEE
Trans. Image Process., vol. 26, no. 12, pp. 5895–5907, Dec. 2017, doi:
10.1109/TIP.2017.2750403.

[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018, doi: 10.1109/
TPAMI.2017.2699184.

[14] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[15] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in
deep convolutional networks for visual recognition,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015, doi:
10.1109/TPAMI.2015.2389824.

[16] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, ‘‘Removing
rain from single images via a deep detail network,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1715–1723, doi:
10.1109/CVPR.2017.186.

[17] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, ‘‘Clearing the skies:
A deep network architecture for single-image rain removal,’’ IEEE Trans.
Image Process., vol. 26, no. 6, pp. 2944–2956, Jun. 2017, doi: 10.1109/
TIP.2017.2691802.

[18] H. Zhang, V. Sindagi, and V. M. Patel, ‘‘Image de-raining using a con-
ditional generative adversarial network,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 11, pp. 3943–3956, Nov. 2020, doi: 10.1109/TCSVT.
2019.2920407.

[19] M. Khalid, J. Baber, M. K. Kasi, M. Bakhtyar, V. Devi, and N. Sheikh,
‘‘Empirical evaluation of activation functions in deep convolution neu-
ral network for facial expression recognition,’’ in Proc. 43rd Int. Conf.
Telecommun. Signal Process. (TSP), Jul. 2020, pp. 204–207, doi: 10.
1109/TSP49548.2020.9163446.

[20] C. LC, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,’’ in Computer Vision—ECCV (Lecture Notes in Computer Science),
vol. 11211, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.
Cham, Switzerland: Springer, 2018, doi: 10.1007/978-3-030-01234-2_49.

[21] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, ‘‘Design of an image
edge detection filter using the sobel operator,’’ IEEE J. Solid-State Circuits,
vol. 23, no. 2, pp. 358–367, Apr. 1988, doi: 10.1109/4.996.

[22] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/
TIP.2003.819861.

[23] S. Li, W. Ren, J. Zhang, J. Yu, and X. Guo, ‘‘Single image rain removal via
a deep decomposition-composition network,’’ Comput. Vis. Image Under-
stand., vol. 186, pp. 48–57, Sep. 2019, doi: 10.1016/j.cviu.2019.05.003.

[24] T. T. Gong and J. S. Wang, ‘‘Wavelet based deep recursive pyramid
convolution residual network for single image rain removal,’’ IEEE Access,
vol. 8, pp. 195870–195882, 2020, doi: 10.1109/ACCESS.2020.3034238.

[25] P. Xiang, L. Wang, F. Wu, J. Cheng, and M. Zhou, ‘‘Single-image de-
raining with feature-supervised generative adversarial network,’’ IEEE
Signal Process. Lett., vol. 26, no. 5, pp. 650–654, May 2019, doi: 10.1109/
LSP.2019.2903874.

[26] X. Huang, B. Du, and W. Liu, ‘‘Multichannel color image denoising via
weighted schatten P-norm minimization,’’ in Proc. 29th Int. Joint Conf.
Artif. Intell., Jul. 2020, pp. 1–8.

[27] Z. Hu, Z. Huang, X. Huang, F. Luo, and R. Ye, ‘‘An adaptive non-
local Gaussian prior for hyperspectral image denoising,’’ IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 9, pp. 1487–1491, Sep. 2019, doi: 10.1109/
LGRS.2019.2896888.

MA JINGYI has received his master’s degree in
Information and Communication. He has grad-
uated from the school of University of Science
and Technology of China in 2008. He is currently
working in the Gansu Branch of China Meteo-
rological Administration Training Centre. He has
more than 10 years of research experience in the
field of Information and Communication. And
he has published more than 20 academic papers
in this field in peer-reviewed journals at home
and abroad.

ZHANG TIEJUN is currently working with the Institute of Arid
Meteorology, China Meteorological Administration.

JING GUODONG is currently working with the China Meteorological
Administration Training Center, Beijing.

YAN WENJUN is currently working with the Gansu Branch of China
Meteorological Administration Training Centre, Lanzhou, China.

YANG BIN is currently working with the Gansu Branch of China Meteoro-
logical Administration Training Centre, Lanzhou, China.

96030 VOLUME 9, 2021

http://dx.doi.org/10.1109/TPAMI.2018.2865311
http://dx.doi.org/10.1109/TPAMI.2018.2865311
http://dx.doi.org/102805.1-102805.37
http://dx.doi.org/10.1109/ICCV.1999.790306
http://dx.doi.org/10.1109/ICCV.1999.790306
http://dx.doi.org/10.1109/TPAMI.2019.2895793
http://dx.doi.org/10.1109/CVPR.2017.183
http://dx.doi.org/10.1109/CVPR.2018.00079
http://dx.doi.org/10.1109/CVPR.2019.00173
http://dx.doi.org/10.1007/978-3-030-01234-2_16
http://dx.doi.org/10.1109/CVPR.2019.01255
http://dx.doi.org/10.1109/TIP.2017.2750403
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/CVPR.2017.186
http://dx.doi.org/10.1109/TIP.2017.2691802
http://dx.doi.org/10.1109/TIP.2017.2691802
http://dx.doi.org/10.1109/TCSVT.2019.2920407
http://dx.doi.org/10.1109/TCSVT.2019.2920407
http://dx.doi.org/10.1109/TSP49548.2020.9163446
http://dx.doi.org/10.1109/TSP49548.2020.9163446
http://dx.doi.org/10.1007/978-3-030-01234-2_49
http://dx.doi.org/10.1109/4.996
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1016/j.cviu.2019.05.003
http://dx.doi.org/10.1109/ACCESS.2020.3034238
http://dx.doi.org/10.1109/LSP.2019.2903874
http://dx.doi.org/10.1109/LSP.2019.2903874
http://dx.doi.org/10.1109/LGRS.2019.2896888
http://dx.doi.org/10.1109/LGRS.2019.2896888

