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ABSTRACT Alzheimer’s disease (AD) is one of the most serious neurological disorders for elderly people.
AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD
patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and
the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging
research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through
an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages,
namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the
case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress
on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed
few existing state-of-art works for AD detection and classification, based on different feature extraction
approaches. We have summarized the existing research articles with detailed observations. We have also
compared the performance and research issues in each of the feature extraction mechanisms and observed
that the AD classification using the wavelet transform-based feature extraction approaches might achieve
convincing results.

INDEX TERMS Alzheimer’s disease (AD), hippocampus, magnetic resonance imaging (MRI), mild
cognitive impairment (MCI), progressive MCI (PMCI), stable MCI (SMCI)

I. INTRODUCTION
Alzheimer’s disease (AD) is a neurological disorder that
mainly destroys the memory cells in the human brain.
In AD, patients experience symptoms like memory loss,
visual changes, confusions, etc [1]. AD destroys the memory
and thinking skills slowly and in the end, it kills the capability
to carry out even the simplest tasks [1]. The effects of AD can
be observed from the age of the early 60s. In 2019, ‘‘National
Institute on Aging, U.S.A’’, has done a survey and found
that around 6 million people from the U.S.A are affected
by AD [2]. In a similar kind of report, the ‘‘Alzheimer’s
and Dementia Resources’’ has concluded that in India, more
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than 4 million people are suffering from AD [3]. Worldwide,
the growth of AD patients is enormous and alarming.

MCI is a dementia stage, where a patient experiences
more cognitive declination than a CN individual of the same
ages [4]. Although people in MCI experience problems with
languages, memories, thinking skills, etc., their symptoms are
not as severe as those of AD. According to a research report,
8 out of 10 people with MCI develop AD within 7 years,
whereas the probability of converting to AD from CN is 3 out
of 10 [5]. Therefore, MCI is considered an early stage of AD.
MCI is classified into two stages namely SMCI and PMCI.
After following up the dementia stage for an MCI patient,
over the years, if the dementia stage remains stable, or if it
shows a very slow rate of progression to the AD, then the
patients are said to be in SMCI dementia stage [6]. SomeMCI
subjects experience a high rate of cognitive declination over
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TABLE 1. Summary of some of the commonly used AD diagnosis approaches introduced by several associations.

the ages, and after a few years they may progress to the stage
of AD, which are known as the PMCI subjects [7].

A. CLASSIFICATION OF AD USING BRAIN IMAGES
Dr. Alois Alzheimer discovered AD in the year 1906 [8].
Since then, researchers have been trying to develop a mech-
anism that can detect AD accurately. Some of the popular
approaches for AD diagnosis are described in table 1.

The manual classification of AD by the neurologist is
time consuming and may not provide accurate results all the
time. Many factors may affect the manual diagnosis pro-
cess, such as the patient’s age, nervousness, poor eyesight,
etc. Researchers have been trying to determine the com-
plicated changes in brain tissues that occur in early stages
as well as during the progression of AD [9]. According to
the research reports, changes in the brain tissues may begin
much before a person develops AD, i.e., toxic changes occur
in the brain before the symptoms of AD occurs [10], [11].
When a person develops AD, the brain experiences some
unusual transformations of proteins from amyloid plaques
and tau tangles [12], [13]. The process gradually makes the
healthy neurons stop working and connection among all other
neurons starts splitting [14].

The initial damage occurs in the areas of the brain which
are responsible for formingmemories, such as the Hippocam-
pus, Entorhinal Cortex, Amygdala, etc. [15], [16] [17]. Grad-
ually, more neurons die, which causes additional damage in
other parts of the brain and leads to volumetric shrinkage.
Structural imaging tools, such as MRI, Computed Tomog-
raphy (CT), etc. can provide information about the shapes,
positions, and volumes of brain tissues [18]. Hence, these
brain imaging tools can be used for diagnosing the AD
[19], [20]. By segmenting the affected tissues in the brain
images, it is possible to observe the neurological changes
that occur in AD, and the information can be used to train
a classifier to classify AD more accurately [21], [22].

Challenges in the detection of AD: Diagnosing AD is a
complex task. Based on the memory test, it is a challenge
for the neurologist to decide whether a person is developing
AD or not, because, significant memory loss (more or less)
is common in normal aging too [23]. Hence, classification
of AD, based on the bio-markers in the brain tissues is
preferable. During the progression stage of AD, the most
major affected brain regions are responsible for the cogni-
tive operations [24]. The major challenges in classifying AD
using brain images are proper segmentation of brain MRI’s,
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detection of Region of Interest (RoI), extraction of appropri-
ate feature set, and comparison amongst the tissues of all the
subject groups [25], [26]. Hence, a proper feature extraction
technique is absolutely necessary for AD classification using
brain images.

B. COMMONLY USED METHODOLOGY FOR
CLASSIFICATION OF AD USING BRAIN IMAGES
For effective classification of any images, numerous steps are
involved. The initial task for classification is pre-processing
which includes removal of noise etc. Then appropriate
methodology is invoked for effective feature extraction. The
distinct features are selected for the appropriate classification
and a commonmethodology for the same is shown in figure 1.

1) DATA COLLECTION
The first step towards the classification approach is to obtain
a sufficient amount of brain images as well as the patient
details for different subject groups, such as CN, MCI, and
AD patients. The most common types of brain images used
by the researchers, namely Structural MRI, Fluid-attenuated
inversion recovery (FLAIR), Magnetization Prepared Rapid
Acquisition Gradient Echo (MP-RAGE), T2Weighted, Func-
tional MRI (FMRI), Positron Emission Tomography (PET),
etc. Apart from the brain images, some other relevant infor-
mation, such as the patient’s medical history, Mini-Mental
State Exam (MMSE) score, genetic information, etc. are also
may be required in the study of AD. The most commonly
used publicly available online data sources for AD classi-
fication, namely Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) [27], Open Access Series of Imaging Studies
(OASIS) [28], etc.

2) PRE-PROCESSING
In the perspective of image classification, pre-processing
is the collection of operations to extract relevant informa-
tion before processing to further computational process [29].
To get an accurate classification result, pre-processing is one
of the most important steps [30]. The most commonly used
pre-processing steps for AD classification include; image
resizing, noise filtering, skull stripping, morphological oper-
ations, etc. The brain imaging mechanisms capture some
unwanted pixels in the form of the skull, hence among all
the pre-processing steps, skull stripping is considered one of
the most essential steps [31].

Some of the most commonly used software’s/toolboxes
for medical image processing are: Diffeomorphic Anatomic
Registration Through Exponentiated Lie (DARTEL) for
image registration [32], Montreal Neurological Institute tem-
plate (MNI) for affine registration [33], Statistical Para-
metric Mapping (SPM) for realignment, smoothing and
spatial normalization [34], FreSurfer for volumetric fea-
ture extraction [35], Voxel-based morphometry (VBM)
for bias-correction segmentation, morphological changes
estimation, etc. [36], FMRIB Software Library (FSL)
for segmentation [37], International Consortium for Brain

FIGURE 1. Block diagram of the methodology for classification of AD
using brain images.

Mapping (ICBM) for extraction of the region of interests,
etc [38]. Although VBM-8 can produce convincing results
in various pre-processing steps, but sometimes it fails to
determine the brain morphological changes accurately. Com-
putational Anatomy Toolbox (CAT) is another toolbox for
estimating the morphometric changes in the human brain.
The combination of CAT-12 and the VBM8 toolboxes can
providemore accurate results in estimating themorphological
changes in the brain [39].

3) FEATURE EXTRACTION
Feature extraction (FE) is a dimensionality reduction tech-
nique, that proficiently characterizes the fascinating portions
of input images as the feature vectors [50]. FE is the pro-
cess of producing novel features from the existing ones and
extracts the essential features that are useful for classify-
ing an object. The newly compact features can recapitu-
late utmost information confined in the original set of fea-
tures [51]. feature extraction helps the classification model
for better training, reducing time complexity, and produc-
ing a better accuracy. The most useful features in medical
images, namely colors, shapes, textures, etc. In some medical
images, where color information is less explainable, the tex-
ture and shape-based feature extraction techniques [52] is
used. Themost commonly used feature extraction approaches
in medical image processing include; Principle Components
Analysis (PCA), Independent Component Analysis (ICA),
Linear Discriminant Analysis (LDA), Locally Linear Embed-
ding (LLE), t-distributed Stochastic Neighbor Embedding
(t-SNE), Autoencoders, etc.

4) FEATURE SELECTION
Sometimes, feature extraction methods extract some less rel-
evant features that force amodel to learn falsely, and the accu-
racy of the final classification gets affected. Feature selection
is the procedure to select only the most relevant features by
eliminating the unwanted features by following a particu-
lar classification paradigm [53]. Some of the major advan-
tages of using a proper feature selection approach, namely
faster training of the algorithm, reducing the complexity &
over-fitting issues of the model, improving the accuracy of
the model, etc [54].

Feature selection can be done in two types of approaches,
by using the supervised methods, or by using the
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FIGURE 2. Organization of the paper.

unsupervised methods. An unsupervised method uses the
concept of correlation and eliminates non-used features while
ignoring the target variables. But in supervised methods, tar-
get variables are compared with the input variables to elimi-
nate the irrelevant features [55]. Among all supervised feature
selection methods, wrapper, filter, and intrinsic/embedded
are the most commonly used methods in medical image
processing. In wrapper methods, firstly a performance eval-
uation metric is created, and then the suitable algorithm
is used to generate several models having different sets
of input features. Finally, an effective feature is selected
which contributes the most for exploring the best performing
model [56]. One of the commonly used examples of wrapper
feature selection methods is the Recursive Feature Elimina-
tion (RFE) method [57]. In filter methods, some statistical
algorithms are used to estimate the correlation among the
input and target variables, and then based on the correlation
scores, the best variables are considered in the model [58].
Some of the commonly used filter feature selection meth-
ods are Pearson’s Correlation, Linear Discriminant Analysis
(LDA), etc. Embedded is a feature selection approach, where
the model is trained by acquiring a large dataset, and selection
of the most relevant features is carried out automatically [53].
Among all the most widely used embedded feature selection
approaches, Least Absolute Shrinkage and Selection Oper-
ator (LASSO), and Decision Trees, are the most common
methods.

The most commonly used feature selection methods
include; SVM-REF (Support Vector Machine- Recursive
Feature Elimination), Genetic algorithm based technique,
Pearson’s Correlation Coefficient (PCC), T-test Score (TS),
Fisher Criterion (FC), Gini index (GI), Statistical Depen-
dency (SD), Mutual Information (MI), Information Gain
(IG), etc.

5) CLASSIFICATION
Image classification is a procedure to categorize a group of
pixels, based on some protocols by using spectral or textu-
ral features. Classification methods can be categorized into

two parts, namely supervised classification and unsupervised
classification [59].

In supervised classification, the training data are selected
visually, and then data are assigned to some pre-determined
categories such as roads, buildings, etc. and after that,
some statistical measures are created to apply in the entire
image [60]. Using the sample data, for categorizing entire
images, the two most commonly used methods, namely max-
imum likelihood, and minimum distance. On the other hand,
unsupervised classification is an automatic procedure where
training data is not used. In unsupervised classification, some
particular properties of an image are thoroughly determined
using an appropriate algorithm [61].

Some of the commonly used image classification tech-
niques, namely Logistic Regression [62], Naïve Bayes [63],
Stochastic Gradient Descent [64], K-Nearest Neigh-
bours [65], Decision Tree [66], Random Forest [67], Support
Vector Machine (SVM) [68] etc.

a: ORGANIZATION OF THE PAPER
The organization of this paper includes 4 sections and a total
of 10 subsections. The organization is represented pictorially
in figure 2.

II. SURVEY ON DIFFERENT CLASSIFICATION METHODS
OF AD BASED ON DIFFERENT FEATURE EXTRACTION
APPROACHES
Research is going on to match the finest feature extraction
approach for classifying AD accurately. Several approaches
have been proposed by the researchers. Some of the com-
monly used feature extraction approaches for AD classifica-
tion are discussed below.

A. TEXTURE-BASED FEATURE EXTRACTION
The texture is a set of repetitive information in an image with
a uniform interval [69]. Texture generally refers to a particular
region (region of interest) of an image, that provides the same
information such as shape, density, pixel value, etc [69]. The
procedure to extract texture features from an image is called
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texture feature extraction. Texture features play a major role
in medical image processing [70]. Texture features help in
finding discriminative features from a brain image for the
classification of neurological disorders such as AD, MCI,
etc. [71].

Gray-Level Co-occurrence Matrix (GLCM) is one of the
most widely used texture feature extraction approaches pro-
posed by Haralick et.al. [72]. GLCM determines the statisti-
cal features, according to the gray intensity values of a pixel.
In the literature, [73], and [74], it is described that the tex-
ture features extraction by co-occurrence matrices provides a
better result than other texture discrimination methods. One
of the first approaches in texture analysis in the whole brain
volume using GLCM is discussed in the literature [75]. In the
literature [75], the authors used the GLCM based approach
in Dopamine Active Transfer scan (DaTSCAN) brain images
to determine the patterns that change due to the Parkinson’s
disease (PD), then used the achieved texture based infor-
mation for final classification, and achieved a convincing
result. Similarly, in the literature [76], the authors proposed a
PD classification method based on the texture based feature
extraction by using the GLCM approach. The authors have
used the 123I-ioflupane imaging to achieve the best texture
based features. Based on the features extracted by the GLCM
approach, a SVM classifier is used which finally achieved
an accuracy of 97.4% while classifying the PD. One of the
major advantages of the co-occurrence matrix is that the
co-occurring sets of pixels can be spatially related in different
directions by taking reference of the distance and angular spa-
tial relationships [77]. One of the major drawbacks of GLCM
is that, it is a sparsematrix withmany elements valued as zero,
which is unnecessary for texture features calculation, hence
it is computationally expensive [78], [79]. Some literature
on AD classification using texture based feature extraction
approaches and their research issues are discussed below.

In the articles [80], [81], the authors have proposed an
approach of AD classification, where GLCM is used for
feature extraction. In the literature, [80], Gabor filter is used
along with the GLCM. After extracting a sufficient number of
features, the authors have applied the SVM- RFE (Recursive
Feature Elimination) method for selecting the most appropri-
ate features. In the literature, [81], texture features, such as
edge information, color, and boundary information, etc. are
mined from the whole MR images, and clinical features such
as Functional Activities Questionnaire (FAQ), Neuropsychi-
atric Inventory (NPI), Geriatric Depression Scale (GDS), etc.
are mined from the Grey Matter(GM), White Matter(WM),
and Cerebrospinal Fluid (CSF) segmented regions using the
GLCM approach.

Krishnakumar Vaithinathana, et al. proposed a classifica-
tion framework for the classification of AD, based on texture
information extraction [77]. The voxels, which are selected as
Region of Interests (RoIs), are mined and combined, and dif-
ferent textures are determined collectively. To select the best
features, the authors have used 3 approaches, namely Fisher
score, Elastic net regularization, and the SVM Recursive

Feature Elimination (SVM-RFE) technique. For classifica-
tion, the authors have used random forest, linear SVM, and
the k-Nearest Neighbor (kNN).

Based on brain structural changes, and hippocampal shape,
G. Wiselin Jiji, et al. proposed a novel method for detecting
AD [82]. For extracting the features, the authors have identi-
fied the busy texture information. Busy textures are those for
which there are rapid changes of intensities from one pixel
to its neighbor. The spatial frequency of intensity alteration
is very high. Therefore, suppression of contract aspect, from
the information about the spatial rate of change in intensity,
indicates the degree of business of a texture. The authors have
used SVM for classification.

The performance comparison for different AD classi-
fication techniques using Texture-based feature extraction
approaches is presented in table 2.

From table 2, it can be observed that, amongst several AD
classification techniques using texture-based feature extrac-
tion approaches, the maximum classification performance is
claimed by Altaf et al. [81] with an accuracy rate of 97.8%.
But the overall highest average performance is acquired by
Xiao et al. [80] with a rate of 93.96%.

B. VOXEL MORPHOMETRY (VM) BASED FEATURE
EXTRACTION
For brain structure study, Morphometry analysis is one of the
most common approaches that determine a comprehensive
quantity of structural variances within or across the clusters in
the whole brain [83]. Voxel-based morphometry (VBM) is a
commonly used method for measuring the variances in local
concentrations of brain cells, by performing a voxel-wise
evaluation, taking reference from several brain images of
the same group [84]. VBM can be applied to determine
the volumetric changes, especially in Grey Matter (GM)
regions among different subject groups such as AD, MCI,
CN, etc [85], [86].

One of the first uses of the voxel-wise statistical test in
medical image processing is proposed in the article [87]. In all
the pre-processed SPECT images, a t-test based approach
is used to determine the voxel-wise features, and finally,
the model returns a total of 3816 no’s of features for each
subject. Based on the features extracted, the authors have used
the SVM classifier and achieved a convincing result while
classifying AD subjects.

In a similar work, I. Alvarez, et al. discussed a novel AD
classification method in the literature [88]. The authors have
used the concept of ensemble SVM classifiers trained on
different parts of the brain images (SPECT and PET), such as
the majority-voting, least squares estimation, as well as the
double layer hierarchical combing, and then a pasting-votes
technique-based approach is used to ensemble the classifiers.
The authors claimed that the accuracy of the proposedmethod
is 97.5% for SPECT and 100% for PET images.

Based on an SVM-based classifier, a novel AD classi-
fication approach is proposed in the literature [89]. The
SPECT images are pre-processed using a filtered back
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TABLE 2. Performance comparison of the AD classification techniques using texture-based feature extraction approaches.

projection (FBP) algorithm and a Butterworth noise removal
filter. By using the SPM toolbox, all the images are spatially
normalized to 95 × 69 × 79 voxel representation, where the
voxels contain the grey level intensities. The most relevant
features are selected by using a Fisher linear discriminant
ratio based approach. For classification, the authors have used
the SVM classifier with Radial Basis Function (RBF) kernel
and achieved a convincing accuracy.

A novel CAD developed for detecting AD from the SPECT
images is described in the literature [90]. The brain images are
divided into different components as the chains of successive
voxels in 3 orthogonal ways; coronal, axial, and sagittal, and
then used as feature vectors in the SVM classifier. In order
the select the most relevant set of voxels for the final classi-
fication, the authors have used the concept of Classification
andRegression Trees. The performance evaluation shows that
the combination of the SVM and the classification trees can
produce a better classification result.

Some of the recently published literature, where AD clas-
sification is performed using VBM based feature extraction
approaches, are discussed below.

In the literature [91], authors proposed an AD classifica-
tion method using Voxel-based morphometry (VBM) based
feature extraction to obtain the brain regions, where the grey
matter volumes decreased significantly, and hence marked
those regions as a 3D mask. The 3D masks are then applied
in all the pre-processed images to extract the voxel values as
raw-feature vectors.

For AD classification, in an article [92], authors have
proposed a classification mechanism to identify AD vs
CN subjects from the structural MR images, based on the
Voxel-basedmorphometry (VBM) analysis. The authors have
used Statistical Parametric Mapping (SPM)8, Voxel-based
morphometry (VBM)8 toolbox, and Diffeomorphic Anatom-
ical Registration using The Exponentiated Lie algebra (DAR-
TEL) toolboxes with Voxel-based morphometry (VBM) for
the enhancement correction of images. The authors have
used only grey matter information in their study, which is
further spatially smoothed with a Gaussian smoothing-based
kernel. Further, the changes in grey matter volumes are
determined by a voxel-based analysis. For identifying the
Volume of Interests (VoIs), a 3D mask is generated from the
atrophy regions, depending on the results of the Voxel-based

morphometry (VBM) and DARTEL approaches. For extract-
ing the regions, where grey matter volumes decreased,
Voxel-based morphometry (VBM) analysis of each training
data set is used through a 3D mask.

To classify AD vs CN, MCI vs CN, and MCI vs AD,
from brain MR images, in literature [93], the hippocampal
morphometry of CN, MCI, and the AD subjects are mainly
focused. For extracting the hippocampus, the authors have
used a 3D Automated Anatomical Labeling (AAL)-based
approach, where 3D images are superimposed on the AAL,
and the voxels which are categorized as hippocampal are
selected. The authors have used 2D Circular Harmonic Func-
tions (CHF) to select the contradicted patterns, slice by slice
basis. For analyzing the reduction in the hippocampus vol-
ume, authors have counted the cerebrospinal fluid voxels in
the hippocampal region and concluded that CN people have
less cerebrospinal fluid than MCI and AD affected people.

A multi-atlas based classification approach for AD diag-
nosis, based on the morphometry features, is described in
literature [94]. For obtaining the features on multiple atlases,
the authors have performed a registration approach for spa-
tial normalization followed by a quantification approach for
morphometric measurements. Then a grey matter density
map is extracted for feature representation from the brain
images. The watershed segmentation technique on the cor-
relation map is applied for selecting a set of Region of Inter-
ests (RoIs). For selecting the most relevant voxels, Pearson
Correlation (PC) method is applied. Then all the neighbor-
ing voxels, for which there is no increment of the PC, are
included iteratively. For each atlas space, 1,500 most dis-
criminative Region of Interests (RoIs) features are designated
as the representation of a subject. The authors proposed a
View-Centralized Multi-Atlas (VCMA) approach with the
help of the Accelerated Proximal Gradient (APG) method,
for selecting the appropriate features from each atlas.

In the literature, [95], a novel classification technique for
classifying AD, MCI, and CN subjects is proposed based
on the morphometry feature analysis. The authors have used
FMRIB Software Library (FSL) package to segment brain
parts into 3 different tissues, namely grey matter, white mat-
ter, and cerebrospinal fluid. Image registration is performed
to obtain subject-labeled images, based on a template consist
of 93 manual labels. The grey matter tissue volume of each
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region is computed and used as a feature, which is then
aligned to its particular image using a rigid transformation.
The average intensity of each Voxel of Interest is computed
as another feature. For each subject, a total of 93 features are
obtained from MRI and additional 93 features from a PET
image. The authors have used the multi-task feature selection
technique, which can preserve both the multi-modality cor-
relation within the same subject and the relationship across
modalities between different subjects. The Accelerated Prox-
imal Gradient (APG) method is applied for obtaining the
optimal solution of the proposed approach.

Using the structural MR images, a classification frame-
work to classify AD vs CN subject is proposed in the liter-
ature [96]. For the Diffusion Tensor Imaging (DTI) images,
the authors have used the Brain-Visa toolbox while perform-
ing the eddy current correction. Then diffusion tensors are
determined and then Apparent Diffusion Coefficient (ADC)
and Fractional Anisotropy (FA) maps are extracted. Using the
Statistical Parametric Mapping (SPM)2 toolbox, the segmen-
tation operation is performed to divide the structural images
into 3 parts, namely grey matter, white matter, and cere-
brospinal fluid. The ADC maps are also segmented into two
parts namely cerebrospinal fluid, and the non-cerebrospinal
fluid maps. The Fractional Anisotropy images are also seg-
mented into two parts. They are white matter and non-white
matter maps. Then the maps of DTI-grey matter are deter-
mined by the intersection of non-cerebrospinal fluid and
non-white matter maps. The intersection of DTI-grey matter
and structural grey matter map resulted in the final grey
matter map. The authors proposed to calculate the common
minimal brain volume. A binary mask is applied to all the
normalized images for calculating their intersection. Then the
common binary mask is mapped to the Automated Anatom-
ical Labeling (AAL) to retain the Region of Interests (RoIs).
Finally, 73 out of 90 Region of Interests (RoIs) are consid-
ered from the AAL. The mean diffusivity (mean ADC) is
calculated from the Region of Interests (RoIs), and then the
voxel-wise multimodal properties are obtained from the ADC
and grey matter concentration ratio.

A multi-modality classification framework to classify AD
vs CN, MCI vs CN, and Progressive MCI (PMCI) vs Stable
MCI (SMCI) subjects is proposed in the literature [97], where
the morphometry properties have been considered for feature
extraction. The authors have proposed the framework to
partition the subject images into 93 regions of interests (RoIs)
with the help of atlas wrapping. From all the 93 Region of
Interests (RoIs), the grey matter tissue volume is calculated.
For the PET images, each image is rigidly aligned with its
respective MR image, and for each Region of Interests (RoI),
the average PET signal value is computed. Finally, for each
subject, a total of 93 features from MRI and 93 features from
PET image are obtained. Discriminative Multi-Task Feature
Selection (DMTFS) model deliberates the integral relations
among multimodality information and the distribution data
of both the intra-class and the inter-class subjects from
all the modalities. The proposed technique formulates the

feature selection on multi-modality information as a
multi-task learning problem, then, two regularized terms are
included, namely; i) group-sparsity regularization, for ensur-
ing only the common brain region-specific features, jointly
selected frommultimodality data, ii) Laplacian regularization
for preserving the compactness of intra-class subjects and the
separability of inter-class subjects to induce more dissimilar
features.

A feature-ranking-based classification framework to clas-
sify AD vs CN subjects is proposed in the literature [98],
where all input images are analyzed using a voxel-wise
parametric mapping. The grey matter volume changes
are detected by using the voxel-based analysis over the
whole brain. For isolating the Region of Interests (RoIs),
Voxel-based morphometry (VBM) based mining procedure,
and Diffeomorphic Anatomical Registration using The Expo-
nentiated Lie algebra (DARTEL) analysis is applied. The
regions, where a significant decrement of grey matter is taken
place are segmented using a 3D mask and the ‘‘MarsBaR
region of interest’’ toolbox.

A multi-modality, multi-task feature selection for
Alzheimer’s Disease and mild cognitive impairment iden-
tification is proposed in [99]. Initially, the brain MRI is
partitioned into 93 Region of Interests (RoIs) by using the
Jacob template. For each subject, the pre-processed PET
images are aligned to their respective MR images using
affine registration, and finally, 93 features from the MR
image and 93 features from the PET images are acquired
for each subject. The authors have proposed a multitask
feature selection technique for preserving the complementary
inter-modality information by taking the feature selection
from each modality as a separate task. A constraint for
preserving the inter-modality relationship is imposed, and
enforce sparseness of the selected features from each modal-
ity separately.

A hierarchical fusion of features and classifier decisions
for AD classification is proposed in the literature [100]. The
authors have performed a t-test for selecting the voxels with
significant group differences, considering the threshold value
(P) smaller than 0.05. The mean of the P-value is calculated
for all the selected voxels and sorted in ascending order. For
capturing both imaging, and structural information, 2 kinds
of features are mined for each of the patches, namely i) local
imaging features, based on the grey matter densities of the
patch, ii) correlations among local patches, known as the
spatial-correlation features.

Using the probability distribution function, a classifi-
cation framework to classify AD vs CN subjects is pro-
posed in the literature [101]. To extract and isolate the Vol-
ume of Interests (VoIs), Diffeomorphic Anatomical Reg-
istration using The Exponentiated Lie algebra (DARTEL),
and Voxel-based morphometry (VBM) analysis is applied.
The regions which experience a significant grey matter vol-
umetric loss, are identified by the DARTEL-Voxel-based
morphometry (VBM) approach and segmented using a 3D
mask. The data are divided randomly into 10 folds with
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an equal number of AD and NC subjects in each fold. For
every iteration, 1 fold is used for testing and 9 folds are
used for training. Based on each training dataset, the authors
have performedVoxel-basedmorphometry (VBM)-DARTEL
analysis to reveal regions of decreased grey matter volume in
patients as a 3D mask. From a total of 59,395 to 69,170 vox-
els, 10 different masks with different lengths are defined.

Based on cortical and sub-cortical features, an AD clas-
sification framework is proposed in the literature [102].
The cortical thickness and sub-cortical volume are extracted
from brain images using the Freesurfer toolbox. A total
of 110 features are extracted from the 3D Structural Magnetic
Resonance Imaging (SMRI) T1-weighted image. Freesurfer
provides the ability to construct surface-based morphom-
etry (SBM) for representations of the cortex, from which
neuroanatomic volume, cortical thickness, and surface area
can be derived. The cortical surface lies either at the white
matter/grey matter tissue interface or in the grey mat-
ter/cerebrospinal fluid tissue interface.

Using the structural MR images, an AD classifica-
tion framework, based on the Voxel Morphometry (VM)
based feature extraction approach is discussed in the lit-
erature [103]. From the normalized tissues of grey matter,
white matter, and the cerebrospinal fluid, the down-sampling
operation is performed on the densities of the voxels of 1 mm
size. By performing the simple averaging, the voxels are
sampled into a size of 8 mm, which contains not more than
10% density values and ignores more than 50% parts of the
total image for further analysis. The dimensions of the maps
are 22× 27× 22 voxels. From the maps, feature vectors are
introduced. To eliminate the cerebellum from entire data sets,
a Region of Interests (RoI) is drawn on the custom template.
To select the suitable features from the grey matter, white
matter, and cerebrospinal fluid densities, the linear SVM
based principle is applied. After selecting the most appropri-
ate features for classification, 26 neighborhood voxels (in a
3×3×3 cube) carrying non-zero weight are also considered
in the classification. Newly formed weight vectors are then
represented as the highest absolute weight in the surroundings
of 3 × 3 × 3 cube of voxels. The weight vectors are then
considered as a threshold to get top-ranked voxels.

For early diagnosis of AD, a novel classification mecha-
nism using combined features from voxel-based morphom-
etry, cortical, sub-cortical, and hippocampus regions are
described in the literature [104]. For the extraction of fea-
tures, such as Voxel-Based Morphometry (VBM), Cortical
and subcortical volumetric features, and Hippocampus vol-
ume (HV), the authors have used FreSurfer and Statisti-
cal Parametric Mapping (SPM)12 toolbox. The Voxel-based
morphometry (VBM) performs voxel-wise statistical assess-
ments for determining the volume transformations among
different parts of the brain. The affine transformation by the
Statistical Parametric Mapping (SPM) templates is used for
data standardization to compensate for the size differences.
Adopting the unified tissue segmentation technique, all the
input images are segmented into three parts, namely grey

matter, white matter, and cerebrospinal fluid. All the linearly
distorted and segmented images are then non-linearly dis-
torted by applying the Diffeomorphic Anatomical Registra-
tion (DARTEL) method. Based on theMontreal Neurological
Institute (MNI)152 template, all images are modulated and
smoothed by applying an 8 mm full breadth at half max-
imum kernel for creating the modified template of DAR-
TEL. By using the default constraints of the cross-sectional
automated Freesurfer routine, the important features from
cortical and subcortical sections are extracted. Volumetric
quantities for all lobes are mined by the Freesurfer. The
Desikan-Killiany atlas is used, which labeled the whole cor-
tex in 68 sections for each hemisphere. As hippocampus
volume is one of the most commonly used biomarkers in the
diagnosis of AD, the authors segmented both left and right
hippocampus volume using the FreeSurfer toolbox.

Based on the Mann–Whitney–Wilcoxon U-Test, an AD
detection approach is described in the literature [105]. All
images are reconstructed with a total of 67200 voxels. The
intensities of each voxel lie between 0 to 255. To reduce the
dimensionality, at first, the voxels with an intensity value less
than 70 are excluded. After that, using the Mann–Whitney–
Wilcoxon (MWW) U-Test, the most fitted voxels for the
classification are selected. By performing a factor analysis,
the selected voxels are then modeled. The voxels are labeled
according to linear combinations of the factors. The factor
loadings are determined for describing the discriminability
between the selected voxels, which help in reducing the
dimension of the data.

A classification framework to classify AD vs CN subjects
by sparse representation is proposed in the literature [106].
The average voxel intensity is calculated, and voxels having
an intensity that is less than half of the average intensity value,
are discarded, and determined as the background voxels. For
MR images, after performing the spatial normalization using
Voxel-basedmorphometry (VBM)-T1 template, input images
are segmented into three parts; grey matter, white matter, and
cerebrospinal fluid. Then in all images, the Sparse Represen-
tation Classifiers (SRC) dictionary-based approach is applied
to choose the most effective voxels, and to remove the voxels
having less information. For the voxels which are selected
by the SRC method, Welch’s t-test is performed separately.
However, the authors have used separate activation levels for
different image types.

A local MRI analysis approach for diagnosing AD is
described in the literature [107]. With the help of the
atlas-based method, some Volume of Interest (VoI) is
specified. Once the templates are ready, a rigid registration
technique is used to map them onto the target MRI, and
the correlation coefficients are determined from the extracted
VoIs. The process returns VoIs having the best correla-
tion value. For this study, a total of 9 VoIs are extracted.
The process of VoI selection and extraction is done with
the help of Insight Segmentation and Registration Toolkit
(ITK), FMRIB’s Linear Image Registration Tool (FLIRT),
and Matrix Laboratory (MATLAB) toolbox. The extracted
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9 VoIs are then filtered with 18 different kinds of filters. The
neighborhood voxels of each selected voxels are compared,
and then, the Gaussian mean, standard deviation, range,
entropy, and Mexican-hat filters are determined.

An optimal decisional space based method for the classi-
fication of AD and MCI is proposed in the literature [108].
To generate the variable vector discriminator for each sub-
ject, the Intracranial Volume (ICV) of all the variables are
determined and combined with the MMSE score. For deter-
mining the consequence of each variable, Student’s t-test is
adopted between AD and CN, or between MCI and CN. The
variables, whose t-test scores with a p-value are less than the
significance level, are nominated and ranked. For reducing
the dimensionality, an incremental error analysis method is
applied only to the top-ranked variables, determined by the
t-test.

A novel grading biomarker for the prediction of conversion
of MCI to AD is described in the literature [109]. For select-
ing the relevant features, the authors have adopted the Elastic
Net (EN) technique. One advantage of using EN is that, even
if the number of features is very large, it can easily select
the most appropriate features. The popular Least Absolute
Shrinkage and Selection Operator (LASSO) regression is
used, which helped in selecting the highly correlated features
from different groups. The implementation of EN is done
in the Sparse Modeling Software (SPAMS) toolbox. Finally,
the authors identified a biomarker by circulating the disease
labels of NC and AD to the MCI subjects. A global grading
value is determined for MCI subjects which are used as a
biomarker in the classification step. The CN and the AD
subjects are considered as the train population. The members
of the train population are compared along with their relation-
ship with the MCI subjects and assigned a new grading value
for them.

An inherent structure-based multi-view learning with
multi-template feature representation is proposed for AD
classification in the literature [110]. For extracting the most
relevant features, an affinity propagation (AP) clustering
procedure is applied. The input images are partitioned into
several clusters. The centroid for each cluster is determined
and used as templates. The bisection method is applied for
determining a suitable predilection value to find out the most
similar data points from the centroids. A total of 10 tem-
plates are selected in this study. The authors have applied
a mass-preserving shape transformation mechanism for cap-
turing the morphometric shapes of every considered subject
with the help of multiple templates. The segmentation and
registration steps are applied next to extract the volumetric
structures. The clustering tissues are adapted into the Region
of Interests (RoIs) of each template space to extract the
relevant features. Moreover, by adopting a subclass-based
approach, the inherent patterns of each template space are
also extracted.

A classification approach to classify AD vs CN, MCI vs
CN, and Progressive MCI (PMCI) vs Stable MCI (SMCI)
subjects, using the volume-based morphometry is proposed

in the literature [111]. The Statistical Parametric Map-
ping (SPM) toolbox is used to convert input images into
numerous tissue probability maps, where a grey matter prob-
ability map is also included. The grey matter segmentation
is performed by using a Bayesian based image segmenta-
tion procedure, known as the New Segment. With Jacobian
determinants of deformations, the map is spatially smoothed,
and warped for a referencing space to allow a voxel-wise
assessment of different subjects. Moreover, the reference
space is iteratively enhanced from grey matter and white
matter probability maps using the Diffeomorphic Anatomical
Registration using The Exponentiated Lie algebra (DARTEL)
algorithm. FreeSurfer toolbox is used to segment the input
images in a large number of anatomical constructions, and
then, calculated volumes of all the corresponding segments.
The toolbox is primarily absorbed in temporal grey matter,
total grey matter, hippocampus, and ventricular volumes out-
put by FreeSurfer to determine the latent biomarkers fromAD
related brain atrophy. The authors have implemented a brain
volumetric procedure, known as MorphoBox, that combines
simple and fast image analysis approaches for performing the
Volume-Based Morphometry (VolBM).

Some of the research articles on AD classification, using
Voxel Morphometry (VM) based feature extraction tech-
niques, are discussed, and the performance comparison is
presented in table 3.

From table 3, it can be noticed that, among all the dis-
cussed methods, the highest performance is achieved by
Mesrob et al. [96] with a rate of 99.60% accuracy, 99.25%
sensitivity, and 99.95% specificity.

C. WAVELET TRANSFORM-BASED FEATURE EXTRACTION
Wavelet transform (WT), is a well-known approach for ana-
lyzing signals, from where the detailed information of an
object can be evaluated. Since WT is defined in both spatial
frequency ‘v’ as well as the spatial position ‘t’, it can be
written as a function in the form ofWT(v, t) [112].WT breaks
down the signal with limited energy, from the spatial area to
a set of functions. WT is also one of the most widely used
feature extraction tools in image processing [113]. In WT,
the fusion of input images is transformed from the spatial
domain to a wavelet domain [114]. Wavelet domain char-
acterizes the wavelet coefficient, and then, wavelet decom-
position is done by moving the image through a sequence
of low-pass and high-pass filters. Several filter bands
forms, where every band produces a separate resolution and
orientations.

One of the first AD classification methods using wavelet
analysis is proposed by Padilla et al. [115]. The authors have
introduced the concept of the Gabor wavelet (GW) based
brain analysis approach on the input SPECT images followed
by a Fisher Discriminant Ratio (FDR) based feature extrac-
tion technique. Then Principle Components Analysis (PCA)
feature selection technique is used to select the most relevant
features. The final classification is done by using the SVM
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TABLE 3. Performance comparison of the AD classification techniques using Voxel Morphometry (VM) based feature extraction approaches.
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TABLE 3. (Continued.) Performance comparison of the AD classification techniques using Voxel Morphometry (VM) based feature extraction approaches.

classifier. The proposed classification method produced a
convincing classification outcome.

WT still has some drawbacks, such as it can’t deal with the
shift in-variance, and also, it Can’t detect edges of a region
accurately. Moreover, it offers partial information along with
all the directions of a 3D image [116]. Some of the AD
classification approaches where wavelet transform is used for
feature extraction are discussed below.

For automated detection of Alzheimer’s disease, a novel
AD classification approach is proposed in the literature [117].
Initially, Contourlet Transform (CoT) is used for feature
extraction from the pre-processed brain MRIs. Later on,
for performance comparison, the authors have used some
more commonly used feature extraction techniques in the
same pre-processed brain MRIs, including, Curvelet Trans-
form (CuT), Complex Wavelet Transform (CWT), Dual Tree
Complex Wavelet Transform (DTCWT), Discrete Wavelet
Transform (DWT), Empirical Wavelet Transform (EWT),
and Shearlet Transform (ST). To select the most appropriate
features, a student’s t-test is used.

A classification framework to identify AD vs CN subjects
is proposed in the literature [118]. The concept of wavelet
transform is used for feature extraction. Inter-Class Vari-
ance (ICV) in the axial direction is determined for all the
slices of a 3D image, and then a slice having the maxi-
mum ICV value is picked up for further processing. After
comparing several wavelets, biorthogonal wavelet (bior4.4)
is used because transforms of bior4.4 are similar to the gray
value changes in brain images. Entropy S (Shanon entropy),
is defined to find out the degree of its randomness.

A twin SVM-based classification of Alzheimer’s disease,
using complex dual-tree wavelet principal coefficients and
Linear Discriminant Analysis (LDA) is discussed in the lit-
erature [119]. Firstly, the authors have proposed the algo-
rithm for extracting the 5-level Dual Tree Complex Wavelet
Transform (DTCWT) coefficients from all the input MR
images, where, features of the 5th resolution scale are used.
Secondly, selected coefficients are used as the inputs in Prin-
cipal Component Analysis (PCA), to map the features onto
lower-dimensional space. For getting the most discriminative
features, PCA coefficients are projected onto an LDA projec-
tion axis.

A novel approach for the classification of AD from MRIs
by using the fuzzy neural network is proposed in the litera-
ture [120]. The pre-processed images are represented as 2D
histogram signals and performed the intensity enhancement

operation. This step aims to take all the features, in the form
of vector approximation at every level of the wavelet decom-
position. Image decomposition is done using the wavelet
transformation (WT) and then output coefficient vectors are
determined by using the discrete wavelet transform. The
derived features are used to train the Fuzzy Neural Network
(FNN).

For diagnosing AD, a classification methodology using
dual-tree complex wavelet transform, Principal Component
Analysis (PCA), and feed-forward neural network is pro-
posed in the literature [121]. Dual-Tree Complex Wavelet
Transform (DTCWT) develops two Discrete Wavelet Trans-
form (DWT)s processing. The first DWT signifies the real
module, and the second DWT represents the imaginary mod-
ule of the transform. The DTCWT produced 6 direction-
ally selective sub-bands, oriented in ±15, ±45, and ±75
directions, for real and imaginary parts. By using DTCWT,
the coefficients from each pre-processed image are extracted.
Some supplementary features, such as age, gender, hand-
edness, education, Socio Economic Status (SES), and clin-
ical examination are also used in classification. The PCA
analytically projects the input data to a lower-dimensional
space, known as the principal subspace. The operation is done
over an orthogonal alteration by conserving the data dissim-
ilarities. In the group of correlated variables, the alteration
that results in a group of linearly uncorrelated variables is
known as the principal components (PCs). The reason for
implementing PCA is to reduce the dimensionality of the
DTCWT coefficients for correct classification.

For the classification of AD, some methods, based on the
Wavelet Transform (WT) based feature extraction techniques
proposed by several researchers are discussed. The perfor-
mance of the discussed methods is presented in table 4.

From table 4, it can be observed that among all the
discussed AD classification methods using Wavelet Trans-
form (WT) based feature extraction approaches, the article
by Alam et al. [119] provides the highest accuracy (96.68±
1.44%), highest sensitivity (97.72 ± 2.34%), as well as the
highest specificity (95.61± 1.67%).

D. GRAPH/NETWORK-BASED FEATURE EXTRACTION
A graph is a collection of some connected nodes, where each
node represents the entities and each connection represents
relationships between the connected nodes. Graph based fea-
ture extraction method uses the supervised information while
creating the neighboring relationship matrix of the graph
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TABLE 4. Performance comparison of the AD classification techniques using wavelet transform-based feature extraction approaches.

and determining the appropriate features by computing their
competence of conserving geometrical construction of the
graph. However, graph-based approaches determine the fea-
tures independently, hence, sometimes it is unable to handle
the redundant features accurately [122]. Some of the literature
where the concept of graph/network construction is used to
extract the most feasible features are discussed below.

For classification of dementia using brain MRI, a novel
method is discussed in the literature [123]. A graph-based
multiple instances learning method is used to train the bag
level classifier. In the proposedmethod, a graph is constructed
for each image. In the graph, patches are treated as nodes,
and edges between different nodes are established according
to the relationships between the patches. The graphs can
represent the appearances of patches, and reflect the rela-
tionships among the extracted patches from the same subject.
Some patches are extracted from AD subjects, and some are
from Progressive MCI (PMCI), Stable MCI (SMCI), and CN
subjects. The resulting graphs are expected to be different
for each subject group. A graph kernel is defined for distin-
guishing the positive and negative bags. Finally, a bag-level
classifier is adopted using a kernel machine, influenced by
the support vector machine (SVM). By using the computed
graph kernels, SVM is used to train the classifier. In the test
stage, labels of unseen images are estimated using the trained
classifier.

A classification approach to classify AD vs CN, and MCI
vs CN subjects, is proposed in the literature [124]. Total
239,391 features are extracted from all the subjects, which
include, 83 nos. ofMRI volume features, 239,304 nos. of PET
images intensity features, 3 cerebrospinal fluid measures, and
1 genetic categorical feature. The brain MRI is segmented
into 83 anatomical regions by Multi-Atlas Propagation with
Enhanced Registration (MAPER) approach, which helps in
extracting the region-wise features. All Fluorodeoxyglucose
(FDG)-PET images are motion-corrected, and associated
with their corresponding MRIs, which are distorted to the
Montreal Neurological Institute (MNI) template space using
Statistical Parametric Mapping (SPM)8 toolbox, and then
images are smoothened to an isotropic spatial resolution
of 8 mm full-width-at-half-maximum (FWHM). Intensity
normalization is performed, and the voxel wise intensities are
extracted as features. Cerebrospinal fluid of all the subjects

is extracted by lumbar puncture, and then, the Aβ42 level,
T − tau, and P − tau are measured. The APOE genotype
information, which is determined from the blood samples
of all the subjects, is obtained from ADNI Biomarker data
information. A graph, Gi = (V i

;E i) has constructed by the
authors for each subject, where V i corresponds to n subjects
of ith modality, and E i for ith modality are weighted by simi-
larities of the subjects. To determine similarities, the random
forest method is used between pairs of subjects. Authors have
used the normalization operation to all the similarity matrices
in order to fuse the graphs, based on an assumption that,
local contacts, having the most similarities, are more reliable
than non-local connections. The authors have proposed to
concatenate features from all modalities to a solo feature
vector for classification, to provide a straightforward way by
using multi-modality data.

An algorithm for classification of AD and prediction of
MCI Conversion using a histogram-based analysis is dis-
cussed in the literature [125]. All input images are bias refined
and then segmented into 3 parts, namely grey matter, white
matter, and cerebrospinal fluid, by using the Voxel-based
morphometry (VBM)8 toolbox. Modified brain networks are
built using the 3 × 3 × 3 grey matter voxels cube of size
6 × 6 × 6 mm3. The constructed brain networks can be
distinctively mapped to anM×M connectivity zero-diagonal
and symmetric matrix Z, where, xj,k is an element of z, that
signifies the maximum correlation between the (j,k) cube
pair. For reducing the high dimensionality, and unreliable
size of the vector, a histogram-based approach is used to
map the vector in a statistical pattern. The defined vector
is having lower dimensionality, which provides circulation
of the repeating values, falls into the interval bins in the
raw-feature vector, which is known as the Histogram Feature
Vector (HFV).

Using the concept of regional saliency maps, a classifi-
cation framework to classify AD vs CN, and MCI vs CN,
is proposed in the literature [126]. For automatic extraction
of the regions, which are associated with important pathology
from each slice of theMRIs, some randomly sampled patches
are extracted. To get the compact set of visual primitives
(visual words), a set of training images are considered, which
are characterized using a multi-scale edge analysis. Next,
a probabilistic Latent Semantic Analysis (pLSA) is trained
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to gather hidden information associated with those regions.
Then the slices are processed using the probabilities learned
with pLSA. Initially, a group of slices of each volume is
selected using a set of patches, sampled randomly from
the training slices. Then those patches are categorized by
the Sobel edge detector. Edge information is concatenated
into a single vector and collected together. Thus a visual
vocabulary is formed that is used to represent each training
slice by a histogram of visual words, suitable to train the
pLSA. Graph-Based Visual Saliency (GBVS) concatenates
the discriminatory pixels with a concept of nearness in a
straight manner to obtain the saliency values, by modeling the
image as a fully-connected graph and storing information at
edges. The steps for calculating the saliency maps are feature
extraction, activation maps, and combination. Initially, some
related features are mined, then a connected graph is created
for each feature, and scaled images, by storing the discrimi-
natory and nearness information at the edge. The activation
maps are determined by creating a Markov Chain in the
graph and equilibrium distribution is calculated as the major
eigenvector of the transition matrix. The map is standardized
by focusing the mass obtained in activation step by using
the same Markovian method. Then, average saliency maps
per feature are determined and combined, to form the master
saliency map.

A classification method to classify AD vs CN subjects
using sulcal features is discussed in the literature [127].
The sulcal meshes are determined as a set of 3D vertices,
and then classified two differing faces of the mesh, using a
k-means clustering-based method. Lastly, a medial surface is
calculated, which consists of some new vertices, between two
faces. The algorithm extracted local surface features from the
medial surface. The procedure is characterized by 3 boxes,
compressed by a set of input cerebral sulcal meshes, and
the output extraction of local surface features. For extracting
sulci from input images, authors have used the BrainVISA
4.4.0 Morphologist 2013 toolbox. While extracting the sulci,
a triangular mesh of the inner cortical surface of each brain
hemisphere is produced, and then a graph of the cortical fold
is constructed. The toolbox finally recognized, labeled, and
extracted all cortical sulci automatically. By surface extrac-
tion, and extraction of sulci, sulcal features are calculated
and mined from 24 sulci. A total of 10080 numbers of sulci
are mined from 210 subjects from both left and the right
hemisphere in each subject. For each sulcus, the depth, length,
mean curvature, Gaussian curvature, and surface area features
are computed.

A mechanism for classification of MCI and AD, from
CN using directed graph measures of resting-state fMRI,
is discussed in the literature [128]. A total of 264 Region of
Interests (RoIs) of atlases are determined for parcellating the
brain. The areas are designed by applying meta-analytic and
functional connectivity plotting with the resting-state-fMRI
data. For generating a demonstrative signal for each Region
of Interests (RoI), the time series of the voxels are averaged.
The authors also used theAutomatedAnatomical atlas (AAL)

parcellation. Out of 244 Region of Interests (RoIs), 90 most
effective Region of Interests (RoIs) is obtained by the AAL
and averaged the signals of 90 time series for each subject.
The Granger causality analysis is used to determine connec-
tivity among all Region of Interests (RoIs) for constructing
the directed brain network. The graph measures, such as the
degree (in-degree and out-degree), betweenness centrality,
flow coefficient, local efficiency, K-coreness centrality, page
rank centrality, node strength, clustering coefficient, global
efficiency, characteristic path length, range coefficient, etc.,
are determined by the Brain Connectivity Toolbox (BCT).
Based on the discriminative properties, the Fisher algorithm
is used to sort all features. After that, half of the best features
with the highest discriminative properties are sorted by using
the wrapper feature selection algorithm.

An AD Classification method Based on the individual
hierarchical networks, is proposed in the literature [129]. For
defining the Region of Interests (RoIs), a grey matter-based
Automated Anatomical Labeling (AAL) atlas is used which
included 90 Region of Interests (RoIs) from the cerebral
regions, and 26 Region of Interests (RoIs) from the cerebellar
regions which are denoted as S1. To reduce the number of
Region of Interests (RoIs), some of the Region of Inter-
ests (RoIs) from S1, where the first two digits and the last
digit are similar are combined. For example, Cingulum Ant L
(4001), CingulumMid L (4011), and Cingulum Post L (4021)
are combined and treated as a single Region of Interests (RoI).
The newly combined Region of Interests (RoIs) is denoted
as S2, where a total of 54 Region of Interests (RoIs) are
selected. Similarly, some of the Region of Interests (RoIs)
from S1, where the first and the last digit are similar, such as
Cingulum Ant L (4001), Cingulum Mid L (4011), Cingulum
Post L (4021), Hippocampus L (4101), Para Hippocampal L
(4111) and Amygdala L (4201) are combined together and
denoted as S3. A total of 14 Region of Interests (RoIs) are
included in S3. Similarly, in S4, only one RoI is left, i.e,
the whole brain. Based on the cluster of Region of Interests
(RoIs), construction of a hierarchical network is done where
the nodes, namely S1, S2, S3, and S4, and the link among
the Region of Interests (RoIs) are denoted as edges. From
every node of the network, 6 texture features are extracted
by applying the Gray Level Co-occurrenceMatrices (GLCM)
technique. The extracted features, namely Energy (ENE),
Contrast (CON), Inverse DifferenceMoment (IDM), Entropy
(ENT), Difference Variance (DVA), and Difference Entropy
(DEN). After extracting the features, mean texture property
of Region of Interests (RoIs) is determined in 4 directions
(i.e,. 00, 450, 900, and 1350).
Using the whole brain hierarchical network, a novel

classification framework for AD detection is discussed in
the literature [130]. To perform anatomical parcellation of
the brain, an Automated Anatomical Labeling (AAL)-based
method is applied, and 90 cerebral and 26 cerebellar regions
are selected. Among all the selected Region of Interests
(RoIs), some RoIs have some functional dependencies. For
example, Cingulum, Hippocampus, etc. have some common
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properties, as they all are part of the limbic system. Based
on the functional dependencies, similar RoIs are grouped
together and assigned in 4 groups, namely; L1, L2, L3, and
L4. L4 contains 90 RoIs, L3 contains 54 RoIs, L2 contains 14
RoIs, and L1 contains only one RoI, i.e, whole brain. From
each of the RoIs, 3D texture features are extracted in 00,
450, 900, and 1350 directions by applying the GLCM-based
approach. For all 4 directions, the mean constraints of every
RoIs are determined by a six-dimensional vector. The connec-
tivity among all RoIs is determined with help of the Pearsons’
correlation coefficients. At the end, a Whole Brain Hier-
archical Network (WBHN) is constructed, where the RoIs
represent the nodes and the connectivity among the RoIs,
representing their edges.

An AD classification mechanism by combining multiple
measures is proposed in the literature [131]. Using the Auto-
mated Anatomical Labeling (AAL)-based approach, all the
images are registered. In the cortical regions, operations like
the determination of the Grey Matter Volume (CGMV), Cor-
tical Thickness (CT), Cortical Surface Area (CSA), Cortical
Curvature (CC), Cortical Folding Index (CFI), and Subcor-
tical Volume (SV) are observed with the help of FreeSurfer
toolbox. Similarly, volumes of subcortical regions are deter-
mined with the help of the Fast Analysis of Sequences
Toolbox toolbox. By taking reference from the nonlinear
Montreal Neurological Institute (MNI)-152 template, affine
registration is done in the whole brain region. An AAL-based
approach is applied in the subcortical regions in order to get
correct affine registration. Based on the properties of cortical
and subcortical regions, two networks are created. For cor-
tical regions, a total of 5 different networks are constructed
based on 5 different measurements (i.e, CGMV, CT, CSA,
CC, and CFI). For all the networks, cortical regions are repre-
sented as nodes and CGMV similarities among the nodes are
represented as edges. Similarly, for the subcortical regions,
a single network had constructed based on the measurement
of Great Saphenous Vein (GSV).

Some of the recently published articles on AD classifica-
tion using graph/network based feature extraction approaches
are discussed. The performance of the discussed articles is
presented in table 5.

From table 5, it can be noticed that amongst all the
discussed AD classification methods by graph/network
based feature extraction approaches, the maximum accu-
racy is achieved by Liu et al. [129], which is 95.37%,
whereas, the maximum performance rate is achieved by
Khazaee et al. [128], which is approximately 93.79%.

E. EIGENVECTOR-BASED FEATURE EXTRACTION
The eigenvalue or eigenvector is a transformation of the
covariance matrix, that helps to reveal the primary directions
of dissimilarity among all the images in a dataset of differ-
ent subjects [132]. The application of eigenvector includes,
image classification, object identification, etc [132]. Some
of the advantages of the eigenvector value-based feature
extraction approach are a) features that are not correlated

can be extracted, b) determination of most suitable linear
calculation, c) finding out the discrepancy in the mined fea-
tures, etc [133]. The eigenvector value-based feature extrac-
tion approach has some demerits, such as a) Self-regulating
variables become less explainable, b) It is difficult to extract
the features when an image has a complex shape, etc [134].
One of the commonly used eigenvectors based feature extrac-
tion methods is the Laplace Beltrami. In Laplace Beltrami,
the discriminative pixels after comparing with a set of images
of the same subject groups are selected, and a covariance
matrix helps to track the discriminative direction [135].

Principal Component Analysis (PCA) is another popular
eigenvector-based technique that helps to reduce the dimen-
sionality by eliminating non-co-related features without los-
ing much information of the images and then extract the
most feasible features [136]. PCA determines the interior
structure of data, based on the variances in the information.
The major advantage of PCA is that it is very less sensitive to
noise. Moreover, to implement PCA, very little information is
required, and hence it’s computationally faster [137]. Using
the concept of PCA and LDA, M.M. López, et al. proposed
a novel AD classification method in the literature [138].
The experiments are done using the SPECT data, where
The FBP along with the Butterworth noise filter is applied
to reconstruct the images. By implementing a mask based
approach, voxels from the most affected brain parts such as,
posterior cingulate gyri, precunei, temporo-parietal, etc. are
extracted which are reconstructed into the vector forms. PCA
based approach is used the extract the relevant feature vectors
using the polynomial kernels and RBF for non-linear vector
forms. For distinguishing different roles of the variations,
LDA based projection is used. Finally, the authors have used
the SVM classifier and achieved a convincing result.

PCA has some disadvantages, such as, components pro-
duced by PCA are the linear mixture of actual features, which
are not as legible and understandable as the original features.
Moreover, during the dimension reduction, some important
features may also get eliminated [139].

Partial Least Squares (PLS) is a well known feature extrac-
tion approach, that works almost similar to PCA. The main
difference between PCA and PLS is that PCA is unsu-
pervised while PLS is supervised [77]. Based on the PLS
method, one of the first novels approaches for AD classifi-
cation is proposed in the literature [140]. The SPM toolbox
is used for spatial normalization of all the input SPECT
images, and then a binary mask is designed by allowing
the voxels with an average intensity of more than 50%
of the highest value. To select the most relevant features,
the PLS based on the regression model is applied. For final
classification, the Random Forest (RF) based classifier is
applied. The proposedmethod achieved a better classification
result with sensitivity = 100%, specificity = 92.7% and
accuracy = 96.9%.

Some of the recently publishedAD classification literature,
where, eigenvector based feature extraction is performed, are
discussed below.
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TABLE 5. Performance comparison of the AD classification techniques using graph/network-based feature extraction approaches.

ALaplace Beltrami eigen value based classification frame-
work to classify AD vs CN subjects is proposed in the
research paper [141]. The segmentation of Corpus Callo-
sum (CC) is performed using the Reaction Diffusion (RD)
level set method. Segmentation is compared with the man-
ually segmented ground truth images and validated by an
expert radiologist. The most important discriminative fea-
tures are extracted using Laplace Beltrami (LB) eigenvalue
spectrum. The inherent information of segmented CC is asso-
ciated with the spectrum of the Laplace operator to find out
the shape variations. The segmented images are measured as
the closed bounded domain � ⊂ Rd with slice wise smooth
borders, and its corresponding Laplace operator. From all the
extracted features, a set of most discriminative features are
selected by using the Information Gain (IG) based ranking
method.

For early diagnosis of AD, a classification framework
based on partial least squares, principal component analy-
sis, and support vector machine, is discussed in the liter-
ature [142]. Feature extraction is done based on Principal
Component Analysis (PCA) method. Authors have used the
Partial Least Squares (PLS) to exploit co-variances amongst
different sets of predictors and predicted variables. It is
detected using a linear regression tool by projecting predicted
variables and the predictor’s variables to a new space. After
perceiving ’n’ data samples from each block of variables, PLS
is used to decompose the n×N matrix of zero mean variables
X, and the n × M matrix of zero mean variables Y, into the
regression models form.

For designing a computer aided Alzheimer’s diagnosis sys-
tem, a novel classification mechanism is proposed in the liter-
ature [143]. For extracting the features having the maximum
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variances, Principal Component Analysis (PCA) method is
used. PCA is mainly acted as a zero-mean data-set, which is
based on a linear transformation. The resultant vectors form
a new group of de-correlated variables. The eigenvalue of
vectors represents the variances amongst the variables. In this
work, PCA is applied to the mean image vectors to extract
all uncorrelated eigenvectors. The Independent Component
Analysis (ICA) is used to determine the transformation of
the peak level voxels, by taking reference from original mean
image sources. The latent variables, which are produced by
the ICA, are used to form a subspace of input images. The
class variances are boosted after projecting image vectors on
the subspace. The FastICA algorithm is applied to achieve the
ICA transformation.

Based on Partial Least Squares and Support Vector
Machine, a classification framework to classify AD vs CN
subjects is discussed in the literature [144]. For reducing
computational time with no loss of information, each voxel
is down-sampled by a factor of two. Voxels, with an intensity
value of more than 50% of the topmost intensity value, are
selected and created using a binary mask. This binary mask
is then applied to all the input images to determine the decre-
ments of input spaces. Voxels, which are nominated by the
mask, are reorganized in the form of a vector. The Partial
Least Squares (PLS) method is applied to get a score and
loading matrices. A weight matrix is also gained to determine
the score vectors for the voxels, where the PLS method is not
applicable. Thus, it can be easily observed, which voxels are
taken into account for further processing and which are not.
The Out of Box (OOB) is an error checking-based mecha-
nism, used for noise removal. Leave-One-Out (LOO) method
is used for validating the algorithm.

A Gaussian Mixture Models (GMM) based, SPECT image
classification, for diagnosis of AD is proposed in the litera-
ture [145]. For density approximation, the authors have used
the GMMs. In GMMs, trials are strained according to a Prob-
ability Distribution Function (PDF) which is demonstrated by
a summation of k Gaussians. For selecting the maximum like-
lihood features, the Expectation Maximization (EM) algo-
rithm is used. EM is an iterative optimization technique, that
works in maximum likelihood approximation, even if part
of some data is missing or incomplete. In order to extract
the most effective features for classification, the authors
have used the GMM based approach to select the Region of
Interests (RoIs). While extracting the discriminative features,
the authors considered the fact that the perfusion decoration
of brain image for an AD subject is more variable than the
CN perfusion. For dimensionality reduction of the selected
features, a PCA based technique is used.

An Association rule-based feature selection method with
the collaboration of Principal Component Analysis (PCA),
for Alzheimer’s disease diagnosis, is proposed in the litera-
ture [146]. The images are normalized and then a 3D mask
is created by averaging all the images, where a threshold
intensity aT is determined by the 50% of maximum inten-
sity value. Voxels, which are not covered by the mask, are

discarded for further processing. Finally, the voxels whose
intensity value is more than aT are considered as activated.
Apriori algorithm is applied to identify relevant associations
between the concurrently activated brain areas from CN sub-
jects. The allegations for Apriori rules are established in terms
of antecedents and consequents, amongst earlier determined
3D activated blocks. Moreover, ARs are extracted as per the
protocols of the leave-one-out (loo) cross-validation strategy.

Some of the AD classification methods using eigenvector-
based feature extraction approaches are discussed. The per-
formance of the discussed methods is compared in table 6.

From table 6, among all the compared AD classification
approaches, it can be observed that the highest performance
is achieved by Ramaniharan et al. [141], with an accuracy
rate of 93.37%, the sensitivity of 93.37%, and the specificity
of 93.37%.

Apart from all the discussed eigenvector-based feature
extraction techniques for AD classification, Factor Analy-
sis (FA) also plays a major role in selecting the relevant
features. The FA is a widely used statistical technique used
for describing the inconsistency among experiential variables
in terms of lesser overlooked variables known as the fac-
tors [147]. In a literature [147], D. Salas-Gonzalez, et al.
described a factor analysis based feature selection for AD
classification. For all the input PET images, initially, the vox-
els for classification are selected by using a t-test based
approach. All the selected voxels are then modeled using the
FA to reduce the dimensionality. Three various techniques are
used for classifying the subjects are; 2 multivariate Gaussian
mixture models and SVM with a linear kernel. According to
the performance analysis, SVM with linear kernel produced
the maximum classification accuracy.

F. HARMONIC FUNCTION BASED FEATURE EXTRACTION
For extracting the most discriminative features from images,
Harmonic Analysis provides pixel-wise smooth curves in the
frequency domain denoted by amplitude and the phase [148].
From frequency curves, the most discriminative features are
extracted from functional associations among the spectral
bands. The harmonic descriptor is a collection of information
that helps to define a given shape [149]. One advantage of
harmonic descriptors is that it is invariant to the luminous-
ness. Moreover, because of the polynomial nature, harmonic
descriptors can determine the smooth variations in the image
signal [150]. Some of the literature where Harmonic function
based feature extraction is performed for AD classification
are discussed below.

A classification framework to classify AD vs CN, MCI vs
CN, and AD vs MCI subjects on structural MR images is
proposed in the literature [151]. The circular harmonic func-
tion descriptors on the hippocampus and posterior cingulate
cortex are used. The Automated Anatomical Labeling (AAL)
based atlas is used to select 2 Region of Interests (RoIs),
namely, the hippocampus, and the posterior cingulate cortex.
For segmenting the Region of Interests (RoIs), the Statistical
Parametric Mapping (SPM)8 toolbox is used. The authors
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TABLE 6. Performance comparison of the AD classification techniques using eigenvector-based feature extraction approaches.

have used circular harmonic function to select the contrasting
patterns, and their coefficients form the descriptors of brain
pattern. Moreover, a dense sampling approach is used for
computing signal decomposition on the circular harmonic
function. From each slice, 2D descriptors are extracted from
the segmentedRoIs. The signal differences inside the RoIs are
represented as a set of local circular harmonic function coef-
ficients. The features are then leveraged for differentiating
normal and abnormal images. The shape of both the RoIs are
different, hence a Balanced Weighted Voting (BVW) based
approach is applied separately to cluster the extracted fea-
tures, and built the visual vocabulary (codebook). Moreover,
the RoI’s shape varies from one projection (sagittal, axial, and
coronal) to another. The clustering process is performed three
times for different projections and produced a separate code-
book for each projection and RoI. For reducing the resultant
image signature dimension, authors have used the Principal
Components Analysis (PCA) based approach.

A multidimensional classification approach to classify AD
vs CN, and MCI vs CN subjects, based on the hippocampal
shape, is proposed in the literature [152]. The authors have
performed an automatic hippocampus and amygdala segmen-
tation technique, based on a region growing approach. The
approach comprises prior information about the hippocam-
pus and the amygdala location, derived from a probabilistic
atlas. With the help of Spherical Harmonics-Point Distribu-
tion Model (SPHARM-PDM) software, the hippocampus is
labeled as a series of spherical harmonics. SPHARM pro-
vides a mathematical method for representing the surfaces
with spherical topology. The method can be observed as a
3D analog of Fourier series expansion. The authors have
determined 2 correspondences between the objects, namely
i) SPHARM coefficients, used as features in SVM clas-
sifier, ii) SPHARM-PDM landmarks, applied for visualiz-
ing the localization of shape differences between groups.
By SPHARM decomposition with the degree of 20, subjects
are characterized by a feature vector of size 2646. The fea-
ture vector is determined by concatenating three coordinates
of all coefficients, results in (20 + 1)2 vector coefficients.

Furthermore, there are two hippocampus and three spatial
coordinates, thus a total of 2×3× (20+1)2 = 2646 features
are generated. For identifying, and selecting only the most
discriminative features, a univariate feature selection method
combined with a bagging strategy is used.

AD classification using harmonic function based feature
extraction approaches are discussed. The performance of the
discussed articles is shown in table 7.

From table 7, it can be observed that among all
the discussed AD classification methods using harmonic
function-based feature extraction approaches, the highest
performance is achieved by Gerardin et al. [152], with an
average accuracy of 88.5%, the sensitivity of 89.5%, and the
specificity of 88%.

G. SCALE-INVARIANT FEATURE TRANSFORMS
BASED FEATURE EXTRACTION
Scale Invariant Feature Transform (SIFT) is one of the most
popular techniques, for feature extraction and matching of
the prominent properties at various scales, amongst the set
of input images, [153]. In SIFT, firstly the key features from
objects are mined from some reference images and kept in
a database. Then, the object in an input image is determined
by associating a new image with the image from the database
by using Euclidean distance-based feature vectors matching
approach [154]. Among all the matching, subgroups of fea-
tures, which are more suitable on the object, in terms of its
location, scale, orientation, etc., are determined to find out
the best matches. Lastly, the probability of the subgroups is
calculated, which specifies the occurrence of an object, cor-
rectness, and the quantity of possible wrong matches [154].
One of the major advantages of SIFT is that it can produce
a sufficient quantity of features, that can compactly cover
the whole image [155]. Moreover, features extracted by SIFT
are local, hence no segmentation is required. One of the
disadvantages of SIFT is that, sometimes it produces lots of
non-feasible features, hence, the process is computationally
time consuming [156].
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TABLE 7. Performance comparison of the AD classification techniques using Harmonic function based feature extraction approaches.

TABLE 8. Performance comparison of the AD classification techniques using scale-invariant feature transforms based feature extraction approaches.

A classification framework to classify AD vs CN subjects,
using the scale-invariant feature transforms in MR images,
is proposed in the research article [157]. For detecting salient
features from the images, a scale invariant approach is applied
using the scale-space representation. The operation is per-
formed using a Gaussian kernel, at different variances, and
then convolved with the original image. The Difference-
of-Gaussian (DOG) is calculated by differencing adjacent
images in the scale-space. The detected prominent points in
an image are represented as a feature vector, that is used for
local shape description, such as location, scale, and orienta-
tion. Samples are used for creating the orientation histograms,
over 4 × 4 sample regions. The final feature descriptor for
each salient feature has 128 dimensions while using 8 direc-
tions for each histogram. For the unique representation of
the salient points of all images, all the SIFT descriptors are
grouped into a fixed number of clusters (K clusters) and
extracted the common salient points from training images.
The K- means clustering technique is used to minimize the
Within-Cluster Sum of Squares (WCSS).

Some of the AD classification approaches, using SIFT
based feature extraction, are discussed in this section. The
performance of the discussed articles is presented in table 8.

From table 8, it can be observed that the average perfor-
mance of the method is approximately 72% only, which is
less compatible with respect to other methods.

H. ARTIFICIAL NEURAL NETWORK (ANN) BASED
FEATURE EXTRACTION
ANN is a sequence of methodologies, that helps to determine
the fundamental associations in a group of data, by following
a similar procedure of the human brain [158]. Because of
the influential matching determination, ANN is a commonly
used feature extraction or dimensionality reduction tool. The
major advantage of ANN in feature extraction is that it has
the capability to learn by itself, and provides results that are
not restricted to the initial information provided in [159]. In a
neural network, information is stored in the networks rather
than stored in a database, hereafter, the data-loss doesn’t
distress its operation. One of themajor disadvantages of ANN
is the mysterious behavior of the network. After producing a
solution, ANN never gives a hint of how and why the result
is, which may reduce the confidence in the network [160].

Some literature, where ANN-based feature extraction is per-
formed for AD classification, is discussed below.

A classification method, to classify AD vs CN, and MCI
vs CN subjects, is discussed in the paper [161]. For intra-slice
features extraction, authors have proposed a 2D-CNN model
for learning the features, invariant to the simple alterations
and linear changes. The 2D-CNN model is designed for each
group of slices, and slices from the same group are used for
training themodel. Themodel is composed of 5 convolutional
layers, namely 2 max pooling layers, 2 full connection layers,
and 1 SoftMax classification layer. For inter-slice features
extraction from each group of slices, the authors have pro-
posed a stacked Recurrent Neural Networks (RNNs). In order
to achieve more inter-slice features, the Bidirectional Gated
Recurrent Unit (BGRU) is applied, which has a forward GRU
and a backward GRU. In the classification step, the features
generated from the BGRU network layer, followed by 2 fully
connected layers, and 1 SoftMax layer, are jointly optimized.
The individual CNNs as well as the BGRU combination
models (CNN-GRU) are trained separately for axial, sagittal,
and coronal axis.

A Convolutional Neural Network-based, MR image anal-
ysis, for AD classification is proposed in the literature [162].
In this study, the hippocampus is considered as a Region of
Interest (RoI). An automated patch-based separation tech-
nique with geometric coordinates of the International Con-
sortium for Brain Mapping (ICBM) template, is applied
for extracting the RoI. The Local Entropy Minimization
with a bi-cubic Spline (LEMS) model is used for noise
removal and intensity homogeneity correction. The 1st layer
of the network is the Convolution layer, which is used for
extracting properties from the input images. The features
are mined by preserving association amongst the pixels of
learning features, using trivial squares of the input data.
The main task of max pooling is to consider only major
components from the rectified feature map, for reducing
the unnecessary parameters. For considering major com-
ponents, the algorithm also used the concept of average
pooling.

A short description along with some of the research articles
on AD classification using ANN based feature extraction
approaches is discussed. The performance of the research
articles is presented in table 9.
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TABLE 9. Performance comparison of the AD classification techniques using Artificial Neural Network (ANN) based feature extraction approaches.

From table 9, between two relevant research articles
on AD classification using ANN based feature extraction
approaches, the maximum performance is achieved by Liu
et al. [161] with an average accuracy of 93%, the sensitivity
of 85.15%, and specificity of 85.5%.

III. RESULTS AND DISCUSSION, AND COMPARISON ON
DIFFERENT AD CLASSIFICATION METHODS
In this study, a total of 50 recently published articles, on AD
classification, using different feature extraction approaches,
are reviewed, and compared with their performances. It can
be observed from this study that, feature extraction plays a
major role in the classification of AD using brain images.
A detailed comparison based on the performances of different
classification methods is presented from table 2 to table 9.
To make the performance comparison easier, we have ana-
lyzed the average classification performance by averaging the
results of all the performance parameters (i.e, accuracy, sen-
sitivity, specificity, positive predictive value, negative predic-
tive value, and the area under the curve) for all subject groups.
The graphical representation of the performance comparison
is shown in figure 3, and figure 4.

From table 2 to table 9, as well as from the graphical
representation, it can be observed that overall maximum per-
formance is achieved by Mesrob et al. [96]. While classi-
fying AD vs. CN subjects, the highest accuracy (99.60%)
can be observed in the same literature by Mesrob et al. [96].
In this approach of AD classification, the authors have
parcellated the MRIs into anatomical Region of Interests
(RoIs), with the help of pre-labeled templates. Next, from
each of the RoIs, Diffusion Tensor Imaging (DTI) measures,
as well as the absorption of grey matter, are mined. All the
subjects (AD/CN) are acquired as per the guidelines pro-
vided by the National Institute of Neurological and Com-
munication Disorders and Stroke/AD and Related Disorders
Association (NINCDS-ADRDA). For all the subjects, T1-
MRI is considered for the study, using the Spoiled Gradient
echo Sequence (SPGS) and Diffusion Tensor Imaging (DTI)
scans (in 23 directions). From the Diffusion Tensor Imag-
ing (DTI) inputs, tensors are determined and then, an Appar-
ent Diffusion Coefficient (ADC), as well as the Fractional
Anisotropy (FA) maps, are mined as shown in figure 5. All
the structural inputs are segmented into three parts (grey
matter, whitematter, cerebrospinal fluid) as shown in figure 6.
Using the Montreal Neurological Institute (MNI) toolbox,

a common minimum volume for all the inputs is calculated,
and using that mask 73 regions in the brain are parcellated as
shown in figure 7. Next, the average of the Apparent Diffu-
sion Coefficient (ADC) is determined for every RoIs and the
multimodal features are determined from the proportion of
Apparent Diffusion Coefficient (ADC) to grey matter absorp-
tion in each voxel. Thus, the most discriminative features are
extracted.

Though the performance claimed by Mesrob et al. [96] is
convincing, but the experiment is performed by taking only
32 subjects, also the authors have excluded many important
cortical regions from the study which may impact in overall
classification performances [163].

Xiao et al. [80] have claimed that, while classifying AD
vs. MCI, the method achieved 100% of sensitivity, MCI vs.
CN with 100% specificity, MCI vs. CN with 100% of PPV,
and AD vs. MCI with 100% of NPV. Altaf et al. [81] have
claimed that the classificationmechanism achieved a 100%of
sensitivity while classifying AD vs. CN. One of the common
issues in these two articles [80], [81] is that they have used
GLCMbased feature extraction technique, which is computa-
tionally expensive due to the presents of many zero elements
which may not be necessary for further processing [78].
Gupta et al. [102] have claimed that, while classifying AD
vs. MCI subjects, the method achieved a 100% of sensitivity.
Also, the method classified AD vs. CN, and MCI vs. CN,
with 100% specificity. One of the major problems with the
method [102] is that, for atrophy measurement in brain cells,
they have used a free-surfer toolbox, which introduces some
unnecessary biases [164]. Khazaee et al. [128] have claimed
that they achieved 100% of sensitivity while classifyingMCI,
and 100% specificity as well as 100% PPV, while classifying
AD vs. CN. One of the major issues in the study [128] is
that the authors have used an atlas-based Region of Inter-
ests (RoIs) extraction approach, where no boundary informa-
tion is present, which may affect the overall performance in
classification [165]. In similar research, Ahmed et al. [93],
while classifying AD vs. CN, have claimed that the proposed
method can achieve a 100% of classification specificity. One
of the main issues in the approach [93] is that the authors
have extracted the hippocampus using an atlas based method,
where no boundary information is present [165]. While clas-
sifying AD vs. CN subjects, the highest Area Under Curve
(99.93%) is achieved by Beheshti et al. [98]. One major
limitation of the approach is that the authors have used a
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FIGURE 3. Average performance comparison of 50 AD classification approaches (Part 1).

FIGURE 4. Average performance comparison of 50 AD classification approaches (Part 2).

PCA-based feature selection technique, which cannot explore
the spatial information [166].

For all the discussed literature, we have analyzed the
detailed observations. The detailed observations are summa-
rized in table 10.

From table 10, it can be observed that, although all
the research articles perform well in their own way, still
there lies few scopes for further improvements. From the
observations, it can be noticed that, among all the popular fea-
ture extraction/selection approaches, Principal Component

Analysis (PCA) and GLCM have been used in several liter-
ature [80], [81], [91], [98], [104], [119], [121], [142], [143],
[145]. Although these two techniques are more popular, they
have some limitations which may affect on the final classi-
fication outcomes. One limitation of GLCM is that, it is a
sparse matrix with many elements as zero, which are unnec-
essary for texture features calculation, hence, it is computa-
tionally expensive [78] [79]. Similarly, one of the limitations
of PCA is that, it cannot explore the spatial information from
an input image [166].
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TABLE 10. Summarization of all the discussed AD classification approaches.
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TABLE 10. (Continued.) Summarization of all the discussed AD classification approaches.
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TABLE 10. (Continued.) Summarization of all the discussed AD classification approaches.
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TABLE 10. (Continued.) Summarization of all the discussed AD classification approaches.
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TABLE 10. (Continued.) Summarization of all the discussed AD classification approaches.

FIGURE 5. Sample Apparent Diffusion Coefficient (ADC) and Fractional
Anisotropy (FA) images [96].

A. CURRENT TRENDS IN THE FIELD OF AD
CLASSIFICATION USING BRAIN IMAGES
In this paper, we have discussed about the different fea-
ture extraction based AD classification techniques and brief
comparisons amongst the techniques are presented in sev-
eral tables. However, in recent years, multi-modal techniques
have been used widely in AD classification [201]. One of
the major advantages of using the multi-modal approaches
is that these methods are competent in wrapping multimodal
neuro-imaging features together which requires fewer labeled
data as well [202]. Some of the recently published articles on
multi-modal techniques for AD classification are discussed
below.

ForMCI Diagnosis, a multiview feature learning with mul-
tiatlas based functional connectivity networks model is pro-
posed in the literature [203]. The authors first implemented
a 3-step transformation-based technique on Automated
Anatomical Labeling (AAL) template for generating a per-
sonalized atlas. For the transformation of resting-state fMRI
(rs-fMRI) data into the MNI template space, a dynami-
cal registration approach is used. The authors have used
the deformation-based field to differentiate the dynamic
mapping and then applied the Affinity-Propagation (AP)

clustering mechanism to produce a group of personalized
atlas instances for extracting the regional mean-time series
and constructing the numerous Functional Connectivity Net-
works (FCNs) for all the subjects. For feature extraction,
the graph-theory-based technique is used. For feature selec-
tion, Sparse Group Lasso (SGL) based approach is used.
The authors have proposed a multi-task learning mechanism
to optimize the multi-view characteristics and to train the
SVM for a proper NC vs MCI classification and achieved a
convincing result.

A multimodal AD classification approach is proposed
in the literature [204]. The authors proposed a hyper
graph-based multi-task attribute assortment model. The
hyper graph-based regularization for the proposed method is
designed for unambiguous illustration of the association in
all the modalities, such as MRI and PET. The proposed mul-
timodal classification model is followed by two major steps,
namely hyper graph creation, and the hyper graph-based
multi-task feature learning. A separate hyper graph for all
the modalities is constructed by using the concept of mul-
tiple hyper-edges which imitate the associations among all
the subjects. The l2,1 normalization method is applied for
selecting the features jointly from the same brain area at
the same moment. Finally, the authors used a multi-kernel
SVM for combining the selected characteristics to perform
the classification.

For the classification of MCI disease, strength and sim-
ilarity guided group-level brain functional network based
approach is proposed in the literature [205]. For pre-
serving accurate analytical group dissimilarity, the authors
have proposed to explore the functional connectivity (FC)
properties into a group sparse representation (GSR) based
network model. For reducing inter-subject inconsistency,
a population-based prior-constrained graphical Lasso is
designed for which the sparsity formation is imposed across
every subject. The inter regional couple-wise FC is com-
puted by determining the temporal synchronization of blood-
oxygen-level-dependent (BOLD) signals using Pearson’s
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FIGURE 6. Sample structural MRI segmented in grey matter, white matter and cerebrospinal
fluid [96].

FIGURE 7. The common volume mask and brain parcellation in 73 RoIs [96].

correlation (PC) approach for all the individuals. The PC-
based FC information is then used for guiding the group-level
brain network for all the subject groups. Additional to the
PC-based network, which is referred to as low-order FC
(LOFC), the authors have also proposed to find out high-order
FC (HOFC) by estimating the LOFC correlation. This will
be further helpful for the GSR-based network model which
is capable of incorporate LOFC and HOFC together into
the same GSR-based network model, namely Strength- and
Similarity-Guided GSR (SSGSR).

For early dementia diagnosis, a multi-modal latent space is
proposed in the literature [206]. The authors have proposed
a new AD classification mechanism by using the concept
of multi-modal latent space and ensemble SVM classifier.
For exploiting the association among all the modalities,
the authors anticipated the ROIs-based features into a latent
space. Different modalities of neuroimages are acquired such
asMRI and PET data, and then all the features are projected to
a regular latent space. The latent representations are mapped
into several label spaces to learn numerous diversified clas-
sifiers, and an ensemble approach is used to deal with the
heterogeneity of AD progression. Latent space learning as
well as the classifier training is then incorporated into an inte-
grated framework to make all the components work together.

By considering multi-model images, a brain connectivity
based model for the prediction of AD is proposed in the
literature [207]. The authors developed a brain connectivity
model based on different modalities of images such as the
MRI and PET to determine the morphological as well as
the metabolic relations for all the subjects. The brain areas

with remarkable variances are marked for each modality and
trained to categorize the subjects by training the model from
a large dataset consisting of CN and AD subjects. Brain
areas having vigorous structural as well as metabolic rela-
tions with target regions are identified and then a multi-task
sparse-based regression framework is used for determining
the connectivity while treating the connectivity mining of
all the image modalities in the target dataset as a single
assignment.

A summary of the discussed multi-modal techniques is
presented in table 11.

Apart from multi-modal techniques, deep learning based
AD classification approaches is also using widely. Some of
the major advantages of using deep learning based approach
are; 1) it can extract the hidden features from the data, 2) it
can produce convincing results, even if the data are unstruc-
tured, 3) it allows parallel processing, etc [208]. Some of the
recently published articles on the deep learning based AD
classification are discussed below.

Using rs-fMRI and Residual Neural Networks, a deep
learning based AD classification approach is proposed in the
literature [209]. Upon the pre-processed images, the authors
have performed the training operation based on 3 ResNet-
18 networks, namely the 1-Channel ResNet (1CR), Off-
the-Shelf (OTS), and the Fine-Tuning (FT) for classifying
the various stages of AD. All the input images are resized
to 224 × 224 pixels in order to match with the pre-trained
network’s input size. Initially, the learning rate for the model
is set to 0.001, and then in each iteration (up to 25,000 iter-
ations), the rate is decremented by 10%. The Gamma value,
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TABLE 11. Summarization of some recent studies on multi-modal brain network-based studies in AD classification.

TABLE 12. Summarization of some recent studies on deep learning-based AD classification.

momentum, and the weight decay factor for the model are
initialized to 0.1, 0.9, and 0.0005 respectively. The authors
have introduced a Stochastic-gradient-descent (SGD) based
solver having a batch size of 32 images. The experimental
results indicated that the OTS based network model produced
the most convincing results.

Amulti-model CNNmodel for joint learning hippocampus
segmentation and AD classification is proposed in the liter-
ature [210]. To get quick convergence, a deep-CNN model
is proposed for learning the residual functions at each of
the convolution stages. Two residual blocks are constructed,
where each block comprising of the 3-D convolutional layers
(CLs), batch normalization (BN), Parametric Rectified Linear
Unit (PReLU) activation, as well as the dropout layers. In the
first residual block, a residual-function is trained by a short
correlation, whereas the second residual block comprising
of 2 CLs. The kernel dimension for the model is initialized as
3× 3× 3 for each of the convolutions. All the trained filters
are then convolved with the input images and a non-linear
PReLU activation, where separate feature maps are produced
for all the filters. For the proposed mechanism, multi-task
deep CNN carries the information of the multi-level charac-
teristics, and a deep 3D for DenseNet is introduced to learn
the characteristics from the hippocampus.

Using the rs-fMRI, a novel 3D-Deep Learning based AD
diagnosis framework is discussed in the literature [211].

The linear-regression is used along with support-vector-
regression, bagging-based ensemble regression model, and
the tree regression model by using the concept of the group-
independent-component (gIC) analysis mechanism to predict
the Mini Mental State Examination (MMSE) scores for all
the subjects. The rs-fMRI data are used to determine the
functional 3D self-regulating module spatial maps which are
then used as the characteristics to classify the subjects as well
as in the regression process. For the identification of the most
useful gICs and to discard noisy ICs, the automatic clustering
toolbox (FSLNets) is used. For extracting the subject-specific
IC time-courses as well as the IC analysis spatial maps,
the concept of the 2 stages dual regression is used. The
authors have applied the 10-fold cross validation algorithm
to validate the performance. To classify the subject groups,
subjects-specific ICA maps are used in a 3D CNN.

Based on the concept of the Volumetric Convolutional
Neural Network (VCNN) and the Transfer Learning (TL),
a novel AD classification method is discussed in the litera-
ture [212]. Initially, the concept of the traditional and incep-
tion module-based convolutional auto-encoder method is
used for pre-training of the MRI data for all the subjects, and
then the concept of the fine-tuning-based algorithm is used
for building the classifier. The proposed auto-encoder model
consists of the convolution layers, dropout layers, the ReLU,
as well as the pooling layers. For reducing the dependency,
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the GoogLeNet inception module is used. To determine the
approximate spatial influences, the class saliency visualiza-
tion (CSV) method is used. Since, it is more difficult to
classify pMCI and sMCI, hence, to train the model more
accurately, the authors used the transfer learning algorithm,
for the visual presentations of the AD vs. CN classification.

For AD classification, a novel deep learning (DL) and
extreme learning based method is proposed in the liter-
ature [213]. For functional brain-network categorization,
2 DL models are considered along with the extreme learn-
ing machine (ELM) boosted structure for the learning of
deep regional-connectivity features as well as the deep
neighboring positional characteristics. While constructing
the brain network, the concept of the Pearson correlation
coefficient is applied. The deep learning model comprises the
convolutional layer, ReLU activation function, pooling layer,
fully connected layer, and the decision layer.

The summary of the discussed deep learning-based AD
classification approaches is presented in table 12.

IV. CONCLUSION AND FUTURE SCOPE OF WORK
Alzheimer’s disease is one of the major death causing neuro-
logical disorders in the world. The number of AD patients
is increasing significantly all over the world. The manual
diagnosis system of AD by the neurologist is time consum-
ing, and may not provide accurate results all the time. The
research of AD classification using brain images has been
showing promising outcomes, which is less time consuming
too. Many researchers have been trying to develop a classi-
fication mechanism using brain images with fewer research
issues. Feature extraction is one of the major steps for AD
classification using brain images. In this paper, we have
discussed and summarized the performance of several AD
classification methods using brain images, based on different
feature extraction approaches. Firstly, details about 8 com-
monly used feature extraction approaches, along with their
pros and cons have been discussed, then their classification
performances are presented and compared. It is observed
from the performance comparison is that the average perfor-
mance of AD classification using Wavelet transform-based
feature extraction approaches (89.84%) is better amongst all
the 8 feature extraction approaches, followed by the Voxel
Morphometry (VM) based feature extraction approaches
(88.26%), Eigenvector-Based feature extraction approaches
(87.63%), Neural Network (NN) based feature extraction
approaches (87.21%), Graph/Network-based feature extrac-
tion approaches (83.35%), Texture-based feature extrac-
tion approaches (81.38%), Harmonic function based feature
extraction approaches (80.45%), and the Scale-Invariant Fea-
ture Transforms based feature extraction approaches (72%).
Overall the classification approach discussed in the article
cites mesrob2012dti provides the maximum performance rate
(99.60%). It can also be observed from the study that, feature
extraction plays a major role in AD classification, hence a
proper feature extraction technique is necessary in order to
achieve a better classification result.

It is observed that the AD classification method proposed
in the article [96] provides the maximum performance rate
among all the discussed articles. But one of the issues with
the classification framework is that the authors have acquired
a very less number of samples (15 AD and 17 CN subjects)
from the ‘‘Research and Resource Memory Centre of the
Pitié-Salpêtrière hospital (Pitié- Salpétriêre Hospital, Paris,
France’’. As a scope of future work, a large number of data
samples from other data sources such as ADNI. OASIS,
etc. can be acquired and compared the performance again.
Moreover, the proposed approach excluded approximately
17 cortical Region of Interests (RoIs). Cortical regions play
an important role in finding discriminated areas. A machine
learning based technique can be designed which can help to
select the most appropriate cortical regions. The selection of
appropriate cortical regions may help to get more accurate
results.

From this study, it is also observed that the Wavelet
transform-based feature extraction approaches help the clas-
sifiers to achieve better performances than any other fea-
ture extraction approaches discussed. Among all Wavelet
transform-based feature extraction approaches discussed,
the classification method discussed in the article [119] pro-
vides the maximum performance results. The authors used
a Principal Component Analysis (PCA) based approach for
feature selection. One of the disadvantages of PCA is that it
cannot explore the spatial information from an input image.
In the future, some mechanisms for selecting spatial informa-
tion can be added to get more accurate classification results.
Moreover, for converting the 3D images to 2D, authors have
analyzed and selected the information of the slices manually,
which requires high expertise knowledge. An automatic slice
selection technique may be designed in the future to select
more appropriate slices.

Moreover, in the future, more recent articles on AD clas-
sification, based on some more feature extraction approaches
can be compared which may help the researchers to choose a
proper feature extraction technique for AD classification.

A. CHALLENGING ISSUES IN THE STUDY OF BRAIN
IMAGES FOR ad CLASSIFICATION
Though researchers have been achieving promising results
for AD classification using brain images, still several chal-
lenging issues lie in this field of study. One of the major
issues is to get sufficient data for the study. For acquiring
data, most of the researchers depend only on two online
data-sets namely OASIS, and ADNI. Though these data-sets
provide a large number of data, but if we do the gender-wise
and age-wise distribution, which may play an important role
while classifying AD from other subject groups, the data may
not be sufficient to train a machine learning based model
accurately.

One more major issue is to determine the proper
bio-markers in AD. Sometimes, similar kind of changes in
brain structure may occur due to some other neurological dis-
orders, and consideration of those data in training or testing
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sets can produce a wrong result showing 100% accuracy in
the model. So, finding the exact bio-markers in brain studies
which is only related to AD is a challenging task.

As we discussed, feature extraction is one of the most
important steps in AD classification. The human brain is very
complex in structure, and it contains a lot of information.
One of the major challenges in extracting features from brain
images is scalability. Since brain images contain lots of fea-
tures, it is challenging to design a feature extraction technique
that can handle it feasibly.

B. AUTHOR CONTRIBUTIONS
All authors are responsible for analysis, conceptualization,
andwriting the original manuscript. All authors have read and
agreed to the published version of the manuscript.

C. FINANCIAL DISCLOSURE
This research received no external funding.

D. CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

REFERENCES
[1] I. O. Korolev, ‘‘Alzheimer’s disease: A clinical and basic science review,’’

Med. Student Res. J., vol. 4, no. 1, pp. 24–33, 2014.
[2] NIH. Alzheimer’s Disease: A Clinical and Basic Science Review.

Accessed: Jul. 13, 2020. [Online]. Available: https://www.nia.
nih.gov/health/alzheimers-disease-fact-sheet

[3] A. Association. Alzheimer’s Disease Fact Sheet. Accessed: Jul. 13, 2020.
[Online]. Available: https://www.alz.org/in/dementia-alzheimers-
en.asp#diagnosis

[4] S. Gauthier, B. Reisberg,M. Zaudig, R. C. Petersen, K. Ritchie, K. Broich,
S. Belleville, H. Brodaty, D. Bennett, and H. Chertkow, ‘‘Mild cognitive
impairment,’’ Lancet, vol. 367, no. 9518, pp. 1262–1270, 2006.

[5] National Institute on Aging (NIH). What Is Mild Cognitive
Impairment? Accessed: Jul. 20, 2020. [Online]. Available:
https://www.nia.nih.gov/health/what-mild-cognitive-impairment

[6] J. B. Pereira, M. Mijalkov, E. Kakaei, P. Mecocci, B. Vellas, M. Tsolaki,
I. Kłoszewska, H. Soininen, C. Spenger, S. Lovestone, A. Simmons,
L.-O. Wahlund, G. Volpe, and E.Westman, ‘‘Disrupted network topology
in patients with stable and progressive mild cognitive impairment and
Alzheimer’s disease,’’ Cerebral Cortex, vol. 26, no. 8, pp. 3476–3493,
Aug. 2016.

[7] K. M. Langa and D. A. Levine, ‘‘The diagnosis and management of
mild cognitive impairment: A clinical review,’’ Jama, vol. 312, no. 23,
pp. 2551–2561, 2014.

[8] G. M. McKhann, D. S. Knopman, H. Chertkow, B. T. Hyman, C. R. Jack,
Jr., C. H. Kawas, W. E. Klunk, W. J. Koroshetz, J. J. Manly, R. Mayeux,
and R. C. Mohs, ‘‘The diagnosis of dementia due to Alzheimer’s dis-
ease: Recommendations from theNational Institute on aging-Alzheimer’s
association workgroups on diagnostic guidelines for Alzheimer’s dis-
ease,’’ Alzheimer’s Dementia, vol. 7, no. 3, pp. 263–269, 2011.

[9] R. Sivera, H. Delingette, M. Lorenzi, X. Pennec, N. Ayache, and
Alzheimer’s Disease Neuroimaging Initiative, ‘‘A model of brain mor-
phological changes related to aging and Alzheimer’s disease from cross-
sectional assessments,’’ NeuroImage, vol. 198, pp. 255–270, Sep. 2019.

[10] L. L. Beason-Held, J. O. Goh, Y. An, M. A. Kraut, R. J. O’Brien,
L. Ferrucci, and S. M. Resnick, ‘‘Changes in brain function occur years
before the onset of cognitive impairment,’’ J. Neurosci., vol. 33, no. 46,
pp. 18008–18014, Nov. 2013.

[11] A. D. Smith, ‘‘Imaging the progression of Alzheimer pathology through
the brain,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 7, pp. 4135–4137,
Apr. 2002.

[12] M. Querol-Vilaseca, M. Colom-Cadena, J. Pegueroles, R. Nuñez-Llaves,
J. Luque-Cabecerans, L. Muñoz-Llahuna, J. Andilla, O. Belbin,
T. L. Spires-Jones, and E. Gelpi, ‘‘Nanoscale structure of amyloid-β
plaques in Alzheimer’s disease,’’ Sci. Rep., vol. 9, no. 1, pp. 5181–5191,
2019.

[13] L. I. Binder, A. L. Guillozet-Bongaarts, F. Garcia-Sierra, A.W. Berry, and
Alzheimer’s Disease, ‘‘Tau, tangles, and Alzheimer’s disease,’’ Biochim-
ica et Biophysica Acta (BBA)-Molecular Basis Disease, vol. 17, no. 2,
pp. 216–223, 2005.

[14] H. Yang, H. Xu, Q. Li, Y. Jin, W. Jiang, J. Wang, Y. Wu, W. Li, C. Yang,
andX. Li, ‘‘Study of brainmorphology change inAlzheimer’s disease and
amnestic mild cognitive impairment compared with normal controls,’’
Gen. Psychiatry, vol. 32, no. 2, pp. 32–41, 2019.

[15] S.W.Moon, B. Lee, andY. C. Choi, ‘‘Changes in the hippocampal volume
and shape in early-onset mild cognitive impairment,’’ Psychiatry Invest.,
vol. 15, no. 5, pp. 531–537, May 2018.

[16] K. Juottonen, M. Lehtovirta, S. Helisalmi, P. J. Riekkinen, Sr., and
H. Soininen, ‘‘Major decrease in the volume of the entorhinal cortex
in patients with Alzheimer’s disease carrying the apolipoprotein e ε4
allele,’’ J. Neurol., Neurosurgery Psychiatry, vol. 65, no. 3, pp. 322–327,
Sep. 1998.

[17] J. Barnes, J. L. Whitwell, C. Frost, K. A. Josephs, M. Rossor, and
N. C. Fox, ‘‘Measurements of the amygdala and hippocampus in patho-
logically confirmed Alzheimer disease and frontotemporal lobar degen-
eration,’’ Arch. Neurol., vol. 63, no. 10, pp. 1434–1439, 2006.

[18] M. Symms, H. R. Jäger, K. Schmierer, and T. A. Yousry, ‘‘A review of
structural magnetic resonance neuroimaging,’’ J. Neurol., Neurosurgery
Psychiatry, vol. 75, no. 9, pp. 1235–1244, Sep. 2004.

[19] G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson,
‘‘The clinical use of structural MRI in Alzheimer disease,’’ Nature Rev.
Neurol., vol. 6, no. 2, pp. 67–77, Feb. 2010.

[20] C. Ledig, A. Schuh, R. Guerrero, R. A. Heckemann, and D. Rueckert,
‘‘Structural brain imaging in Alzheimer’s disease and mild cognitive
impairment: Biomarker analysis and shared morphometry database,’’ Sci.
Rep., vol. 8, no. 1, pp. 11258–11284, Dec. 2018.

[21] K. Biju, S. Alfa, K. Lal, A. Antony, and M. K. Akhil, ‘‘Alzheimer’s
detection based on segmentation of MRI image,’’ Procedia Comput. Sci.,
vol. 115, no. 6, pp. 474–481, 2017.

[22] A. B. Rabeh, F. Benzarti, and H. Amiri, ‘‘Segmentation of brain MRI for
detecting Alzheimer’s disease,’’ Current Med. Imag. Rev., vol. 14, no. 2,
pp. 263–270, Feb. 2018.

[23] J. A. Kaye, ‘‘Diagnostic challenges in dementia,’’ Neurology, vol. 51,
no. 1, pp. S45–S52, Jul. 1998.

[24] P. Coupé, J. V. Manjón, E. Lanuza, and G. Catheline, ‘‘Lifespan changes
of the human brain in Alzheimer’s disease,’’ Sci. Rep., vol. 9, no. 1,
pp. 1–12, Dec. 2019.

[25] R. Peters, ‘‘Ageing and the brain,’’ Postgraduate Med. J., vol. 82, no. 964,
pp. 84–88, 2006.

[26] J. Islam and Y. Zhang, ‘‘BrainMRI analysis for Alzheimer’s disease diag-
nosis using an ensemble system of deep convolutional neural networks,’’
Brain Informat., vol. 5, no. 2, p. 2, Dec. 2018.

[27] ADNI. Alzheimer’s Disease Neuroimaging Initiative: ADNI.
Accessed: Jul. 13, 2020. [Online]. Available: http://adni.loni.usc.edu/
data-samples/access-data

[28] OASIS Brains. Open Access Series of Imaging Studies.
Accessed: Jul. 13, 2020. [Online]. Available: https://www.oasis-
brains.org

[29] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision. Boston, MA, USA: Cengage Learning, 2014.

[30] S. Robila, ‘‘An investigation of spectral metrics in hyperspectral image
preprocessing for classification,’’ in Proc. Geospatial Goes Global, Your
Neighborhood Whole Planet. ASPRS Annu. Conf., Baltimore, MD, USA,
2005, pp. 7–11.

[31] R. A. Hazarika, K. Kharkongor, S. Sanyal, and A. K. Maji, ‘‘A compara-
tive study on different skull stripping techniques from brain magnetic res-
onance imaging,’’ inProc. Int. Conf. Innov. Comput. Commun. Singapore:
Springer, 2020, pp. 279–288.

[32] M. Goto, O. Abe, S. Aoki, N. Hayashi, T. Miyati, H. Takao, T. Iwatsubo,
F. Yamashita, H. Matsuda, H. Mori, A. Kunimatsu, K. Ino, K. Yano, and
K. Ohtomo, ‘‘Diffeomorphic anatomical registration through exponenti-
ated lie algebra provides reduced effect of scanner for cortex volumetry
with atlas-based method in healthy subjects,’’ Neuroradiology, vol. 55,
no. 7, pp. 869–875, Jul. 2013.

[33] P. K. Mandal, R. Mahajan, and I. D. Dinov, ‘‘Structural brain atlases:
Design, rationale, and applications in normal and pathological cohorts,’’
J. Alzheimer’s Disease, vol. 31, no. 3, pp. S169–S188, Sep. 2012.

[34] W.D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, andA. E. Nichols,
Statistical Parametric Mapping: The Analysis of Functional Brain
Images. Amsterdam, The Netherlands: Elsevier, 2011.

[35] B. Fischl, ‘‘FreeSurfer,’’ NeuroImage, vol. 62, no. 2, pp. 774–781,
Aug. 2012.

VOLUME 9, 2021 58531



R. A. Hazarika et al.: Survey on Classification Algorithms of Brain Images in AD Based on Feature Extraction Techniques

[36] J. Ashburner and K. J. Friston, ‘‘Why voxel-based morphometry should
be used,’’ NeuroImage, vol. 14, no. 6, pp. 1238–1243, Dec. 2001.

[37] S. Smith, M. Woolrich, T. Behrens, C. F. Beckmann, D. Flitney,
M. Jenkinson, P. Bannister, S. Clare, M. De Luca, P. Hansen, and
H. Johansen-Berg, ‘‘Fmrib software library,’’ Big Healthcare Challenges
Chronic Disease, Oxford Centre Funct. Magn. Reson. Imag. Brain Softw.
Library, Oxford, U.K., Tech. Rep., 2014.

[38] A. W. Toga, A. W. Toga, J. C. Mazziotta, and J. C. Mazziotta, Brain
Mapping: The Methods, vol. 1. New York, NY, USA: Academic, 2002.

[39] F. Farokhian, I. Beheshti, D. Sone, and H. Matsuda, ‘‘Comparing CAT12
and VBM8 for detecting brain morphological abnormalities in temporal
lobe epilepsy,’’ Frontiers Neurol., vol. 8, p. 428, Aug. 2017.

[40] B. Sheehan, ‘‘Assessment scales in dementia,’’ Therapeutic Adv. Neurol.
Disorders, vol. 5, no. 6, pp. 349–358, Nov. 2012.

[41] S. E. O’Bryant, M.M.Mielke, R. A. Rissman, S. Lista, H. Vanderstichele,
H. Zetterberg, P. Lewczuk, H. Posner, J. Hall, and L. Johnson, ‘‘Blood-
based biomarkers in Alzheimer disease: Current state of the science and
a novel collaborative paradigm for advancing from discovery to clinic,’’
Alzheimer’s Dementia, vol. 13, no. 1, pp. 45–58, Jan. 2017.

[42] C. Humpel, ‘‘Identifying and validating biomarkers for Alzheimer’s dis-
ease,’’ Trends Biotechnol., vol. 29, no. 1, pp. 26–32, Jan. 2011.

[43] C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrillo, H. H. Feldman,
G. B. Frisoni, H. Hampel, W. J. Jagust, K. A. Johnson, D. S. Knopman,
R. C. Petersen, P. Scheltens, R. A. Sperling, and B. Dubois, ‘‘A/T/N:
An unbiased descriptive classification scheme for Alzheimer disease
biomarkers,’’ Neurology, vol. 87, no. 5, pp. 539–547, Aug. 2016.

[44] K. A. Q. Cousins, D. J. Irwin, D. A. Wolk, E. B. Lee, L. M. J. Shaw,
J. Q. Trojanowski, F. Da Re, G. S. Gibbons, M. Grossman, and
J. S. Phillips, ‘‘ATN status in amnestic and non-amnestic Alzheimer’s
disease and frontotemporal lobar degeneration,’’ Brain, vol. 143, no. 7,
pp. 2295–2311, Jul. 2020.

[45] P. Janicak and M. E. Dokucu, ‘‘Transcranial magnetic stimulation for
the treatment of major depression,’’ Neuropsychiatric Disease Treatment,
vol. 11, p. 1549, Jun. 2015.

[46] M. Hallett, R. Di Iorio, P. M. Rossini, J. E. Park, R. Chen, P. Celnik,
A. P. Strafella, H. Matsumoto, and Y. Ugawa, ‘‘Contribution of transcra-
nial magnetic stimulation to assessment of brain connectivity and net-
works,’’ Clin. Neurophysiol., vol. 128, no. 11, pp. 2125–2139, Nov. 2017.

[47] R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, and T. H. Falk,
‘‘Systematic review on resting-state EEG for Alzheimer’s disease diagno-
sis and progression assessment,’’ Disease Markers, vol. 2018, pp. 1–26,
Oct. 2018.

[48] R. S. Turner, T. Stubbs, D. A. Davies, and B. C. Albensi, ‘‘Potential new
approaches for diagnosis of Alzheimer’s disease and related dementias,’’
Frontiers Neurol., vol. 11, p. 496, Jun. 2020.

[49] Z. A. Dastgheib, B. Lithgow, and Z.Moussavi, ‘‘Diagnosis of Parkinson’s
disease using electrovestibulography,’’Med. Biol. Eng. Comput., vol. 50,
no. 5, pp. 483–491, May 2012.

[50] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction:
Foundations and Applications, vol. 207. Physica-Verlag, 2008.

[51] I. Guyon and A. Elisseeff, ‘‘An introduction to feature extraction,’’ in
Feature Extraction. Berlin, Germany: Springer, 2006, pp. 1–25.

[52] E. A. A. Maksoud, S. Barakat, and M. Elmogy, ‘‘Medical images anal-
ysis based on multilabel classification,’’ in Machine Learning in Bio-
Signal Analysis and Diagnostic Imaging. Amsterdam, The Netherlands:
Elsevier, 2019, pp. 209–245.

[53] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection methods,’’
Comput. Elect. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014.

[54] P. V. Balachandran, D. Xue, J. Theiler, J. Hogden, J. E. Gubernatis,
and T. Lookman, ‘‘Importance of feature selection in machine learning
and adaptive design for materials,’’ in Materials Discovery and Design.
Cham, Switzerland: Springer, 2018, pp. 59–79.

[55] M. Kuhn and K. Johnson, Applied Predictive Modeling, vol. 26.
New York, NY, USA: Springer, 2013.

[56] N. El Aboudi and L. Benhlima, ‘‘Review on wrapper feature selection
approaches,’’ in Proc. Int. Conf. Eng. MIS (ICEMIS), Sep. 2016, pp. 1–5.

[57] K. Yan and D. Zhang, ‘‘Feature selection and analysis on correlated gas
sensor data with recursive feature elimination,’’ Sens. Actuators B, Chem.,
vol. 212, pp. 353–363, Jun. 2015.

[58] N. Sánchez-Marono, A. Alonso-Betanzos, and M. Tombilla-Sanromán,
‘‘Filter methods for feature selection—A comparative study,’’ in Proc.
Int. Conf. Intell. Data Eng. Automated Learn. Berlin, Germany: Springer,
2007, pp. 178–187.

[59] M. Shinozuka and B. Mansouri, ‘‘Synthetic aperture radar and remote
sensing technologies for structural health monitoring of civil infrastruc-
ture systems,’’ in Structural Health Monitoring of Civil Infrastructure
Systems. Amsterdam, The Netherlands: Elsevier, 2009, pp. 113–151.

[60] R. A. Schowengerdt, Remote Sensing: Models and Methods for Image
Processing. Amsterdam, The Netherlands: Elsevier, 2006.

[61] K. L. Kvamme, E. G. Ernenwein, and J. G. Menzer, ‘‘Putting it all
together: Geophysical data integration,’’ in Innovation in Near-Surface
Geophysics. Amsterdam, The Netherlands: Elsevier, 2019, pp. 287–339.

[62] J. Lever, M. Krzywinski, and N. Altman, ‘‘Logistic regression,’’ Nature
Methods, London, U.K., Tech. Rep. 13, 2016, pp. 541–542.

[63] S. McCann and D. G. Lowe, ‘‘Local naive Bayes nearest neighbor for
image classification,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2012, pp. 3650–3656.

[64] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa,
‘‘A comparative analysis of gradient descent-based optimization algo-
rithms on convolutional neural networks,’’ in Proc. Int. Conf. Comput.
Techn., Electron. Mech. Syst. (CTEMS), Dec. 2018, pp. 92–99.

[65] J. Kim1, B. Kim, and S. Savarese, ‘‘Comparing image classification
methods: K-nearest-neighbor and support-vector-machines,’’ in Proc.
6th WSEAS Int. Conf. Comput. Eng. Appl., Amer. Conf. Appl. Math.,
vol. 1001, 2012, pp. 2122–48109.

[66] B. Shepherd, ‘‘An appraisal of a decision tree approach to image classifi-
cation,’’ in Proc. IJCAI, 1983, pp. 473–475.

[67] H. Liu, M. Cocea, and W. Ding, ‘‘Decision tree learning based feature
evaluation and selection for image classification,’’ in Proc. Int. Conf.
Mach. Learn. Cybern. (ICMLC), vol. 2, Jul. 2017, pp. 569–574.

[68] N. Abdullah, U. K. Ngah, and S. A. Aziz, ‘‘Image classification of brain
MRI using support vector machine,’’ in Proc. IEEE Int. Conf. Imag. Syst.
Techn., May 2011, pp. 242–247.

[69] R. Bala, ‘‘Survey on texture feature extraction methods,’’ Int. J. Eng. Sci.
Comput., vol. 7, no. 4, pp. 10375–10377, 2017.

[70] S. Xiaoming, Z. Ning, W. Haibin, Y. Xiaoyang, W. Xue, and Y. Shuang,
‘‘Medical image retrieval approach by texture features fusion based
on Hausdorff distance,’’ Math. Problems Eng., vol. 2018, pp. 1–12,
Aug. 2018.

[71] J. Zhang, C. Yu, G. Jiang, W. Liu, and L. Tong, ‘‘3D texture analysis on
MRI images of Alzheimer’s disease,’’ Brain Imag. Behav., vol. 6, no. 1,
pp. 61–69, Mar. 2012.

[72] R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Textural features for
image classification,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-3,
no. 6, pp. 610–621, Nov. 1973.

[73] L. S. Davis, ‘‘A survey of edge detection techniques,’’ Comput. Graph.
Image Process., vol. 4, no. 3, pp. 248–270, Sep. 1975.

[74] D.-S. Huang, D. C. Wunsch, D. S. Levine, and K.-H. Jo, Advanced
Intelligent Computing Theories and Applications. With Aspects of Theo-
retical and Methodological Issues: Fourth International Conference on
Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18,
2008 Proceedings, vol. 5226. Shanghai, China: Springer, 2008.

[75] F. J. Martínez-Murcia, J. M. Górriz, J. Ramírez, I. A. Illán, and
C. G. Puntonet, ‘‘Texture features based detection of Parkinson’s disease
on DaTSCAN images,’’ in Proc. Int. Work-Conf. Interplay Between Nat-
ural Artif. Comput. Berlin, Germany: Springer, 2013, pp. 266–277.

[76] F. J. Martinez-Murcia, J. M. Górriz, J. Ramírez, M. Moreno-Caballero,
and M. Gómez-Río, ‘‘Parametrization of textural patterns in123I-
ioflupane imaging for the automatic detection of parkinsonism,’’ Med.
Phys., vol. 41, no. 1, Dec. 2013, Art. no. 012502.

[77] K. Vaithinathan, L. Parthiban, and Alzheimer’s Disease Neuroimaging
Initiative, ‘‘A novel texture extraction technique with T1 weighted MRI
for the classification of Alzheimer’s disease,’’ J. Neurosci. Methods,
vol. 318, pp. 84–99, Apr. 2019.

[78] T. A. Pham, ‘‘Optimization of texture feature extraction algorithm,’’ Delft
Univ. Technol., Delft, The Netherlands, Tech. Rep., 2010.

[79] D. Gadkari, ‘‘Image quality analysis using GLCM,’’ Univ. Central
Florida, Orlando, FL, USA, Tech. Rep. 187, 2004.

[80] Z. Xiao, Y. Ding, T. Lan, C. Zhang, C. Luo, and Z. Qin, ‘‘BrainMR image
classification for Alzheimer’s disease diagnosis based on multifeature
fusion,’’ Comput. Math. Methods Med., vol. 2017, pp. 1–13, May 2017.

[81] T. Altaf, S. Anwar, N. Gul, N. Majeed, and M. Majid, ‘‘Multi-class
Alzheimer disease classification using hybrid features,’’ in Proc. Future
Technol. Conf. (FTC), 2017, pp. 264–267.

[82] G. W. Jiji, G. E. Suji, and M. Rangini, ‘‘An intelligent technique for
detecting Alzheimer’s disease based on brain structural changes and
hippocampal shape,’’ Comput. Methods Biomech. Biomed. Eng., Imag.
Visualizat., vol. 2, no. 2, pp. 121–128, Apr. 2014.

[83] D. Chyzhyk and A. Savio, ‘‘Feature extraction from structural MRI
images based on VBM: Data from OASIS database,’’ Univ. Basque
Country, Internal Res. Publication, Basque, Spain, Tech. Rep., 2010.

[84] J. Ashburner and K. J. Friston, ‘‘Voxel-based morphometry—The meth-
ods,’’ NeuroImage, vol. 11, no. 6, pp. 805–821, 2000.

58532 VOLUME 9, 2021



R. A. Hazarika et al.: Survey on Classification Algorithms of Brain Images in AD Based on Feature Extraction Techniques

[85] G. F. Busatto, G. E. Garrido, O. P. Almeida, C. C. Castro, C. H. Camargo,
C. G. Cid, C. A. Buchpiguel, S. Furuie, and A. M. Bottino, ‘‘A voxel-
based morphometry study of temporal lobe gray matter reductions in
Alzheimer’s disease,’’ Neurobiol. Aging, vol. 24, no. 2, pp. 221–231,
2003.

[86] G. B. Frisoni, C. Testa, A. Zorzan, F. Sabattoli, A. Beltramello,
H. Soininen, and A. Laakso, ‘‘Detection of grey matter loss in mild
Alzheimer’s disease with voxel based morphometry,’’ J. Neurol., Neuro-
surgery Psychiatry, vol. 73, no. 6, pp. 657–664, Dec. 2002.

[87] G. Fung and J. Stoeckel, ‘‘SVM feature selection for classification of
SPECT images of Alzheimer’s disease using spatial information,’’Knowl.
Inf. Syst., vol. 11, no. 2, pp. 243–258, Feb. 2007.

[88] I. Álvarez, M. López, J. M. Górriz, J. Ramírez, D. Salas-Gonzalez,
C. G. Puntonet, and F. Segovia, ‘‘Automatic classification system for the
diagnosis of Alzheimer disease using component-based SVM aggrega-
tions,’’ in Proc. Int. Conf. Neural Inf. Process.Berlin, Germany: Springer,
2008, pp. 402–409.

[89] J. Ramírez, J. M. Górriz, M. López, D. Salas-Gonzalez, I. Álvarez,
F. Segovia, and C. G. Puntonet, ‘‘Early detection of the Alzheimer disease
combining feature selection and kernel machines,’’ in Proc. Int. Conf.
Neural Inf. Process. Berlin, Germany: Springer, 2008, pp. 410–417.

[90] D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, M. López, I. Álvarez,
F. Segovia, and C. G. Puntonet, ‘‘Computer aided diagnosis of Alzheimer
disease using support vector machines and classification trees,’’ in
Proc. Int. Conf. Neural Inf. Process. Berlin, Germany: Springer, 2008,
pp. 418–425.

[91] I. Beheshti, H. Demirel, H. Matsuda, and Alzheimer’s Disease Neu-
roimaging Initiative, ‘‘Classification of Alzheimer’s disease and pre-
diction of mild cognitive impairment-to-Alzheimer’s conversion from
structural magnetic resource imaging using feature ranking and a genetic
algorithm,’’ Comput. Biol. Med., vol. 83, pp. 109–119, Apr. 2017.

[92] I. Beheshti, H. Demirel, F. Farokhian, C. Yang, H. Matsuda, and
Alzheimer’s Disease Neuroimaging Initiative, ‘‘Structural MRI-based
detection of Alzheimer’s disease using feature ranking and classification
error,’’ Comput. Methods Programs Biomed., vol. 137, pp. 177–193,
Dec. 2016.

[93] O. Ben Ahmed, J. Benois-Pineau, M. Allard, C. Ben Amar, G. Catheline,
and Alzheimer’s Disease Neuroimaging Initiative, ‘‘Classification of
Alzheimer’s disease subjects from MRI using hippocampal visual fea-
tures,’’Multimedia Tools Appl., vol. 74, no. 4, pp. 1249–1266, Feb. 2015.

[94] M. Liu, D. Zhang, D. Shen, and Alzheimer’s Disease Neuroimaging
Initiative, ‘‘View-centralized multi-atlas classification for Alzheimer’s
disease diagnosis,’’ Hum. Brain Mapping, vol. 36, no. 5, pp. 1847–1865,
May 2015.

[95] C. Zu, B. Jie, M. Liu, S. Chen, D. Shen, D. Zhang, and Alzheimer’s Dis-
ease Neuroimaging Initiative, ‘‘Label-aligned multi-task feature learning
for multimodal classification of Alzheimer’s disease and mild cogni-
tive impairment,’’ Brain Imag. Behav., vol. 10, no. 4, pp. 1148–1159,
Dec. 2016.

[96] L. Mesrob, M. Sarazin, V. Hahn-Barma, L. C. de Souza, B. Dubois,
P. Gallinari, and S. Kinkingnéhun, ‘‘DTI and structuralMRI classification
in Alzheimer’s disease,’’ Adv. Mol. Imag., vol. 2, no. 2, p. 12, 2012.

[97] T. Ye, C. Zu, B. Jie, D. Shen, D. Zhang, and Alzheimer’s Disease
Neuroimaging Initiative, ‘‘Discriminative multi-task feature selection
for multi-modality classification of Alzheimer’s disease,’’ Brain Imag.
Behav., vol. 10, no. 3, pp. 739–749, 2016.

[98] I. Beheshti, H. Demirel, and Alzheimer’s Disease Neuroimaging Ini-
tiative, ‘‘Feature-ranking-based Alzheimer’s disease classification from
structural MRI,’’ Magn. Reson. Imag., vol. 34, no. 3, pp. 252–263,
Apr. 2016.

[99] F. Liu, C.-Y. Wee, H. Chen, and D. Shen, ‘‘Inter-modality relationship
constrained multi-modality multi-task feature selection for Alzheimer’s
disease and mild cognitive impairment identification,’’ NeuroImage,
vol. 84, pp. 466–475, Jan. 2014.

[100] M. Liu, D. Zhang, D. Shen, and Alzheimer’s Disease Neuroimaging
Initiative, ‘‘Hierarchical fusion of features and classifier decisions for
Alzheimer’s disease diagnosis,’’ Hum. Brain Mapping, vol. 35, no. 4,
pp. 1305–1319, Apr. 2014.

[101] I. Beheshti, H. Demirel, and Alzheimer’s Disease Neuroimaging Initia-
tive, ‘‘Probability distribution function-based classification of structural
MRI for the detection of Alzheimer’s disease,’’ Comput. Biol. Med.,
vol. 64, pp. 208–216, Sep. 2015.

[102] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, and A.-R. Kwon,
‘‘Alzheimer’s disease diagnosis based on cortical and subcortical fea-
tures,’’ J. Healthcare Eng., vol. 2019, Mar. 2019, Art. no. 2492719.

[103] P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci,
D. S. Knopman, B. F. Boeve, R. C. Petersen, and C. R. Jack, ‘‘Alzheimer’s
disease diagnosis in individual subjects using structural MR images: Val-
idation studies,’’ NeuroImage, vol. 39, no. 3, pp. 1186–1197, Feb. 2008.

[104] Y. Gupta, K. H. Lee, K. Y. Choi, J. J. Lee, B. C. Kim, G. R. Kwon,
and Alzheimer’s Disease Neuroimaging Initiative, ‘‘Early diagnosis of
Alzheimer’s disease using combined features from voxel-based mor-
phometry and cortical, subcortical, and hippocampus regions of MRI T1
brain images,’’ PLoS ONE, vol. 14, no. 10, Oct. 2019, Art. no. e0222446.

[105] F. J. Martínez-Murcia, J. M. Górriz, J. Ramirez, C. G. Puntonet,
D. Salas-Gonzalez, and Alzheimer’s Disease Neuroimaging Initiative,
‘‘Computer aided diagnosis tool for Alzheimer’s disease based on
Mann–Whitney–Wilcoxon U-test,’’ Expert Syst. Appl., vol. 39, no. 10,
pp. 9676–9685, 2012.

[106] A. Ortiz-Garcia, D. Fajardo, J. M. Górriz, J. Ramírez, and
F. J. Martínez-Murcia, ‘‘Multimodal image data fusion for Alzheimer’s
disease diagnosis by sparse representation,’’ in Proc. KES, 2014,
pp. 1–18.

[107] A. Chincarini, P. Bosco, P. Calvini, G. Gemme, M. Esposito, C. Olivieri,
L. Rei, S. Squarcia, G. Rodriguez, R. Bellotti, P. Cerello, I. De Mitri,
A. Retico, and F. Nobili, ‘‘Local MRI analysis approach in the diagnosis
of early and prodromal Alzheimer’s disease,’’ NeuroImage, vol. 58, no. 2,
pp. 469–480, Sep. 2011.

[108] Q. Zhou, M. Goryawala, M. Cabrerizo, J. Wang, W. Barker,
D. A. Loewenstein, R. Duara, and M. Adjouadi, ‘‘An optimal decisional
space for the classification of Alzheimer’s disease and mild cognitive
impairment,’’ IEEE Trans. Biomed. Eng., vol. 61, no. 8, pp. 2245–2253,
Aug. 2014.

[109] T. Tong, Q. Gao, R. Guerrero, C. Ledig, L. Chen, D. Rueckert,
and Alzheimer’s Disease Neuroimaging Initiative, ‘‘A novel grading
biomarker for the prediction of conversion from mild cognitive impair-
ment to Alzheimer’s disease,’’ IEEE Trans. Biomed. Eng., vol. 64, no. 1,
pp. 155–165, Jan. 2017.

[110] M. Liu, D. Zhang, E. Adeli, and D. Shen, ‘‘Inherent structure-
based multiview learning with multitemplate feature representation for
Alzheimer’s disease diagnosis,’’ IEEE Trans. Biomed. Eng., vol. 63, no. 7,
pp. 1473–1482, Jul. 2016.

[111] D. Schmitter, A. Roche, B. Maréchal, D. Ribes, A. Abdulkadir,
M. Bach-Cuadra, A. Daducci, C. Granziera, S. Klöppel, P. Maeder,
R. Meuli, and G. Krueger, ‘‘An evaluation of volume-based morphometry
for prediction of mild cognitive impairment and Alzheimer’s disease,’’
NeuroImage, Clin., vol. 7, pp. 7–17, Jan. 2015.

[112] P. Moulin, ‘‘Multiscale image decompositions and wavelets,’’ in The
Essential Guide to Image Processing. Amsterdam, The Netherlands:
Elsevier, 2009, pp. 123–142.

[113] R. Merry, ‘‘Wavelet theory and applications: A literature study,’’ DCT
Rapporten, Eindhoven Univ. Technol., Eindhoven, The Netherlands,
Tech. Rep., 2005.

[114] D. S. R. Grace and M. I. Sheela, ‘‘A study on asphyxiating the drawbacks
of wavelet transform by using curvelet transform,’’ Int. J. Comput. Sci.
Mobile Comput, vol. 4, no. 9, pp. 318–323, 2015.

[115] P. Padilla, J. Gorriz, J. Ramirez, R. Chaves, F. Segovia, I. Alvarez,
D. Salas-González, M. López, and C. Puntonet, ‘‘Alzheimer’s disease
detection in functional images using 2D Gabor wavelet analysis,’’ Elec-
tron. Lett., vol. 46, no. 8, pp. 556–558, 2010.

[116] V. Mani, S. Arivazhagan, and J. J. Braino, ‘‘Multimodal image fusion
using multiresolution techniques,’’ Elixir Adv. Engg. Info. A, vol. 55,
pp. 13160–13163, Feb. 2013.

[117] U. R. Acharya, S. L. Fernandes, J. E. WeiKoh, E. J. Ciaccio,
M. K. M. Fabell, U. J. Tanik, V. Rajinikanth, and C. H. Yeong, ‘‘Auto-
mated detection of Alzheimer’s disease using brain MRI images—
A study with various feature extraction techniques,’’ J. Med. Syst., vol. 43,
no. 9, p. 302, Sep. 2019.

[118] S.-H. Wang, Y. Zhang, Y.-J. Li, W.-J. Jia, F.-Y. Liu, M.-M. Yang,
and Y.-D. Zhang, ‘‘Single slice based detection for Alzheimer’s
disease via wavelet entropy and multilayer perceptron trained by
biogeography-based optimization,’’ Multimedia Tools Appl., vol. 77,
no. 9, pp. 10393–10417, May 2018.

[119] S. Alam, G.-R. Kwon, J.-I. Kim, and C.-S. Park, ‘‘Twin SVM-based
classification of Alzheimer’s disease using complex dual-tree wavelet
principal coefficients and LDA,’’ J. Healthcare Eng., vol. 2017, pp. 1–12,
Aug. 2017.

[120] C. Geetha and D. Pugazhenthi, ‘‘Classification of Alzheimer’s disease
subjects from MRI using fuzzy neural network with feature extraction
using discrete wavelet transform,’’ Biomed. Res., vol. 29, pp. s14–s21,
Jan. 2018.

VOLUME 9, 2021 58533



R. A. Hazarika et al.: Survey on Classification Algorithms of Brain Images in AD Based on Feature Extraction Techniques

[121] D. Jha, J.-I. Kim, and G.-R. Kwon, ‘‘Diagnosis of Alzheimer’s disease
using dual-tree complex wavelet transform, PCA, and feed-forward neu-
ral network,’’ J. Healthcare Eng., vol. 2017, pp. 1–13, Jun. 2017.

[122] H. Cheng, W. Deng, C. Fu, Y. Wang, and Z. Qin, ‘‘Graph-based semi-
supervised feature selection with application to automatic spam image
identification,’’ in Proc. Int. Workshop Comput. Sci. Environ. Eng. EcoIn-
format. Berlin, Germany: Springer, 2011, pp. 259–264.

[123] T. Tong, R. Wolz, Q. Gao, R. Guerrero, J. V. Hajnal, and D. Rueckert,
‘‘Multiple instance learning for classification of dementia in brain MRI,’’
Med. Image Anal., vol. 18, no. 5, pp. 808–818, Jul. 2014.

[124] T. Tong, K. Gray, Q. Gao, L. Chen, and D. Rueckert, ‘‘Multi-modal clas-
sification of Alzheimer’s disease using nonlinear graph fusion,’’ Pattern
Recognit., vol. 63, pp. 171–181, Mar. 2017.

[125] I. Beheshti, N. Maikusa, M. Daneshmand, H. Matsuda, H. Demirel, and
G. Anbarjafari, ‘‘Classification of Alzheimer’s disease and prediction of
mild cognitive impairment conversion using histogram-based analysis of
patient-specific anatomical brain connectivity networks,’’ J. Alzheimer’s
Disease, vol. 60, no. 1, pp. 295–304, Aug. 2017.

[126] A. Pulido, A. Rueda, and E. Romero, ‘‘Classification of Alzheimer’s
disease using regional saliency maps from brain MR volumes,’’ in Proc.
Med. Imag., Comput.-Aided Diagnosis, Int. Soc. Opt. Photon., vol. 8670,
2013, Art. no. 86700R.

[127] M. Plocharski, L. R. Østergaard, and Alzheimer’s Disease Neuroimag-
ing Initiative, ‘‘Extraction of sulcal medial surface and classification of
Alzheimer’s disease using sulcal features,’’ Comput. Methods Programs
Biomed., vol. 133, pp. 35–44, Sep. 2016.

[128] A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, and Alzheimer’s
Disease Neuroimaging Initiative, ‘‘Classification of patients with MCI
and AD from healthy controls using directed graph measures of resting-
state fMRI,’’ Behavioural Brain Res., vol. 322, pp. 339–350, Mar. 2017.

[129] J. Liu, J. Wang, B. Hu, F.-X. Wu, and Y. Pan, ‘‘Alzheimer’s disease clas-
sification based on individual hierarchical networks constructed with 3-D
texture features,’’ IEEE Trans. Nanobiosci., vol. 16, no. 6, pp. 428–437,
Sep. 2017.

[130] J. Liu, M. Li, W. Lan, F.-X. Wu, Y. Pan, and J. Wang, ‘‘Classification of
Alzheimer’s disease using whole brain hierarchical network,’’ IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 15, no. 2, pp. 624–632, Mar. 2018.

[131] J. Liu, J. Wang, Z. Tang, B. Hu, F.-X. Wu, and Y. Pan, ‘‘Improving
Alzheimer’s disease classification by combining multiple measures,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 5, pp. 1649–1659,
Sep. 2018.

[132] V. H. Gaidhane, Y. V. Hote, and V. Singh, ‘‘A new approach for estimation
of eigenvalues of images,’’ Int. J. Comput. Appl., vol. 26, no. 9, pp. 1–6,
Jul. 2011.

[133] A. Tsymbal, S. Puuronen, M. Pechenizkiy, M. Baumgarten, and
A. W. Patterson, ‘‘Eigenvector-based feature extraction for classifica-
tion,’’ in Proc. FLAIRS Conf., 2002, pp. 354–358.

[134] Z. M. Hira and D. F. Gillies, ‘‘A review of feature selection and feature
extraction methods applied on microarray data,’’ Adv. Bioinf., vol. 2015,
pp. 1–13, Jun. 2015.

[135] M. Reuter, F.-E. Wolter, M. Shenton, and M. Niethammer, ‘‘Laplace–
Beltrami eigenvalues and topological features of eigenfunctions for statis-
tical shape analysis,’’ Comput.-Aided Des., vol. 41, no. 10, pp. 739–755,
Oct. 2009.

[136] H. Abdi and L. J. Williams, ‘‘Principal component analysis,’’ Wiley
Interdiscipl. Rev., Comput. Statist., vol. 2, no. 4, pp. 433–459, 2010.

[137] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and
A. Hooman, ‘‘An overview of principal component analysis,’’ J. Signal
Inf. Process., vol. 4, no. 3B, p. 173, 2013.

[138] M. M. López, J. Ramírez, J. M. Górriz, I. Álvarez, D. Salas-Gonzalez,
F. Segovia, and R. Chaves, ‘‘SVM-based CAD system for early detection
of the Alzheimer’s disease using kernel PCA and LDA,’’ Neurosci. Lett.,
vol. 464, no. 3, pp. 233–238, Oct. 2009.

[139] C. Li, Y. Diao, H. Ma, and Y. Li, ‘‘A statistical PCA method for face
recognition,’’ in Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl., vol. 3,
Dec. 2008, pp. 376–380.

[140] J. Ramírez, J. M. Górriz, F. Segovia, R. Chaves, D. Salas-Gonzalez,
M. López, I. Álvarez, and P. Padilla, ‘‘Computer aided diagnosis system
for the Alzheimer’s disease based on partial least squares and random
forest SPECT image classification,’’ Neurosci. Lett., vol. 472, no. 2,
pp. 99–103, Mar. 2010.

[141] A. K. Ramaniharan, S. C. Manoharan, and R. Swaminathan, ‘‘Laplace
Beltrami eigen value based classification of normal and Alzheimer MR
images using parametric and non-parametric classifiers,’’ Expert Syst.
Appl., vol. 59, pp. 208–216, Oct. 2016.

[142] L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, and F. Segovia, ‘‘Early
diagnosis of Alzheimer’s disease based on partial least squares, principal
component analysis and support vector machine using segmented MRI
images,’’ Neurocomputing, vol. 151, pp. 139–150, Mar. 2015.

[143] I. Illán, J. M. Górriz, J. Ramírez, D. Salas-Gonzalez, M. M. López,
F. Segovia, R. Chaves, M. Gómez-Rio, and C. G. Puntonet, ‘‘18F-FDG
PET imaging analysis for computer aided Alzheimer’s diagnosis,’’ Inf.
Sci., vol. 181, no. 4, pp. 903–916, 2011.

[144] F. Segovia, J. Górriz, J. Ramírez, D. Salas-Gonzalez, and A. I. Álvarez,
‘‘Early diagnosis of Alzheimer’s disease based on partial least squares and
support vector machine,’’ Expert Syst. Appl., vol. 40, no. 2, pp. 677–683,
2013.

[145] J. M. Górriz, F. Segovia, J. Ramírez, A. Lassl, and D. Salas-Gonzalez,
‘‘GMM based SPECT image classification for the diagnosis of
Alzheimer’s disease,’’ Appl. Soft Comput., vol. 11, no. 2, pp. 2313–2325,
Mar. 2011.

[146] R. Chaves, J. Ramírez, J. M. Górriz, C. G. Puntonet, and Alzheimer’s Dis-
ease Neuroimaging Initiative, ‘‘Association rule-based feature selection
method for Alzheimer’s disease diagnosis,’’ Expert Syst. Appl., vol. 39,
no. 14, pp. 11766–11774, Oct. 2012.

[147] D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, I. A. Illán, M. López,
F. Segovia, R. Chaves, P. Padilla, C. G. Puntonet, and Alzheimer’s Dis-
ease Neuroimage Initiative, ‘‘Feature selection using factor analysis for
Alzheimer’s diagnosis using F18-FDG PET images,’’Med. Phys., vol. 37,
no. 11, pp. 6084–6095, Nov. 2010.

[148] B. Gaikwad, V. Musande, and Alzheimer’s Disease Neuroimaging Initia-
tive, ‘‘Hyperspectral image classification using harmonic analysis inte-
gratedwith BFOoptimized SVM,’’ Int. J. Comput. Sci. Netw., vol. 4, no. 4,
pp. 2277–5420, 2015.

[149] F. Nina-Paravecino and V. Manian, ‘‘Spherical harmonics as a shape
descriptor for hyperspectral image classification,’’ in Proc. 16th Algo-
rithms Technol. Multispectral, Hyperspectral, Ultraspectral Imag., Int.
Soc. Opt. Photon., vol. 7695, May 2010, Art. no. 76951E.

[150] D. V. Sorokin, M. M. Mizotin, and A. S. Krylov, ‘‘Gauss-Laguerre
keypoints extraction using fast Hermite projection method,’’ in Proc.
Int. Conf. Image Anal. Recognit. Berlin, Germany: Springer, 2011,
pp. 284–293.

[151] O. Ben Ahmed, M. Mizotin, J. Benois-Pineau, M. Allard, G. Catheline,
C. Ben Amar, and Alzheimer’s Disease Neuroimaging Initiative,
‘‘Alzheimer’s disease diagnosis on structural MR images using circular
harmonic functions descriptors on hippocampus and posterior cingulate
cortex,’’ Comput. Med. Imag. Graph., vol. 44, pp. 13–25, Sep. 2015.

[152] E. Gerardin, G. Chételat, M. Chupin, R. Cuingnet, B. Desgranges,
H.-S. Kim, M. Niethammer, B. Dubois, S. Lehéricy, L. Garnero,
F. Eustache, and O. Colliot, ‘‘Multidimensional classification of hip-
pocampal shape features discriminates Alzheimer’s disease and mild
cognitive impairment from normal aging,’’ NeuroImage, vol. 47, no. 4,
pp. 1476–1486, Oct. 2009.

[153] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[154] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2, Sep. 1999, pp. 1150–1157.

[155] J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su, and S. Gong, ‘‘A compar-
ative study of SIFT and its variants,’’ Meas. Sci. Rev., vol. 13, no. 3,
pp. 122–131, Jun. 2013.

[156] C. Leng, H. Zhang, B. Li, G. Cai, Z. Pei, and L. He, ‘‘Local fea-
ture descriptor for image matching: A survey,’’ IEEE Access, vol. 7,
pp. 6424–6434, 2019.

[157] M. R. Daliri, ‘‘Automated diagnosis of Alzheimer disease using the scale-
invariant feature transforms inmagnetic resonance images,’’ J.Med. Syst.,
vol. 36, no. 2, pp. 995–1000, Apr. 2012.

[158] S. Walczak, ‘‘Artificial neural networks,’’ in Advanced Methodologies
and Technologies in Artificial Intelligence, Computer Simulation, and
Human-Computer Interaction. Hershey, PA, USA: IGI Global, 2019,
pp. 40–53.

[159] J. Mahanta, ‘‘Introduction to neural networks, advantages and applica-
tions,’’ Towards Data Sci., vol. 13, Jul. 2017.

[160] J. V. Tu, ‘‘Advantages and disadvantages of using artificial neural
networks versus logistic regression for predicting medical outcomes,’’
J. Clin. Epidemiol., vol. 49, no. 11, pp. 1225–1231, Nov. 1996.

[161] M. Liu, D. Cheng,W. Yan, and Alzheimer’s Disease Neuroimaging Initia-
tive, ‘‘Classification of Alzheimer’s disease by combination of convolu-
tional and recurrent neural networks using FDG-PET images,’’ Frontiers
Neuroinform., vol. 12, p. 35, Jun. 2018.

58534 VOLUME 9, 2021



R. A. Hazarika et al.: Survey on Classification Algorithms of Brain Images in AD Based on Feature Extraction Techniques

[162] B.-K. Choi, N. Madusanka, H.-K. Choi, J.-H. So, C.-H. Kim, H.-G. Park,
S. Bhattacharjee, and D. Prakash, ‘‘Convolutional neural network-based
mr image analysis for Alzheimer’s disease classification,’’ Current Med.
Imag., vol. 16, no. 1, pp. 27–35, 2020.

[163] J. M. Rondina, L. K. Ferreira, F. L. de Souza Duran, R. Kubo, C. R. Ono,
C. C. Leite, J. Smid, R. Nitrini, C. A. Buchpiguel, and G. F. Busatto,
‘‘Selecting the most relevant brain regions to discriminate Alzheimer’s
disease patients from healthy controls using multiple kernel learning:
A comparison across functional and structural imaging modalities and
atlases,’’ NeuroImage, Clin., vol. 17, pp. 628–641, Jan. 2018.

[164] M. F. Schmidt, J. M. Storrs, K. B. Freeman, C. R. Jack, S. T. Turner,
M. E. Griswold, and T. H. Mosley, Jr., ‘‘A comparison of manual
tracing and FreeSurfer for estimating hippocampal volume over the
adult lifespan,’’ Hum. Brain Mapping, vol. 39, no. 6, pp. 2500–2513,
Jun. 2018.

[165] Y. Gao and A. Tannenbaum, ‘‘Combining atlas and active contour for
automatic 3D medical image segmentation,’’ in Proc. IEEE Int. Symp.
Biomed. Imag., Nano Macro, Mar. 2011, pp. 1401–1404.

[166] N. Lin, J. Jiang, S. Guo, and M. Xiong, ‘‘Functional principal component
analysis and randomized sparse clustering algorithm for medical image
analysis,’’ PLoS ONE, vol. 10, no. 7, Jul. 2015, Art. no. e0132945.

[167] J.M. R. Tavares and J. R. Natal,Computational Vision andMedical Image
Processing IV: VIPIMAGE 2013. Boca Raton, FL, USA: CRC Press,
2013.

[168] S. Pang, J. Jiang, Z. Lu, X. Li, W. Yang, M. Huang, Y. Zhang, Y. Feng,
W. Huang, and Q. Feng, ‘‘Hippocampus segmentation based on local
linear mapping,’’ Sci. Rep., vol. 7, no. 1, pp. 1–11, Apr. 2017.

[169] L.-Y. Chen and C.-J. Lu, ‘‘An improved independent component analysis
algorithm based on artificial immune system,’’ Int. J. Mach. Learn.
Comput., vol. 3, no. 1, p. 93, 2013.

[170] T. Nguyen, ‘‘Gaussian mixture model based spatial information con-
cept for image segmentation,’’ Univ. Windsor, Windsor, ON, Canada,
Tech. Rep. 438, 2011.

[171] Y. Yang, Y. Song, F. Zhai, Z. Fan, Y. Meng, and J. Wang, ‘‘A high-
precision localization algorithm by improved SIFT key-points,’’ in Proc.
2nd Int. Congr. Image Signal Process., 2009, pp. 1–6.

[172] P. Garg and T. Jain, ‘‘A comparative study on histogram equalization and
cumulative histogram equalization,’’ Int. J. New Technol. Res., vol. 3,
no. 9, 2017, Art. no. 263242.

[173] M. Tseitlin, A. Dhami, S. S. Eaton, and G. R. Eaton, ‘‘Comparison of
maximum entropy and filtered back-projection methods to reconstruct
rapid-scan EPR images,’’ J. Magn. Reson., vol. 184, no. 1, pp. 157–168,
Jan. 2007.

[174] D. S. Jones, Pharmaceutical Statistics. London, U.K.: Pharmaceutical
Press, 2002.

[175] B. P. Patel, N. Gupta, R. K. Karn, and Y. Rana, ‘‘Optimization of asso-
ciation rules mining Apriori algorithm based on ACO,’’ Int. J. Emerg.
Technol., vol. 2, no. 1, pp. 87–92, 2011.

[176] M. Kavitha and S. Selvi, ‘‘Comparative study on Apriori algorithm and
Fp growth algorithm with pros and cons,’’ Int. J. Comput. Sci. Trends
Technol., vol. 4, pp. 2016.

[177] K. K. Pal and K. S. Sudeep, ‘‘Preprocessing for image classification by
convolutional neural networks,’’ in Proc. IEEE Int. Conf. Recent Trends
Electron., Inf. Commun. Technol. (RTEICT), May 2016, pp. 1778–1781.

[178] X. Jiang, R. Zhang, and S. Nie, ‘‘Image segmentation based on level set
method,’’ Phys. Procedia, vol. 33, pp. 840–845, Jan. 2012.

[179] N. A. Ahad and S. S. S. Yahaya, ‘‘Sensitivity analysis of Welch’s t-test,’’
in Proc. AIP Conf., vol. 1605, 2014, pp. 888–893.

[180] S. Andrews, I. Tsochantaridis, and T. Hofmann, ‘‘Support vector
machines for multiple-instance learning,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2003, pp. 577–584.

[181] B. Menze, G. Langs, A. Montillo, M. Kelm, H. Müller, and A. Z. Tu,
Medical Computer Vision. Large Data in Medical Imaging: Third Inter-
national MICCAI Workshop, MCV 2013, Nagoya, Japan, September 26,
2013, Revised Selected Papers, vol. 8331. Nagoya, Japan: Springer, 2014.

[182] J. A. Yesavage and J. O. Brooks, ‘‘On the importance of longitudinal
research in Alzheimer’s disease,’’ J. Amer. Geriatrics Soc., vol. 39, no. 9,
pp. 942–944, Sep. 1991.

[183] J. Ashburner, ‘‘A fast diffeomorphic image registration algorithm,’’ Neu-
roImage, vol. 38, no. 1, pp. 95–113, Oct. 2007.

[184] D. M. Pirouz, ‘‘An overview of partial least squares,’’ SSRN Electron. J.,
2006.

[185] R. Rifkin and A. Klautau, ‘‘In defense of one-vs-all classification,’’
J. Mach. Learn. Res., vol. 5, pp. 101–141, Jan. 2004.

[186] A. F. Zubair, S. B. Aribisala, M. Manca, andM.Mazzara, ‘‘On the parcel-
lation of functionalmagnetic resonance images,’’ inProc. Int. Conf. Softw.
Eng. Defence Appl. Cham, Switzerland: Springer, 2018, pp. 325–332.

[187] C. Gaser, I. Nenadic, B. R. Buchsbaum, E. A. Hazlett, and
M. S. Buchsbaum, ‘‘Deformation-based morphometry and its relation to
conventional volumetry of brain lateral ventricles in MRI,’’ NeuroImage,
vol. 13, no. 6, pp. 1140–1145, Jun. 2001.

[188] P. Ammu, K. Sivakumar, and R. Rejimoan, ‘‘Biogeography-based
optimization—A survey,’’ Int. J. Electron Comput. Sci. Eng., vol. 2, no. 1,
pp. 154–160, 2013.

[189] F. Rajulton, ‘‘The fundamentals of longitudinal research: An overview,’’
Can. Stud. Population Archives, vol. 28, no. 2, pp. 169–185, Dec. 2001.

[190] S. Blüml and A. Panigrahy, MR Spectroscopy of Pediatric Brain Disor-
ders. New York, NY, USA: Springer, 2012.

[191] L. Zhou, L. Wang, C. Shen, and N. Barnes, ‘‘Hippocampal shape clas-
sification using redundancy constrained feature selection,’’ in Proc. Int.
Conf. Med. Image Comput. Comput.-Assist. Intervent. Berlin, Germany:
Springer, 2010, pp. 266–273.

[192] S. Niijima and S. Kuhara, ‘‘Recursive gene selection based on maximum
margin criterion: A comparison with SVM-RFE,’’ BMC Bioinf., vol. 7,
no. 1, p. 543, Dec. 2006.

[193] F. Lu and E. Petkova, ‘‘A comparative study of variable selection methods
in the context of developing psychiatric screening instruments,’’ Statist.
Med., vol. 33, no. 3, pp. 401–421, Feb. 2014.

[194] J. Xin, Y. Zhang, Y. Tang, and Y. Yang, ‘‘Brain differences between men
and women: Evidence from deep learning,’’ Frontiers Neurosci., vol. 13,
p. 185, Mar. 2019.

[195] B. Yang and S. Chen, ‘‘A comparative study on local binary pattern (LBP)
based face recognition: LBP histogram versus LBP image,’’ Neurocom-
puting, vol. 120, pp. 365–379, Nov. 2013.

[196] X.Wang, J. Xu,W. Shi, and J. Liu, ‘‘OGRU:An optimized gated recurrent
unit neural network,’’ in Proc. J. Phys., Conf., vol. 1325. Bristol, U.K.:
IOP Publishing, 2019, Art. no. 012089.

[197] S. Maldonado, J. Pérez, and C. Bravo, ‘‘Cost-based feature selection for
support vector machines: An application in credit scoring,’’ Eur. J. Oper.
Res., vol. 261, no. 2, pp. 656–665, Sep. 2017.

[198] V. Prasatha, H. A. A. Alfeilate, A. Hassanate, O. Lasassmehe,
A. S. Tarawnehf,M. B. Alhasanatg, andH. S. E. Salmane, ‘‘Effects of dis-
tance measure choice on KNN classifier performance—A review,’’ 2017,
arXiv:1708.04321. [Online]. Available: https://arxiv.org/pdf/1708.04321

[199] H. Parvin, H. Alizadeh, and B. Minaei-Bidgoli, ‘‘MKNN: Modified
k-nearest neighbor,’’ in Proc. World Congr. Eng. Comput. Sci., vol. 1.
San Francisco, CA, USA: Citeseer, 2008, pp. 1–4.

[200] A. W. Toga, Brain Mapping: An Encyclopedic Reference. New York, NY,
USA: Academic, 2015.

[201] R. J. Perrin, A. M. Fagan, and D. M. Holtzman, ‘‘Multimodal techniques
for diagnosis and prognosis of Alzheimer’s disease,’’ Nature, vol. 461,
no. 7266, pp. 916–922, Oct. 2009.

[202] S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, and
M. J. Fulham, ‘‘Multimodal neuroimaging feature learning for multiclass
diagnosis of Alzheimer’s disease,’’ IEEE Trans. Biomed. Eng., vol. 62,
no. 4, pp. 1132–1140, Apr. 2015.

[203] Y. Zhang, H. Zhang, E. Adeli, X. Chen, M. Liu, and D. Shen, ‘‘Multiview
feature learning with multiatlas-based functional connectivity networks
for MCI diagnosis,’’ IEEE Trans. Cybern., early access, Dec. 14, 2020,
doi: 10.1109/TCYB.2020.3016953.

[204] W. Shao, Y. Peng, C. Zu, M. Wang, D. Zhang, and Alzheimer’s Disease
Neuroimaging Initiative, ‘‘Hypergraph based multi-task feature selection
for multimodal classification of Alzheimer’s disease,’’ Comput. Med.
Imag. Graph., vol. 80, Mar. 2020, Art. no. 101663.

[205] Y. Zhang, H. Zhang, X. Chen, M. Liu, X. Zhu, S.-W. Lee, and D. Shen,
‘‘Strength and similarity guided group-level brain functional network
construction forMCI diagnosis,’’Pattern Recognit., vol. 88, pp. 421–430,
Apr. 2019.

[206] T. Zhou, K.-H. Thung, M. Liu, F. Shi, C. Zhang, and D. Shen, ‘‘Multi-
modal latent space inducing ensemble SVM classifier for early dementia
diagnosis with neuroimaging data,’’Med. Image Anal., vol. 60, Feb. 2020,
Art. no. 101630.

[207] W. Zheng, Z. Yao, Y. Li, Y. Zhang, B. Hu, D. Wu, and Alzheimer’s
Disease Neuroimaging Initiative, ‘‘Brain connectivity based prediction
of Alzheimer’s disease in patients with mild cognitive impairment based
on multi-modal images,’’ Frontiers Human Neurosci., vol. 13, p. 399,
Nov. 2019.

[208] P. Gavali and J. S. Banu, ‘‘Deep convolutional neural network for
image classification on CUDA platform,’’ in Deep Learning and Par-
allel Computing Environment for Bioengineering Systems. Amsterdam,
The Netherlands: Elsevier, 2019, pp. 99–122.

VOLUME 9, 2021 58535

http://dx.doi.org/10.1109/TCYB.2020.3016953


R. A. Hazarika et al.: Survey on Classification Algorithms of Brain Images in AD Based on Feature Extraction Techniques

[209] F. Ramzan, M. U. G. Khan, A. Rehmat, S. Iqbal, T. Saba, A. Rehman,
and Z. Mehmood, ‘‘A deep learning approach for automated diagnosis
and multi-class classification of Alzheimer’s disease stages using resting-
state fMRI and residual neural networks,’’ J. Med. Syst., vol. 44, no. 2,
pp. 1–16, Feb. 2020.

[210] M. Liu, F. Li, H. Yan, K. Wang, Y. Ma, L. Shen, M. Xu, and Alzheimer’s
Disease Neuroimaging Initiative, ‘‘A multi-model deep convolutional
neural network for automatic hippocampus segmentation and classi-
fication in Alzheimer’s disease,’’ NeuroImage, vol. 208, Mar. 2020,
Art. no. 116459.

[211] N. T. Duc, S. Ryu,M. N. I. Qureshi, M. Choi, K. H. Lee, and B. Lee, ‘‘3D-
deep learning based automatic diagnosis of Alzheimer’s disease with joint
MMSE prediction using resting-state fMRI,’’ Neuroinformatics, vol. 18,
no. 1, pp. 71–86, Jan. 2020.

[212] K. Oh, Y.-C. Chung, K. W. Kim,W.-S. Kim, and I.-S. Oh, ‘‘Classification
and visualization of Alzheimer’s disease using volumetric convolutional
neural network and transfer learning,’’ Sci. Rep., vol. 9, no. 1, pp. 1–16,
2019.

[213] X. Bi, X. Zhao, H. Huang, D. Chen, andY.Ma, ‘‘Functional brain network
classification for Alzheimer’s disease detection with deep features and
extreme learning machine,’’Cognit. Comput., vol. 12, no. 3, pp. 513–527,
May 2020.

RUHUL AMIN HAZARIKA received the
B.Tech. and M.Tech. degrees in information
technology from North Eastern Hill University
(NEHU), Shillong, India, in 2015 and 2017,
respectively, where he is currently pursuing
the Ph.D. degree in information technology.
His research interests include AI and image
processing.

ARNAB KUMAR MAJI received the B.E. degree
in information science and engineering from
Visvesvaraya Technological University (VTU),
in 2003, the M.Tech. degree in information tech-
nology from Bengal Engineering and Science
University, Shibpur (currently IIEST, Shibpur),
in 2005, and the Ph.D. degree from Assam Uni-
versity Silchar (A Central University of India),
in 2016. He has 16 years of professional expe-
rience. He is currently working as an Assistant

Professor (Stage-3) with the Department of Information Technology, North
Eastern Hill University, Shillong (A Central University of India). He has
published more than 30 papers in different reputed international journals
and conferences. He has published more than 20 articles as a book chapter
and coauthored one book with several international publishers like Elsevier,
Springer, IGI Global, andMcMilan International; and four Ph.D. scholars are
currently pursuing Ph.D. degrees under his active supervision. He has also
guided 14 M.Tech. thesis and three Ph.D. scholars successfully. His research
interests include machine learning, image processing, and natural language
processing.

SAMARENDRA NATH SUR (Senior Member,
IEEE) was born in Hooghly, West Bengal, India,
in 1984. He received the B.Sc. degree in physics
(Hons.) from the University of Burdwan, in 2007,
the M.Sc. degree in electronics science from
Jadavpur University, in 2007, the M.Tech. degree
in digital electronics and advanced communication
from Sikkim Manipal University, in 2012, and the
Ph.D. degree from NIT, Durgapur. Since 2008,
he has been associated with the Sikkim Manipal

Institute of Technology, India, where he is currently an Assistant Professor

with the Department of Electronics and Communication Engineering. His
publications include more than 60 articles, including SCI/Scopus indexed
journal and conference papers. His current research interests include broad-
band wireless communication (MIMO and spread spectrum technology),
advanced digital signal processing, and radar (signal processing). He is also
a Senior Member of the IEEE-IoT, the IEEE Signal Processing Society,
the Institution of Engineers, India (IEI), and the International Association
of Engineers (IAENG). He was a recipient of the University Medal and the
Dr. S. C. Mukherjee Memorial Gold Centered Silver Medal from Jadavpur
University, in 2007. He has been serving as a Guest Editor in Topical
collection, SN Applied Sciences (Springer) since 2019. He also serves as
a Reviewer for International Journal of Electronics (Taylor and Francis),
IET Communication, Ad Hoc Networks (Elsevier), and IEEE TRANSACTIONS

ON SIGNAL PROCESSING, SN Applied Sciences, Transactions on Emerging
Telecommunications Technologies (Wiley), and Telecommunication Systems
(Springer).

BABU SENA PAUL (Member, IEEE) received the
B.Tech. and M.Tech. degrees in radiophysics and
electronics from the University of Calcutta, West
Bengal, India, in 1999 and 2003, respectively, and
the Ph.D. degree from the Department of Electron-
ics and Communication Engineering, IIT Guwa-
hati, India. He was with Philips India Ltd., from
1999 to 2000. From 2000 to 2002, he has served
as a Lecturer with the Electronics and Commu-
nication Engineering Department, SMIT, Sikkim,

India. He has attended and published more than 60 research papers in
international and national conferences, symposiums, and peer reviewed
journals. He has successfully supervised several postgraduate students and
postdoctoral research fellows. He joined the University of Johannesburg
in 2010. He has served as the Head of the Department at the Department of
Electrical and Electronic Engineering Technology, University of Johannes-
burg, from April 2015 to March 2018. He has been serving as an Associate
Professor and the Director of the Institute for Intelligent Systems, University
of Johannesburg. He is a Life Member of IETE. He was awarded the IETE
Research Fellowship.

DEBDATTA KANDAR was born in Deulia,
Kolaghat, Purba Medinipur, West Bengal, India,
in 1977. He received the Ph.D. (Engg.) degree
from the Department of Electronics and Telecom-
munication Engineering, Jadavpur University,
Kolkata, West Bengal, in 2011. He has more than
18 years of professional experience. He is cur-
rently an Associate Professor with the Depart-
ment of Information Technology, North-Eastern
Hill University, Shillong, India. Before joining

NEHU, he has worked with the S. K. P. Engineering College, Tiruvanna-
malai, Tamil Nadu, and the SikkimManipal Institute of Technology, Sikkim,
India. He has worked in a DRDO sponsored project and he has several
years of industry experience too. He has successfully guided several Ph.D.,
M.Tech., and B.Tech., students. Four of his students already awarded the
Ph.D. degree. He has national and international collaborations for carrying
out research works. He has delivered talks in different workshop, seminar,
and FDP. He has successfully organized several national and international
seminar and conferences. He has published approximately 90 research papers
in different national and international journals, conference proceedings, and
book chapters. He also published edited book. He has completed his postdoc-
toral research from the Department of Electrical and Electronic Engineering
Technology, University of Johannesburg, Johannesburg, South Africa. His
research interests include wireless mobile communication, artificial intelli-
gence, soft computing, and radar operation. He has been awarded the Young
Scientist Award from Union Radio Science International (URSI GA-2005)
at Vigyan Bhaban, Delhi, for his research work. President of India, Dr. A. P.
J. Abdul Kalam invited him at his residence on that occasion. He also chaired
several sessions in different conferences.

58536 VOLUME 9, 2021


