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ABSTRACT Effort estimation is the most critical activity for the success of overall solution delivery in
software engineering projects. In this context, the paper’s main contributions to the literature on software
effort estimation are twofold. First, this paper examines the application of meta-heuristic algorithms to have
a logical and acceptable parametric model for software effort estimation. Secondly, to unravel the benefits of
nature-inspiredmeta-heuristic algorithms usage in optimizingDeep Learning (DL) architectures for software
effort estimation, this paper presents a Deep Neural Network (DNN) model for software effort estimation
based on meta-heuristic algorithms. In this paper, Grey Wolf Optimizer (GWO) and StrawBerry (SB)
meta-heuristic algorithms are applied for having a logical and acceptable parametric model for software
effort estimation. To validate the performances of these two algorithms, a set of nine benchmark functions
having wide dimensions is applied. Results from GWO and SB algorithms are compared with five other
meta-heuristic algorithms used in literature for software effort estimation. Experimental results showed
that the GWO has comprehensive superiority in terms of accuracy in estimation. The proposed DNN
model (GWDNNSB) usingmeta-heuristic algorithms for initial weights and learning rate selection, produced
better results compared to existing work on using DNN for software effort estimation.

INDEX TERMS Software effort estimation, meta-heuristic algorithms, deep neural networks, deep learning.

I. INTRODUCTION
Software project development is comprised of a different
set of activities from requirement gathering to testing and
maintenance; that need to be carried out in a specified time
and budget [1]. Software engineering is based on logical
and analytical work. Compared to other kinds of engineering
projects, software development is more complex because
of the high rate of change in customer requirements and
rapid advancement in technology. Therefore, for effective
software project management, it becomes a challenge to
achieve specific objectives while satisfying a range of con-
straints [2]. The rapid trend in hardware advancement cre-
ated a situation where the hardware is cheap as compared
to the programmer. No matter how fast the hardware is, for
tangible performance improvement, it is required to opti-
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mize the software too, which in return puts the burden on
the developers to develop adaptable software in a restricted
time and budget, to bridge the gap between hardware and
software development. The world of technology is one such
place that is advancing at a very fast pace. The current era
has already witnessed the emergence of trends in software
development ranging from artificial intelligence [9], mobile
computing [56], blockchain, virtual reality [61], autonomous
vehicles [54], and cyber security. Moreover, with the
advancement in the trend of network technologies (e.g.,
5G [59], and Information-centric networking [60]), and appli-
cations (e.g., intelligent transportation system [54], [56],
Internet of Things (IoT), autonomous vehicles [54], mobile
computing [56]), there is a rise in the trend towards providing
software-defined architectures [58] to simplify management
and enable innovation through programmability. Planning
and estimation activities are particularly challenging in large
and distributed projects.
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Measuring the sophistication of the software in the ini-
tial development stages and making the required estimations
precisely is challenging, both for the project managers and
developers. Software cost and effort estimation incorporate
processes to determine project cost, effort in terms of man-
hours, and time duration to complete a project [3], [8]. Project
effort underestimation may result in the surpassed budget,
underdeveloped or limited functions, mediocre quality, and
failure to timely complete the project [5]. Overestimating
will result in wastage of resources due to the commitment of
too many resources to the project. Therefore, precise time,
cost, and effort estimation are not only considered as the
critical factors for the success of a project, but also effective
in business decision-making. For the success of the soft-
ware the project, it is necessary to accurately comprehend
the requirements such as (i) impacts on the system design,
(ii) to determine performance bounds due to hardware
advancement, (iii) set forth assumptions on the new environ-
ment, (iv) set forth dynamic changes to customer require-
ments, and (iv) seek for the good trade-off.

Existing research has presented several techniques for cost
and effort estimation. Despite the struggle, precise effort
estimation is still an open issue. Existing research efforts
related to software effort estimation can be broadly divided
into two groups: (i) non-algorithmic, and (ii) algorithmic [7].
Techniques based on non-algorithmic models [8], [9] include
analogy-based estimation, expert judgment, Fuzzy Logic
(FL) [14], learning-based techniques (Artificial Neural Net-
work (ANN)) [9], [40], Machine Learning (ML) [11], [12],
Case-Based Reasoning (CBR) [13]. Advancement in the pro-
cess of software development evolved over the last decades.
As a result, most of the available datasets are heteroge-
neous, as their sources are from a variety of organizational
projects and another aspect is a large number of missing
values. Multi-objective and high dimensional data classifi-
cation using Neural Network (NN) is a challenging task.
In algorithmic models [17] effort estimation is provided
by mathematical/statistical models that utilize the product,
project, and process-related attributes. Examples include Put-
nam’s, Function Point Analysis (FPA), COnstructive COst
MOdel (COCOMO), Software Evaluation and Estimation of
Resources - Software Estimation Model (SEERSEM), Soft-
ware LifecycleModel (SLIM) [18]. Effort estimation (related
to new software development) is based on the historical
data from previous software projects. COCOMO [18]–[20]
is one of the most used regression-based algorithmic models
for software effort estimation. COCOMO divides projects
into three categories based on certain features such as size,
staff experience, and software type. COCOMO considers the
project category while assigning initial values to the parame-
ters. In reality, the available software project datasets contain
information about projects of heterogeneous nature (varying
project metrics in terms of size and properties). Therefore,
having a single, logical, and acceptable parametric model is
difficult. Therefore, for estimation accuracy, it is required to
fine-tune the parameters [19].

To overcome the limitations of COCOMOmodels, existing
work on software effort estimation employ different meth-
ods to tweak the COCOMO coefficients and improve effort
estimation. The rising trend of using meta-heuristic algo-
rithms has been witnessed in the recent literature to tweak
COCOMO coefficients as well as to optimize software effort
estimation [30]–[34]. These meta-heuristic algorithms per-
formed well in dealing with the optimization problem in
different domains-of-interest [36]–[38], [42], because of their
unique features including large searching space and random
selection technique.

Sehra et al. [21], reviews the existing literature related to
software effort estimation published in the period 1996-2016.
The authors reported that over the last two decades, there is
a rise in the research efforts related to ML-based software
development effort estimation. Research community is now
considering Deep Learning (DL) as a prospective solution
for improving cost estimation. Deep Neural Network (DNN)
allows to represent complex relationships between effort and
cost drivers, thus making it better choice for software cost
estimation.

A. PROBLEM FORMULATION
The main drawback of existing literature [21]–[35] is that it
is very difficult to figure out which meta-heuristic algorithm
provides better accuracy in estimating software effort. The
main reasons behind unpredictability in the performances
of the meta-heuristic algorithms are as follows. Firstly,
the dataset used by each existingwork in themodel evaluation
is different. The available public datasets are heterogeneous
in terms of size, and a variety of organizational projects data.
The performance of the meta-heuristic algorithm might be
excellent based on one dataset, but unfavorable or lower based
on other datasets. Secondly, the performance measures used
for validation are different. In reality, the performance of the
algorithm might be superior on one performance measure
such as the Mean Magnitude of Relative Error (MMRE), but
it might be unfavorable based on performance measures such
as the Effect Size, and Standardized Accuracy (SA). Thirdly,
performance evaluation, and experimental setup varies in the
existing relevant literature.

TheDNNarchitectures although provides several improve-
ments over existing shallow techniques, but they are also
suffered from several shortcomings including large training
delays, overfitting, and underfitting. Obtaining accurate DNN
model within the moderate time is one of the critical chal-
lenges, especially when there are many parameters in model
configuration and high feature space dimensionality in the
training dataset [39], [42]. Meta-heuristic algorithms support
finding better solutions at a reasonable computational cost.
Further, such algorithms heuristics allows for finding a solu-
tion close to optimum, therefore, can be used with DNN to
reduce large training delays [42]. Meta-heuristic algorithms
have been implemented in DNN training [40]. Tian et al. [43]
review existing work on using meta-heuristic algorithms
for traditional NNs training and parameter optimization in
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different domains. Little attention has been paid by
the research community related to the diffusion of
nature-inspired algorithms in DL for software effort esti-
mation. This provides a window of opportunity to evalu-
ate performance gains that can be achieved by employing
meta-heuristic algorithms to DNN for software effort estima-
tion. Considering these limitations, the main contributions of
this work are as follows:

B. CONTRIBUTIONS
1) The meta-heuristic algorithms Grey Wolf Optimiza-

tion (GWO) [36], [47] and StrawBerry SB) algorithm
[37], [38], [68]–[70], support solving multi-variable
problems, and have been applied for the optimization of
various engineering problems. In this paper, GWO and
SB meta-heuristic algorithms are applied for having
logical, and acceptable parametric models for software
effort estimation. To validate the performances of these
two algorithms, a set of nine benchmark functions hav-
ing wide dimensions is applied.

2) The results obtained from GWO and SB algo-
rithms are compared with five other meta-heuristic
algorithms used in the literature for software
effort estimation. We selected five widely used
nature-inspired algorithms (BAT [29], [45], Cuckoo
Optimization (CO) [35], [53], [54], Genetic Algo-
rithm (GA) [22], [30], [33] and Ant Colony Optimiza-
tion (ACO) [24], [32], Particle Swarm Optimization
(PSO) [27], [34], [46]) for comparison. In this work, for
comparison analysis nature-inspired meta-heuristics
algorithms are selected based on inspiration from:
(i) Natural biological system (GA, SB), (ii) Theory
of evolution (PSO), (iii) Insects activities (ACO),
(iv) Group behavior of animals, and birds (GWO,
CO, BAT).To validate the performances of these seven
algorithms, a set of nine benchmark functions having
wide dimensions is applied. GWO and SB algorithms
have been applied by the research community for
solving complex problems in other fields of science
and engineering, but not exploited for software effort
estimation.

3) We propose a DNN model (named as GWDNNSB)
that exploits meta-heuristic algorithms to optimize the
weights and learning rate. GWO algorithm is used for
initial weights optimization and SB for the learning rate
optimization.

The rest of paper is organized as follows: Section 2 presents
related work, section 3 presents the comparative analysis of
seven widely used nature-inspired algorithms. The proposed
GWDNNSB is discussed in Section 4. Section 5 discusses the
conclusion and future work.

II. STATE OF THE ART
Many researchers around the world used different tech-
niques to optimize software estimation methods [17]. There
exists work that reviews existing literature related to

software cost estimation [19]. For software effort estima-
tion several meta-heuristic algorithms have already been
implemented over the last decade [20], [21], [22], [25] to
tune the COCOMO parameters. For example, Bee Colony
Optimization (BCO) [20], Differential Evolution (DE) [21],
Genetic Algorithm (GA) [22], Fire fly [25], Harmony
Search (HS) [26], Particle Swarm Optimization (PSO) [27]
improved effort estimation by optimizing COCOMO param-
eters. Venkataiah et al. [24] exploited Ant Colony Optimiza-
tion (ACO) technique to optimize the prediction of software
cost estimation.

There exists work that uses hybrid method to optimize
software cost and effort estimation. Hybrid method com-
bines two or more methods. Ahmed et al. [23] presented
Whale-Crow Optimization (WCO) algorithm for software
cost estimation. WCO integrates Whale Optimization Algo-
rithm (WOA) and the Crow Search Algorithm (CSA) to find
the optimal regression coefficients for a regression model.
BATGSA hybrid algorithm based on BAT and Gravitational
Search Algorithm (GSA) is presented in [29] to obtain better
software estimation. BAT algorithm determines the routing
and hunting behavior of bat in the exploration phase which
is further improved by using gravitational force effect of
the GSA to speed up the searching speed of the BAT. Bet-
ter estimation is achieved compared to COCOMO model.
There exists work, which exploits a different combination of
meta-heuristic algorithms to optimize cost and effort estima-
tion. For example, Tabu Search and GA [30]; Partial Swarm
Optimization (PSO), Genetic Algorithm (GA) and invasive
Weed Optimization Algorithm (WOA) are implied synthet-
ically to improve the COCOMO process model [31]; Ant
Colony Optimization (ACO) and Chaos Optimization Algo-
rithm (COA) [32]; GA andArtificial Bee Colony (ABC) [33];
PSO and DE [34]; Cuckoo Search (CS) and Harmony
Search (HS) algorithms [35] for optimizing COCOMO-II
coefficients.

Currently, ANN is widely used for software effort estima-
tion [39], and is an active research area [12]. Ali et al. [39]
performed a systematic review of existing work that uses
ML techniques to build software effort estimation models.
Comparative performance analysis of four NN models is
performed in [40]: (i) General Regression Neural Network
(GRNN) (ii) Cascade Correlation Neural Network (CCNN)
(iii) Multilayer Perceptron (MLP), (iv) Radial Basis Func-
tion Neural Network (RBFNN). The work demonstrates that
GRNN outperforms compared to other NN models. In [41]
random forest technique is investigated for software effort
estimation. In this work, the impact on accuracy is evalu-
ated by varying the following parameters values: (i) trees
count, and (ii) the attributes count required to grow the
tree. In addition, this work optimized the random for-
est model by selecting the optimal values for these two
parameters, considering COCOMO, ISBSG, and Tukutuku
datasets. In [11] feed-forward back-propagation multilayer
neural network model is used to improve COCOMO Model.
Kaushik et al. [45] presented hybrid model ofWavelet Neural
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Networks (WNN) and meta-heuristic technique for effort
estimation. The Firefly and BAT meta-heuristic techniques
are considered with WNN. The work demonstrates that inte-
grating WNN with Firefly and BAT techniques produced
better estimation.

ANN is associated with several challenges including
falling in local minima, and overfitting. Therefore, many
researchers recommend using nature-inspired meta-heuristic
algorithms for the following: (i) ANN training [46], [53], (ii)
feature selection in classification [52], and (iii) weights selec-
tion [47], [49]. Wani et al., [46] used functional link ANN
model for software effort estimation. PSO algorithm is used
for optimizing training by improving the candidate solution
iteratively. Emary et al. [47] use a modified GWO algorithm
that utilizes the reinforcement learning principles, to optimize
the selection of weights for neural networks and selecting
relevant features for model building. Kodmelwar et al. [49]
proposed a DL modified NN technique (Deep MNN) using
CS Algorithm for initializing the network weights and HPSO
for better classification of dataset parameters. CS is used
to initialize the weights of the network. The input to this
Deep MNN is Effort multipliers i.e. software development,
database size, constant value, exponent value, etc. of the
COCOMO dataset. This step is followed by the optimization
process, which is performed by using HPSO with genetic
operators. The proposed technique shows a decline in exe-
cution time as compared to traditional NN when 10 instances
were considered. But the increase in the number of instances
(beyond 50), resulted in an increase in execution time. In [53]
ANN model is trained using the CO algorithm to predict
software cost estimation.

Usman et al. [1] conducted an exploratory longitudinal
case study to identify research efforts towards effort estima-
tion related to distributed agile projects. The work demon-
strates that team maturity, work distribution, and priorities
are the key factors impacting effort estimation accuracy.
A neighborhood fuzzy PSO algorithm is proposed to train
the ANN-based software reliability model to better predict
software reliability [78].

In [55] in order to optimize the fuzzy model for software
cost estimation, the PSO is used to optimize the parameter
values of model membership functions. Kaushik et al. [57]
uses ANN and whale optimization algorithm (WOA) to pro-
vide an effort estimation method for agile software develop-
ment. The work compares the performance of Radial Basis
Function Neural Network (RBFN) and Functional Link Arti-
ficial Neural Network (FLANN).

Now we will discuss the latest research regarding Neu-
ral Network and optimization methods. To overcome the
problems faced by traditional ANNs, Dendritic Neuron
Model (DNM) is presented that exploits the nonlinearity
of synapses to solve with high precision complex prob-
lems [73]. Dendrites are tree like projections responsible
for receiving impulse. In [73] the authors uncover the most
appropriate learning algorithm to train DNM among six algo-
rithms, i.e., Evolutionary Strategy (ES), Biogeography-Based

Optimization (BBO), PSO, GA, Population-Based Incremen-
tal Learning (PBIL), and ACO.

For industrial and big data-related applications efficiently
extracting useful knowledge from a High-Dimensional and
Sparse (HiDS) matrix is critical. Although, the HiDS matri-
ces are sparse but it do contain meaningful information
about involved entities. To extract useful patterns from HiDS,
the Nonnegative Matrix Factorization (NMF) model has been
widely used. NMF model factorizes HiDS matrices into
low dimensional Nonnegative Latent Factor (NLF) matrices.
However, one of the limitations of existing NLF models is
their dependency on specifically designed learning schemes.
In [74] the authors proposed a scheme which supports effi-
cient extraction of NLF from HiDS matrices, and no restric-
tion on training scheme selection.

With the rapid development of cloud, Web, and IoT-based
services systems, choosing the most reliable service provider
for a particular service is a major challenge. The Quality-
of-service (QoS) provided by the service provider may vary
over time. In [75], Biased Non-negative Latent Factorization
of Tensors (BNLFTs) model is introduced to capture the
temporal patterns hidden in data for QoS prediction.

DL techniques, in particular convolutional neural net-
works, have been proven to be the state-of-the-art technology
in the machine vision field. Deep learning model typically
requires fine tuning many parameters and therefore efficient
learning algorithms should be incorporated to reduce training
delays. One of the recently introduced solutions is imitation
learning [76], providing efficiency in terms of computing and
the knowledge needed for training process. A machine is
needed to observe human behaviour in order to learn how to
accomplish the specific task. To generate robust and effec-
tive models, an imitation approach requires careful design
of learning algorithm. In [76] the authors give informative
insight into imitation learning methodology for fast response
and time-critical applications, such as an autonomous driving

The current NNs implementations based on Von Neu-
mann computing architecture using the Complementary
Metal Oxide Semiconductor (CMOS) technology suffer from
memory and communication bottleneck problems. These
days memristor-based systems draw great attention from the
research community and industry in various areas includ-
ing neural networks, reconfigurable computing, and artifi-
cial intelligence. Memristor, deliver energy-efficient neuro-
morphic computing, exploiting nanosolid state nonvolatile
resistive switching [77]. NNs based on memristor crossbar
architecture supports efficient neural calculations due to its
backing for parallel and high density computing. Memristive
Recurrent Neural Networks (MRNNs) is an emerging topic
of study. Linear resistors used in classic RNNs circuits are
replaced by memristors in MRNNs [77].

III. SOFTWARE EFFORT ESTIMATION USING
META-HEURISTIC ALGORITHMS
In this work, for comparison analysis, nature-inspired
meta-heuristics algorithms are selected based on inspiration
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from the following: (i) Natural biological system (GA, SB),
(ii) Theory of evolution (PSO), (iii) Insects activities (ACO),
(iv) Group behavior of animals, and birds (GWO, CO, BAT).
Such, meta-heuristic algorithms are also used in the literature
to solve complex problems, especially in the field of science
and engineering [42], [43]. Table 1 presents the weaknesses
and strengths of these algorithms.

A. BRIEF OVERVIEW OF META-HEURISTIC ALGORITHMS
This section will give a brief overview of the meta-heuristic
algorithms that are selected for comparison.

1) GREY WOLF ALGORITHM
Grey wolf optimization is unprecedented nature inspired
algorithm, which is based on the natural behavior of
grey wolves. It is valuable for searching optimized solu-
tions [36], [47]. Grey wolves live in packs and based on their
behavior categorized in four types namely Alpha (α), Beta
(β), Delta (δ) and Omega (ω) respectively. Alpha wolf (α)
act as the group leader and is held responsible for decision
making. The α, β, δ represents the top three fittest solutions,
and the remaining wolves are referred to as ω.

Grey wolf optimization algorithm is used to solve the opti-
mization problems [36], [47]. In the initial stage, the search
agents are initialized. Values are assigned to α, β, δ and ω
by fitness. In the hunting stage the wolves encircle their prey,
which is governed by Eq. 1, Eq. 2, Eq. 3, Eq. 4.

ED = | EC .
−→
Posp(t)−

−→
Pos(t)| (1)

−→
Pos(t + 1) =

−→
Pos(p)(t)−

−−→
CVx . ED (2)

The greywolf position is represented by the vector
−→
Pos, and

−→
Pos(p) represents a prey position vector. The constant t repre-
sents the current time. The vectors

−−→
CVx and

−−→
CVy represents

coefficients vectors and are calculated as follows:
−−→
CVx = 2Ea.Er1 − Ea (3)
−−→
CVy = 2.Er2 (4)

The values to Er1 and Er2 are assigned randomly in the
range [0, 1]. Over the progression of iterations the controlling
parameter Ea is defined to decrease linearly in the range [2, 0].
The α, β, δ wolves guide for the hunting process. ω wolves
follow the leader wolf. The hunting process starts after the
encircling process

−→
D α = |

−−→
CVy1 .

−→
Posα −

−→
Pos| (5)

−→
D β = |

−−→
CVy2 .

−→
Posβ −

−→
Pos| (6)

−→
D δ = |

−−→
CVy3 .

−→
Posδ −

−→
Pos| (7)

where
−→
Pos1,

−→
Pos2,

−→
Pos3 are defined as follows:
−→
Pos1 =

−→
Posα −

−−→
CVx1 .(

−→
D α) (8)

−→
Pos2 =

−→
Posβ −

−−→
CVx2 .(

−→
D β ) (9)

−→
Pos3 =

−→
Posδ −

−−→
CVx3 .(

−→
D δ) (10)

TABLE 1. Comparison of meta-heuristic algorithms based on strengths
and weaknesses.

−→
Pos(t + 1) =

−→
Pos1 +

−→
Pos2 +

−→
Pos3

3
(11)

where
−→
Posα ,

−→
Posβ ,

−→
Posδ represents the three best solutions.

It is considered that leader wolves have superior information
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about prey position. The controlling parameter a changes
−−→
CVx , causing the ω wolves to come near or run away from
α, β, δ wolves. When |

−−→
CVx >1|, the wolves diverge from the

prey and start searching for better prey. When |
−−→
CVx < 1|,

the wolves approaches the prey.
MaxIter is used to control searching for better prey.

We must take care of computing time as it increases with
an increase in MaxIter and can also cause over-fitting. In the
optimization process to search globally or locally, the grey
wolves are governed by the control parameter. At the start
of the search probability of global search is greater; whereas
when it is nearing the optimum, local search potential is
expected to be greater. When the iterations start executing
towards a maximum limit N, a declines linearly from two to
zero. However, a maximum admissible error (MAE) is used
to end the optimization.

a = 2−t ×
2

MaxIter
(12)

2) STRAWBERRY ALGORITHM
In the case of Strawberry plant, plant movement is governed
by Strawberry plant reproduction. The mother plant propa-
gates with the help of a runner; creeping stalk yield in leaf
axils and matures out of the plant. Initially, the runner has
fewer roots but after acquiring sufficient growth, the daughter
plants can grow individually after separating them from the
mother plant. Afterward, the daughter plant grows individu-
ally; a new runner comes out on it making it a mother plant.
After sufficient growth, the runner will become a new daugh-
ter plant and so on [37], [38], [68]–[70]. In StrawBerry (SB)
algorithm, initially N random points (representing mother
plants) are generated in the problem domain. Each mother
plant generates two random points: (i) one very close to itself
termed as root, (ii) one far away from itself representing
the runner. Roots help in searching around the mother plant
locations whereas runners help to jump over the local mini-
mums. Therefore, runners’ computational agents move with
large random steps in the problem domain compared to roots
computational agents. The idea exploited here is that plants
located in good spots propagate by generating runners close
to themselves, whereas those located in poor spots propagate
by generating runners in places far from themselves.

The SB considers a set of N, M-dimensional vector
xmotherk = xmotherk,1 , xmotherk,2 , . . . ., xmotherk,M , k = 1, 2, . . . .,N .

At each evaluation i, the daughter plant xdaughterk (i) is
generated by the xmotherk (i) randomly. The best mother
plant xmother−bestk (i) generates self-equivalent daughter plant,
as shown in the Eq. 13 [68], [69].

xdaughterk (i) =

{
xmother−best (i) k = 1
xmotherk (i) + drunners × Erk

(13)

xmother−bestk represents the best daughter of the i-1 eval-
uation chosen using elite selection. rk values are selected
randomly in the range [−0.5, 0.5], and drunners represents
maximum distance between daughter and the mother plants.

The best xdaughterk is deemed as a daughter as well as mother
plant in the i iteration (Eq. 13). As represented in Eq. 14 the
global search is effective, if compared to the best daughter
of the (i − 1)th iteration at least one of the daughter plant
improves the value of cost function.∣∣∣∣∣ k=1,2..Nminf (x

daughter
k (i))−k=1,2..N minf (x

daughter
k (i− 1))

k=1,2,3..Nminf (x
daughter
k (i− 1))

∣∣∣∣∣
> θ (14)

In case the global search is not successful, then a local
search needs to be carried out. To search around the location
of mother plant roots are used, whereas to search the farther
locations from the mother plant runners are used. Therefore,
to simulate the function of roots, local search is carried
with random large steps [69], [70]. Whereas to simulate the
function of runners, the search is carried out with random
small steps [69], [70]. In the scenario, where local search
is required, for every next evaluation, the mother plant is
selected among the daughters using a combination of elite and
roulette wheel selection. Eq. 15 represents the elite selection.

xmother−best (i+ 1) = xdaughter−best (i) (15)

The fitness of the k th daughter plant is computed using
Eq. 16 before the selection of the remaining mother plants.
The value of α is a real constant, where α ∈ (0, 1).

fitness(xdaughterk (i) )

=
1

α + f (xdaughterk (i))− f (xdaughter−best (i))
(16)

where α is the real constant. Eq. 17 represents the probability
of the selecting k th daughter plant of the current evaluation as
the mother of the next evaluation.

pk =
fit(xdaughterk (i))∑N
j=1 fit(x

daughter
j (i))

(17)

3) CUCKOO OPTIMIZATION
Cuckoo Search (CS) algorithm [35], [53], [54] was proposed
by Xin-she Yang and Suash Deb in 2009. This optimization
method is based on brood parasitism of cuckoo along with
aspects of Levy Flight. The main feature of CS is the Levy
Flight random walk which is used to generate new candi-
date solutions that solve optimization problems. In the Levy
Flight mechanism, the step lengths are computed based on a
heavy-tailed probability distribution [71].

Cuckoo Search mechanism used following three rules to
select the optimal solution [72]: (i) Each cuckoo at a time
t lays one egg and randomly select a nest to dump its egg;
(ii) best nests with good-quality eggs (i.e. better solutions)
will be passed on to the next generation; (iii) host cuckoo will
discover an alien egg with a probability of 0-1 when available
host nests are fixed.

CS algorithm begins with the cuckoo’s initial population.
These initial cuckoos lay eggs in other host nests. If the host
birds do not identify those eggs and do not remove then they

60314 VOLUME 9, 2021



M. S. Khan et al.: Metaheuristic Algorithms in Optimizing DNN Model for Software Effort Estimation

grow. In host nests, each egg provides a solution and a cuckoo
creates a new solution. Therefore, the goal is to iteratively
replace the worse solution with the better solutions.

Egg Laying Radius (ELR) is the maximum distance from
the cuckoos home ground where real cuckoos lay their
eggs [73]. ELR is calculated as:

ELRi = α ×
Number of current cuckoo′s eggs

Total number of eggs
× (Varmax − Varmin) (18)

where ELRi is the maximum distance of ith cuckoo, α is
the integer value that handles the maximum value of ELR.
varmax is the maximum variable limit and varmin is minimum
variable limits. The objective of ELR is to limit the searching
space in every iteration.

4) GENETIC ALGORITHM
Genetic Algorithm (GA) is a technique for global optimiza-
tion that is proposed by John Holland in 1970s. GA is based
on the genetic mechanism used to solve the optimization
problems [22], [30], [33]. These are the main key stages
in Genetic Algorithm: (i) population initialization, (ii) fit-
ness feature evaluation, and (ii) new population generation.
A genetic algorithm with genes called chromosomes carries
information which is produced randomly. Chromosomes pro-
duce the original population, which has a constant number of
individuals. All chromosomes are evaluated using the fitness
function to give the closest optimal solution [30]. GA applies
many mathematical operations such as mutation, crossover
and fittest. Many optimization problems have been solved
successfully by using GA.

5) ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) is a probabilistic tech-
nique [24], [32], proposed by Marco Dorigo in 1991 based
on the ant ’s ability to find the shortest path route between the
food source and the nest. In this method, an ant leaves some
pheromone (in various amounts) on the ground as it moves.
The route is marked later by the smell of this material. The
other members of the colony follow the path for searching of
the food source and returning to the nest on the same way.
At each node, each ant takes stochastic decisions by employ-
ing heuristic information and pheromone trails to select the
next hop.

The probability of the Ant is shown in Eq. 19.

Pkij(t) =
[cij(t))]α[Iij(t))]β∑|l|
i=1[cij(t))]

α[Iij(t))]β
(19)

Probability of transition from state x to state y depends
on the combination of desirability of coupling (amount of
pheromone) cij(t), and trace intensity Iij(t).

The rule for updating global pheromone is as follows:

cij← (1− ρ)cij +
m∑
k

µckxy (20)

wherem represents the number of ants,µckxy is the pheromone
amount deposited by kth ant, and ρ is the coefficient repre-
senting pheromone evaporation.

6) PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) [27], [34] is a
meta-heuristic algorithm proposed by Kennedy and Eberhart,
inspired by the concept of swarm intelligence. PSO opti-
mization algorithm is used to solve complex mathematical
problems. PSO algorithm work on the principle of inter-
actions, to share information between the members. This
method performs the search for the optimal solution through
particles. In the search space, a particle is treated as a feasible
solution. The particles flight behavior is considered as the
search process using which they traverse a search space for
optima.

The PSO algorithm considers a set of Np particles and each
particle moves randomly. A particle i is defined by its velocity
and position vectors. During every iteration, the velocity and
position of each particle are dynamically updated allowing
the historical optimal position of swarm population and opti-
mal position of the particle.

In PSO, each particle updates its velocity VE and positions
PO with following equations

VEi(t + 1) = �VEi(t) + c1r1(pbest(i, t)− poi(t))

+ c2r2(gbest(t)− poi(t)) (21)

POi(t + 1) = poi(t) + VEi(t + 1) (22)

where i denote the index of the swarm global best particle,
VE is the velocity and � is the inertia weighting factor
which is dynamically reduced; r1 and r2 are random variables
generated from the uniform distribution on the interval [0, 1];
c1 and c2 parameters denote as acceleration coefficients.

In Eq. 21 (i.e.�VEi(t)) is known as inertia that represents
the previous velocity, whereas (pbest(i, t)− poi(t)) is known
as cognitive component that encourage the particles to move
towards their own best position, and the collaborative effect
of the particle is represented by c2 r2(gbest(t)− poi(t)) [34].
pbest(i, t) is the historically best position until iteration t
and gbest is the global best particle with best position in the
swarm.

pbest(i, t) = argk=1,2,...,t min[f (poi(k))],

where i ∈ (1, 2, . . .Np)

gbest(t) = argk=1,2,...,t i=1,2,...Np min[f (poi(k))] (23)

where Np is the particles count, f is the fitness function, p is
the position and t is the current iteration number.

7) BAT ALGORITHM
Xin-She Yang proposes the Bat algorithm (BA) [29], [45],
influenced by the echolocation behavior of micro bats. This
kind of behavior guides and helps bats in their conduct of
flying and hunting. The bats not only move with this amaz-
ing orientation mechanism, but also, they distinguish the
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difference between an obstacle and insect forms even in
absolute darkness.

In this algorithm, the position of each bat is defined by x tk
with velocity vtk , frequency f, loudness Atk , and the emission
pulse rate r tk in a search space. The velocity and position of
the k th bat are calculated at the time t by using the following
equations:

fk = fmn + (fmax − fmn)β (24)

vtk = vt−1k + (x t−1k − x tk )fk (25)

x tk = x t−1k + vtk (26)

where fk is the frequency of the sound waves emitted by k th

bats; fmax and fmn are maximum and minimum frequency
of the sound waves respectively; β is a random number
generated from uniform distribution [0, 1]. Velocities of k th

bat are vtk and v
t−1
k at time t and time (t−1), respectively, and

x tk presents the bat’s current global optimal location.
For local search, the position of each bat is reformed

according to the Eq. 27. Using a local random walk the
following equation is used to generate a solution:

Xnew = Xold + δĹ(t) (27)

where δ is a random number generated from the uniform
distribution on the interval [−1, 1], Xold is randomly selected
solution from the current optimal solution, and at the ith

iteration, Ĺ is the average loudness for all bats.

B. PERFORMANCE ANALYSIS AND EVALUATION
1) PERFORMANCE ANALYSIS
COCOMO is the most widely used software estimation
model. It predicts the schedule and effort of the software
product, which are considered as key parameters in defining
the quality of any software product. The effort represents the
amount of labor required to complete a task. Effort estima-
tion unit is ‘‘person month’’ that represents an individual’s
months worth of efforts. The schedule represents the amount
of time required for job completion, which is proportional
to the effort put in. Unit of time such as a week is con-
sidered as estimation unit for schedule. Different types of
COCOMOmodels are available for software cost calculation:
Basic COCOMO, Intermediate COCOMO, and advanced
COCOMO [5], of which the first two are frequently used.
The basic COCOMO model considers effort and few other
parameters [2].

In Basic COCOMO, the formulas for estimating the effort
based on the software product size represented in Kilo Lines
of Code (KLOC), for the three categories of software prod-
ucts are as follows:

Organic = 2.4 ∗ (KLOC)1.05 (28)

Semidetached = 3.0 ∗ (KLOC)1.12 (29)

Embeddded = 3.6 ∗ (KLOC)1.20 (30)

2) DATASETS SELECTION
Following publicly available datasets were selected for per-
formance comparison of seven nature-inspired meta-heuristic
algorithms. These datasets were downloaded from the soft-
ware engineering repository [44].

• NASA: The data-set having 93 projects is described
by 15 attributes. The software projects information
is recorded from different NASA centers for many
years. It has 15 efforts multipliers and 5 scaling
factors [30].

• COCOMO 81: The data-set having 63 projects is
described by 15 attributes. The software projects
data available in this repository is based on the
COCOMO software cost model, which measures
effort used to develop a software project in calendar
months. It also has effort multipliers having stan-
dard numeric values [31].

• Maxwell: The data-set was downloaded from a
promise repository. The total number of projects is
62 having 27 attributes for each project [34].

3) EVALUATION CRITERIA
The research community realizes thatMMRE, Pred (x) can be
influenced by the presence of outliers [66], therefore, we used
the following performance metrics to assess and compare the
accuracy of the seven meta-heuristic algorithms [44].

a: MAGNITUDE OF RELATIVE ERROR (MRE)
The error ratio between actual and predicted effort for each
project instance in the dataset is computed using MRE
(expressed using Eq. 31. To calculate the fitness function, first
the MRE is calculated for every project i.

MREi =

∣∣∣∣Actualefforti − EstimateffortiActualefforti

∣∣∣∣ (31)

b: MEAN MAGNITUDE OF RELATIVE ERROR (MMRE)
MMRE measure is used for assessing software estimation
technique performance. The values of MRE is calculated for
each software project instance. MMRE computes the average
over N number of project instances in the data-set. MMRE is
defined in Eq. 32.

MMRE =
1
N

N∑
i=1

MREi (32)

c: PERCENTAGE OF PREDICTION (PRED)
PRED(x) represents the percentage of MRE that is less than
or equal to the value x/100 among all projects. The PRED(x)
is defined in Eq. 33.

PRED(25) =
100
N

1 if MREi ≤
25
100

0 otherwise
(33)
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d: MEAN OF BALANCED RELATIVE ERROR (MBRE)
MBRE better handles outliers as it chastens underestimation
and overestimation on the same level [12]. MBRE is formu-
lated in Eq. 34.

MBRE =
1
N

N∑
i=1

|Actualefforti − Estimatefforti|
min(Actualefforti − Estimatefforti)

(34)

e: MEAN INVERTED BALANCED RELATIVE ERROR (MIBRE)
MIBRE is a practical evaluation criterion and is formulated
in Eq. 35.

MBRE =
1
N

N∑
i=1

Actualefforti − Estimatefforti
max(Actualefforti − Estimatefforti)

(35)

f: MEAN ABSOLUTE ERROR (MAE)
MAE determines the average of absolute differences between
the actual effort and each predicted effort in Eq. 36.

MAE =
1
N

N∑
i=1

|Actualefforti − Estimatefforti|
N

(36)

g: STANDARDIZED ACCURACY (SA)
Sehra et al. [21] and Shepperd et al. [64] proposed stan-
dardized accuracy (SA) based on MAE, as an unbiased error
measure. SA formulated in Eq. 37 depicts effectiveness of
an estimation method in comparison to random guessing.
Higher SA values represent the effectiveness of an estimation
method.

SAi = 1−
MAEi
MAEp0

(37)

MAEi is the mean absolute Error whileMAEp0 is the mean
of random guessing approach.

h: EFFECT SIZE
Effect size determines the model likelihood in predicting the
correct values rather than occurrence by chance. SP0 repre-
sents standard deviation of the random guessing approach.

EffectSize =
MAEpi −MAEp0

Sp0
(38)

i: MEAN OF RESIDUAL (MR)
Existing work [40], [68], critiqued that MMRE measure
favors the models that underestimate, whereas the MMER
favors the models that overestimate. Therefore, we used the
MR measure to find out which model overestimates and
which one underestimates. MR is expressed as in Eq. 39.

MR =
Actualefforti − Estimatefforti

Actualefforti
(39)

Negative MR identifies that the model tends to over-
estimate, whereas positive MR indicates underestimating
behavior.

TABLE 2. Control parameters setting for the meta-heuristic algorithms.

4) EXPERIMENTAL SETUP
The computational tests were performed on a dual-core PC
with a 2.2 GHz Core i7 and 16GB of RAM. For all the seven
algorithms, the two common parameters are set as follows:
Number of iterations is set as 100, and the population size is
set as 30. Table 2 depicts the setting of control parameters for
the seven meta-heuristic algorithms.

5) EXPERIMENTAL RESULTS
The seven meta-heuristic algorithms performances are ana-
lyzed using NASA, COCOMO 81, and Maxwell datasets.
Table 3 depicts the comparison results of nine benchmark
functions using COCOMO 81, NASA, andMaxwell datasets.
A comparison has been performed with the basic COCOMO
model.

As shown in Table 3, GWO has the lowest MAE, whereas
SB has the second smallest MAE. The second column
gives the MMRE values, showing that GWO with 1.67
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TABLE 3. Comparison results of benchmark performance measures using NASA, COCOMO and Maxwell Datasets.

is substantially better than 4.95 for the NASA dataset. SA of
GWO depicts about 55% improvement. PRED is a common
alternative to MMRE, representing the generalization ability
of the technique. Lower MMRE, and higher PRED repre-
sents that the derived estimates are more accurate. As shown
in Table 3, GWO has the lowest MAE among the three
datasets. To inspect the data results accuracy, additional tests
usingMRE,MBRE, andMIBRE performancemeasures were
also conducted. Table 3, depicts that GWO surpassed other
algorithms, across the three datasets. Also, SA determines
the results meaningfulness, and 4 determines the likelihood
of the results occurring by chance. Table 3 shows that the
GWO produced better results compared to other algorithms
across the three datasets. SA and delta tests depicts that the
Basic COCOMO model does not predict well. To assess the
propensity of an algorithm to overestimate or underestimate,
we usedMR. As shown in Table 3, all algorithms except ACO
in Maxwell dataset, tended to overestimate. Delta value is

high for CO, andGWOacross the three datasets, which shows
that these two algorithms perform well.

The GWO algorithm reports the best results for three
datasets, whereas SB reports the second-best performance for
three datasets. Table 3 depicts that among GWO, SB, GA,
CO, ACO, PSO, BAT metaheuristic algorithms; GWO has
the lowest MAE, MBRE, MIBRE, and MMRE. Moreover,
GWO has the largest SA, PRED, and Effect size. Most of
the meta-heuristic algorithms underestimate across the three
datasets. Whereas only ACO shows different behavior for
different datasets in terms of MR. The performance of the
GWO, CO, and SB algorithms remains more or less constant
across different datasets.

IV. DEEP NEURAL NETWORK MODEL EXPLOITING
METAHEURISTIC ALGORITHMS
Currently, DL is faced with many limitations including opti-
mum initial values for the parameters selection technique,

60318 VOLUME 9, 2021



M. S. Khan et al.: Metaheuristic Algorithms in Optimizing DNN Model for Software Effort Estimation

FIGURE 1. Network structure of the proposed GWDNNSB model.

architecture dynamic configuration method, and lack of stan-
dard training algorithm.DL architecture performance is heav-
ily dependent on getting optimal initial weights for the
architecture. There exists evidence, which emphasizes that
for solving the real-world problems using DL architectures;
optimum weights can be realized by using nature-inspired
algorithms for training [42]. Applying meta-heuristics has
its advantages in terms of catering to the weight training
to its optimum state at a minimal computational cost [42].
To unravel the benefits of the application of themeta-heuristic
algorithms in DL architectures used for software estimation,
this section presents the GWDNNSBmodel and compares its
performance with the existing DNN models.

Experimental results (Table 2) showed that the GWO has
comprehensive superiority in terms of accuracy in estimation.
TheGWOalgorithm reports the best results for three datasets,
whereas SB reports close to second-best performance for
three datasets. Table 2 depicts that among GWO, SB, GA,
CO, ACO, PSO and BAT meta heuristic algorithms; GWO
has the lowest MAE, MBRE, MIBRE, and MMRE. More-
over, GWO has the largest SA, PRED, and Effect Size. The
main benefit of the SB algorithm is that it explores several
regions of the search space at the same time and thus can
break away from local optimum and achieve the global opti-
mum. Exploration (global research) is done at every iteration,
and exploitation (local research) is done if exploration does
not result in significant improvement in the objective value.
The number of computing agents varies from start to finish.
SB algorithm discards half of the weak agents and duplicates
the good agents at each iteration. Such mechanisms help the
SB algorithm to effectively avoid a local trap.

A. MODEL BUILDING
The proposed model is a multi-hidden layer neural net-
work. Fig. 1 depicts the network structure of the proposed
GWDNNSBmodel. There are five layers in our DNNmodel:
one input layer, one output layer, and three hidden layers.
The three hidden layers depth will help in enhancing data
fitting capability. The nodes in the GWDNNSB model are
fully connected; in each layer every node is connected to
every node in the following layer.

Number of features of the input data determine the number
of input layer nodes. Table 4 and Table 5 depicts the input

features considered in the Datasets. On the input layer there
are 15 neurons/nodes that are basic attributes of the dataset.
Also, each hidden layer node is composed of neurons. The
first hidden layer has 50 neurons, the second has 100 neurons,
and the third layer has 50 neurons. A node in a layer is
connected to the next layer nodes. The network is made
deeper by increasing the number of hidden layers [71]. The
last layer, which is also known as the output layer, has only
one node, which gives the total effort estimated.

Moreover, the neurons are equipped with rectifier activa-
tion and aggregation function. Rectified Linear Unit (ReLu)
the activation function is used to account for interaction
effects. ReLu function [67] is the most used activation func-
tion for DNN, which is considered appropriate for the reduc-
tion of overfitting influence and improving model training
speed of the model [71]. The Rectifier activation function is
defined as follows in Eq. 40.

0i =

{
ri if ri ≥ 0
0 if ri < 0

(40)

A given node computes the output after taking the inputs,
bias is added to the weighted sum of inputs which is then
passed through a non-linear activation function. Previous
layer nodes at the output becomes the input to the node
in the next layer. The equation for a hidden node f(b+x.d)
output lying on layer 1 is given in Eq. 41. This procedure
is performed by all the nodes to compute the final output.
The input feature in the function is represented by x; d is the
weight of the layer, and b is the bias, which means how far
off our predictions are from real values.

f (Eb+ Ex.Ed) =
n∑
i

(dixi + b) (41)

B. MODEL INITIALIZATION AND OPTIMIZATION
Meta-heuristic algorithms are hybridizedwith DNN to reduce
the training time required to train a network and to achieve
high accuracy in the required results [42]. A combination
of the meta-heuristic algorithms is the lifeblood of the pro-
posed model known as GWDNNSB. In which GWO is used
for initial weight optimization of the DNN model. A GWO
trainer finds a set of values for weights and biases allowing
the highest prediction accuracy. SB algorithm [68], [69] is
used to set an optimized learning rate which is an important
parameter of a DNN model. The fundamental flowchart of
GWDNNSB is presented in Fig. 2.

The amount of change in weights is determined by the
learning rate. The learning rate is adjusted by using the SB
algorithm [68], [69], N random points are generated initially
(representing mother plants) in the problem domain. As part
of the global search, each mother plant produces a daughter
plant. As represented in Eq. (14), the global search is effec-
tive, if upon comparison with the best daughter (computed
in the previous iteration) at least one of the daughter plants
improves the cost function. In case the global search is not
successful, then local search needs to be carried out where
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TABLE 4. Selected features of COCOMO 81 and NASA datasets for effort estimation.

TABLE 5. Selected features of China dataset for effort estimation.

fittest daughter plant variables are adjusted randomly with
both small and large steps. In reality, the local search is carried
out in two steps: (i) with large random steps in the problem
domain, and (ii) with small random steps in problem domain
At every iteration, the mother plant generates two random
points: (i) one in the vicinity, termed as root; and (ii) one
relatively farther location from itself, termed as a runner.
The runners move with large random steps in the problem
domain [69], [70]. At the runners and roots locations the
objective function is evaluated, and the points with high
fitness values are selected and envisaged as mother plants for
the next iteration, using Eq. 12 to 14.

The process continues until the optimized value is found.
SB algorithm choses a learning rate between 0.0 and 1.0,
considering the tradeoff between the network convergence to
something useful and training time. The learning rate affects
the time required for the learning process of DNNs. This
learning rate is given to the model which is obtained as output
result from the SB algorithm.

The amount of change in weights is determined by the
learning rate. The learning rate is adjusted by using the SB
algorithm [68], [69], N random points are generated initially
(representing mother plants) in the problem domain. As part
of global search, each mother plant produces daughter plant.
At the runners and roots locations the objective function is

evaluated, and the points with high fitness values are selected
and envisaged as mother plants for the next iteration, using
Eq. 12 to 14. The process continues until the optimized value
is found. SB algorithm chose learning rate between 0.0 and
1.0, considering the tradeoff between the network conver-
gence to something useful and training time. The learning rate
affects the time required for the learning process of DNNs.
This learning rate is given to the model which is obtained as
output result from the SB algorithm.

C. TUNING PARAMETERS
Supervised training is used for training GWDNNSB model.
The GWO decreases the probability of trapping into the local
extrema by allowing the target solution to be systematically
assessed by three solutions. The GWO algorithm is used
to assign initial weights and bias. The model parameters
(weights and biases) are adjusted according to the comparison
results. Weights and biases are introduced in a vector form

EA = (Ed, Eb) = (Ed1,1 , Ed1,2 . . . Edn,n, Eb1,1 , Eb1,2 . . . Ebn,n)

(42)

where n is the number of the input nodes, dij shows the con-
nection weight from the ith node to the jth node, bj represents
bias of jth hidden node
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FIGURE 2. Flowchart of GWDNNSB model.

In the wake of instating the factors (weight and biases),
we should characterize the fitness function. We used the
Mean Square Error (MSE) as the loss function, to figure the
output error. It measures the accuracy of each prediction
during the training process of our model, as described in
Eq. 43.

MSE =
1
m

m∑
i=1

(oi − ôi) (43)

where m represents the number of training samples, oi repre-
sents the obtained output of the ith instance, and (ôi) denotes
the ideal output. The training operation will train the DNN
by looking at the results of the loss function and using that
to adjust the weights in the neural network until they produce
the desired output.

The primary objective of training DNN is to limit the MSE
values for all training samples. The GWO algorithm adjusts
the weights as populaces to improve the error rate and to
accomplish the finest execution in training and testing.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
The meta-heuristic algorithm computational complexity is
primarily determined by population size (N ), Solution Space
Dimensions (SSD), and maximal iterations (MaxIts).

GWO and SB time complexities are summarized as fol-
lows: (i) Population initialization phase: O(N × SSD); (ii)
Control parameters calculation: O(N × SSD); (iii) Agents
position update: O(N × SSD × MaxIts); and (iv) Fitness
calculation time: O(N × SSD×MaxIts).
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TABLE 6. Structure of each datasets.

Given MaxIts, the total time complexity of the SB and
GWO is O(N × SSD×MaxIts).

Detail comparison is as follows:

O(GWO) = O(PopulationInitialization)

+O(Cal.ControlParameter)

+O(UpdatePosition)

+O(Fitnesscal.forthePopulation)

O(GWO) = O(N × SSD)

+O(N × SSD)

+O(N × SSD×MaxIts)

+O(N × SSD×MaxIts)

O(GWO) = O((2MaxIts+ 1)× N × SSD)

= O(MaxIts× N × SSD)

O(SB) = O(PopulationInitialization)

+O(Generation of Daughter Plant

+Position Update)

+O(Calculation of Fitness of new Location)

+O(Mother Plants Selection for

Next Generation)

O(SB) = O(N × SSD)+ O(N × SSD×MaxIts)

+O(N × SSD×MaxIts)

+O(N × SSD×MaxIts)

O(SB) = O((3MaxIts+ 1)× N × SSD)

= O(MaxIts× N × SSD)

GWODNNSB model time complexity is the same as that
of GWO and smaller than that of SB.

TABLE 7. Parameters values of meta-heuristic algorithms in GWODNNSB
model.

E. PERFORMANCE ANALYSIS AND EVALUATION
The proposed model GWDNNSB is compared with Deep-
MNN [49].

1) DATA ACQUISITION AND PROCESSING
To illustrate the generality of the proposed approach,
the results are computed using three software estimation
datasets: (i) NASA [30] (ii) COCOMO-81 [31], and (iii)
China dataset [55]. The aim is to find out whether the
accuracy is dataset dependent. From NASA and COCOMO-
81 datasets, fifteen common and most important attributes
listed in Table 4 are considered as input. The effort attribute
is considered as the dependent entity. China [44], [55] dataset
consists of 499 projects and the input features considered are
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FIGURE 3. (a). Execution time comparison using Dataset1 (b). Execution time comparison using Dataset2.

presented in Table 5. This value at the output layer is the total
effort required to build the software.

As depicted in Table 6, two datasets are used. In Dataset1,
NASA dataset for training purpose and COCOMO 81 dataset
for testing performance. Common attributes from both
datasets have been considered. Table 4 presents the selected
features of COCOMO 81 and NASA datasets for effort esti-
mation. NASA dataset and COCOMO 81 dataset contains
lesser number of instances. Therefore, the augmentation tech-
nique SMOTE [59], [72] has been applied to increase the
number of instances in the dataset. The second experiment in
each kind is conducted using the China dataset. Since China
dataset contains sufficient instances, we did not apply any
augmentation technique. Before providing the data as input
to the DNN, preprocessing of the data is performed.

2) EXPERIMENTAL SETUP
The model was built using TensorFlow [60], which is a
software framework for building and deploying machine
learning models. Python programming language was used
for coding. Different libraries were also used to build the
model.

3) EXPERIMENTAL RESULT
In order to verify the performance of our model and prove
that our improvement is meaningful, we have designed four
sets of experiments. Each experiment is repeated twice for
different datasets. The initial parameters of meta-heuristics
algorithms are fixed in Table 7.
EXPERIMENT 1:
In this experiment, the proposed model is compared with

Deep-MNN [49], in terms of execution time required for
training the model. This experiment was repeated to verify
the performance on different datasets. Fig. 3(a) shows the
results computed by using Dataset1. Fig. 3 (b) shows the
results computed by using Dataset2. We run training and
testing process using various numbers of epochs from 40 to
120 with interval of 20 epochs each. The results show that
our proposed GWDNNSB model takes less execution time
as shown in Fig. 3(a) and Fig. 3(b).

EXPERIMENT 2:
In this experiment, the optimized proposed GWDNNSB

model is compared with Deep-MNN in terms of effort
estimation accuracy. The process was executed up to
100 epochs, and the effort estimation accuracy achieved by
the GWDNNSB is almost 94% when Dataset1 is used as
shown in Fig. 4 (a), while it goes to 95% when Dataset2 is
used as shown in Fig. 4 (b). While Deep-MNN [49] achieved
accuracy up to 85% when Dataset2 is used as shown in Fig. 4
(b). The optimized proposed DNN performed better in terms
of accuracy as compared to Deep-MNN when used.
EXPERIMENT 3:
To check the effectiveness of the proposed model var-

ious other measures including Precision, Recall, and the
F-measure are used. Considering the actual effort in each
instance of the Dataset, the Dataset instances are divided
into three classes (Low, Medium, and High). In each class
effort, range values are selected to provide natural splits and
also to ensure a balanced distribution of the Dataset. For this
purpose, we computed the measures including Quartiles and
the Median. We considered the effort estimation problem as
a set of binary classification problems, one for each class.
For example, when considering the class ‘‘Low’’, a True
Positive (TP) occurs when an actual ‘‘Low’’ class effort is
correctly predicted.
Per-class Precision and Recall are computed as follows.

Recall =
TP

(TP+ FN )
(44)

Precision =
TP

(TP+ FN )
(45)

F-measure is the harmonic mean of recall and precision.
Per-class F-measure is calculated as follows:

F-measure =
2 ∗ Recall ∗ Precision
(Recall + Precision)

(46)

Afterwards, we combined the per-class F-measure scores
into a single number, using arithmetic mean of the per-class
F-measure scores called the averaged F-measure score. In a
similar way, we have also computed the averaged Preci-
sion and the averaged Recall scores as presented in Fig. 5
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FIGURE 4. (a). Effort estimation accuracy comparison using Dataset1 (b). Effort estimation accuracy comparison using Dataset2.

FIGURE 5. (a). Precision, recall and F-measure using Dataset1 (b). precision, recall and F-measure using Dataset2.

TABLE 8. Results of nine benchmark performance measures using Dataset1.

(a) and 5 (b). Fig. 5 (a) and 5 (b) depicts, our GWDNNSB
have high averaged Precision and averaged Recall as com-
pared toDeep-MNNmodel. GWDNNSB also results in better
F-measure value, using both Dataset1 and Dataset2. From
these results, it is clear that the proposed model achieved
optimized results.
EXPERIMENT 4:
The Deep-MNN [49] and our proposed GWDNNSB per-

formances are analyzed using Dataset1 and Dataset2. Table 8
depicts the comparison results of nine benchmark functions
using Dataset1. Table 9 depicts the comparison results of nine
benchmark functions using Dataset2.

Table 8 and Table 9 depicts that the GWDNNSB model
is superior to the Deep-MNN model when compared using

multiple performance measures: MAE, MRE, MR, MMRE,
MBRE, MIBRE, SA, and 1. For performance comparison,
we also used measures that are considered as reliable and
unbiased (MAE, MBRE, and MIBRE) by the research com-
munity. The research community criticized that the measures
that are derived from MRE are biased. Table 8 and Table 9
depicts that the GWDNNSB model has the lowest MAE
exploiting the two datasets. Table 8 and Table 9 depicts that
MRE,MMRE,MBRE are low for our optimizedGWDNNSB
model as compared to Deep-MNN. MIBRE is the inverse
of MBRE, so its low values in Table 8 and Table 9 for
GWDNNSB depict that the model resulted in better accuracy.
MAE is high in the case of the Deep-MNN, which shows a
higher error rate as compared to GWDNNSB model. SA test
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TABLE 9. Results of nine benchmark performance measures using Dataset2.

depicts the reliability and meaningfulness of the prediction
model. GWDNNSBmodel higher SA values for Dataset1 and
Dataset2 shows that estimations are reliable. SA alone cannot
guarantee the superiority of accuracy. Therefore, we con-
ducted Effect size (1) test to figure out the meaningful-
ness of both prediction models. For the GWDNNSB model,
the higher value 1 shows that the estimations are not pro-
duced by chance.

V. CONCLUSION AND FUTURE WORK
Constructive COst Model (COCOMO) is the most widely
used regression-based algorithmic model for software effort
estimation. For estimation accuracy, it is required to fine-tune
the model parameters. GWO and SB meta-heuristic algo-
rithms support solving multi-variable problems and have
been applied to a variety of practical applications. In this
paper, these algorithms are applied to having a logical and
acceptable parametric model for software estimation. GWO
is the one with the minimum MAE, MBRE, and MIBRE
across all datasets. Effort size, SA, MAE, and PRED accu-
racy measures are considered more trustable by the research
community as compared to MBRE, MIBRE. As observed,
the GWO surpasses six meta-heuristic algorithms in terms of
accuracy using nine accuracy measures across all the three
datasets, proving a strong argument to back the reliability of
GWO for software effort estimation.

The deep learning architectures although provides several
improvements over existing shallow techniques. But they are
also suffered from several shortcomings that may reduce the
performance of the model including: (i) the fine-tuning of
a large number of parameters, and (ii) longer training time.
DNNs allows representing complex relationships between
software effort and cost drivers, thus making it a better
choice for software effort estimation. The performance of the
DNN architecture heavily depends on the optimized selec-
tion of initial weights and relevant features for model build-
ing. Meta-heuristic algorithms allow for finding an optimum
solution; therefore, can be used with DNNs to reduce large
training delays. To improve the accuracies, such algorithms
also, allow learning from the historical dataset structure and
involve categorical attributes. In this paper, we investigated
the influence of nature-inspired algorithms in optimizing
DNN initial weights and learning rate. We harness GWO
meta-heuristic algorithm to optimize initial parameter values
for DNN and used SB to optimize the learning rate. GWO and
SB algorithms have been applied by the research community
for solving complex problems in other fields of science and

engineering, but not exploited for software effort estimation.
GWDNNSB model tuned by metaheuristic algorithms out-
performs existing work on using DNN for software effort
estimation. The evaluation of comparison using multiple per-
formance measures shows that the GWDNNSB model out-
performs the benchmark COCOMO model and the popular
metaheuristic algorithms applied for having a logical and
acceptable parametric model for software effort estimation.

In this work, we demonstrated that applying nature-inspired
meta-heuristic algorithms to DNN in the context of software
effort estimation speed up training and improves perfor-
mance. The nature-inspired algorithms boost our proposed
GWDNNSB performance. Given the limitations of GWO
and SB algorithms in certain scenarios it can increase con-
vergence time. Therefore, we plan to make a hybrid with
improved versions of GWO, SB, and other metaheuristic
algorithms that support the balance between exploitation and
exploration, have high exploration capability, and do not lose
a population diversity quickly. There exists work in other
areas wheremeta-heuristic algorithms have been successfully
implemented in DNNs to improve training. Relevant research
publications in this direction are still rare. Research efforts
should be focused on investigating meta-heuristic algorithms
application in DL architectures for software effort estimation.
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