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ABSTRACT To meet the explosive growth of mobile traffic, the 5G network is designed to be flexible
and support multi-access edge computing (MEC), thereby improving the end-to-end quality of service
(QoS). In particular, 5G network slicing, which allows a physical infrastructure to split into multiple
logical networks, keeps the balance of network resource allocation among different service types with
on-demand resource requests. However, achieving effective resource allocation across the end-to-end
network is difficult due to the dynamic characteristics of slicing requests such as uncertain real-time resource
demand and heterogeneous requirements. In this paper, we develop a reinforcement learning (RL)-based
dynamic resource allocation framework for end-to-end network slicing with heterogeneous requirements in
multi-layer MEC environments. We first design a hierarchical MEC architecture and formulate a resource
allocation problem for the end-to-end network slicing as an optimization problem using the Markov deci-
sion process (MDP). Using proximal policy optimization (PPO), we develop independently-collaborative
and jointly-collaborative dynamic resource allocation algorithms to maximize resource efficiency while
satisfying the QoS of slices. Experimental results show that the proposed algorithms can recognize the
characteristics of slice requests and coming resource demands and efficiently allocate resources with a high
QoS satisfaction rate.

INDEX TERMS 5G, network slicing, multi-access edge computing, network resource management,
multi-agent reinforcement learning.

I. INTRODUCTION
In recent years, the exponential growth of mobile services
and the advances in the internet of things (IoT) and smart
devices has presented significant challenges in the 5G. There
is increased data traffic due to the constantly emergingmobile
applications, such as augmented reality, face recognition,
and 3D video streaming. Moreover, 5G networks need to
meet the strong latency requirements of mission-critical ser-
vices with the rapid development of edge applications such
as cyber-physical systems and autonomous driving applica-
tions. Since the services have very different resources and
deployment requirements, 5G networks need flexible net-
work architectures to achieve high performances for dif-
ferent use cases. Network slicing, which is a method of
creating multiple logical networks over a shared physical

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

infrastructure, has been designed as a key technology to
address such requirements [1]. Each network slice can have
its own network architecture, including on-demand service
application, resource capacity, and control policy, to balance
the disparate requirements between heterogeneous services.
For example, The dynamic resource allocation framework
of network slicing can support real-time service require-
ments by considering service characteristics and time-varying
demands of different slices [2]. While this vertical network
slicing originally focused on core networks, it has expanded
over time to end-to-end network slicing, supporting radio
access networks and wireless interfaces [3]. End-to-end net-
work slicing frameworks implemented in a multi-region and
multi-tenant manner are well suited to the provision of
dynamic on-demand resource orchestration to optimize all
cross-layer functionalities in both access and core networks.
In the end-to-end approach, the service chain, including vir-
tual network functions (VNFs) and corresponding resources,
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is defined to establish end-to-end connections from the access
side to the core side. If access network and core network
resources are managed separately, performance optimization
cannot be achieved. For example, the excessive offloading
of the workload of slices to remote data centers without
considering appropriate deployment depending on various
service application scenarios causes performance bottlenecks
because of limited resources, thereby degrading the quality of
service (QoS).

To handle the mobile workload very close to network edge,
there have been efforts to introduce multi-access edge com-
puting (MEC) to the 5G networks [4]. MEC offers comput-
ing capabilities close to mobile devices, providing efficient
overhead and delay management by offloading the workload,
deployed as VNFs, to neighbor servers in a hierarchical
structure. It has recently been expected that combining MEC
and network slicing in 5G networks will ensure efficient
network operation and service delivery and address heteroge-
neous requirements of various service types [5]. Nevertheless,
research on dynamic resource management for end-to-end
network slicing in 5G environments based on MEC is still
lacking. If the slices excessively provision more resources
at the edge to reduce the latency selfishly, the users may
experience a large processing delay in the server with large
amounts of computing load. Also, the efficiency of resource
utilization is seriously degraded in high-layer networks with
low utilization. There are pressing needs in an end-to-end
5G network to improve QoS and resource utilization with
limited resources by considering the independent characteris-
tics of each slice. In this context, the purpose of this paper is
to achieve the layer-differentiated resource allocation to the
different slices with heterogeneous requirements, taking into
account the hierarchy of the MEC from the core to the edge.
A dynamic and smart multi-layer orchestration capability is
required to reserve and allocate virtual resources for slices at
the right time in a hierarchical structure.

Reinforcement learning (RL) has been applied to network
slicingmanagement problems for 5G networks in [2], [6], [7].
RL is a type of machine learning technique that enables an
agent to learn an optimal policy through interaction with an
environment. In recent years, RL with deep learning capa-
bility such as deep Q-network has been applied to complex
network management environments. The works have focused
on the dynamic resource allocation for the management of
interconnected resources in slices such as computing, storage,
and bandwidth to enhance the performance of the systems.
However, most of the works did not consider the end-to-end
service delay as a performance measure of resource manage-
ment. Note that guaranteeing the service delay is important in
delay-sensitive 5G applications. Also, because each slice with
different traffic characteristics and QoS requirements com-
petes for more resources, it is essential to coordinate network
slices to achieve network-wide performance enhancement.
A certain slice’s optimal policy may adversely affect the
performance of other slices if it ignores the other slices’
behaviors and states.

In this paper, we focus on RL enabling inter-slice coop-
eration to maximize resource efficiency while satisfying the
QoS of the slices in multi-layer MEC environments. We first
design a hierarchical architecture to evaluate the end-to-end
delay of slices and the efficiency of the required resources
depending on the characteristic of the slices. In our model,
service delay is considered as an end-to-end delay, includ-
ing processing delay and transmission delay. The resource
allocation problem is modeled as the Markov decision pro-
cess (MDP) for end-to-end network slicing with RL elements
such as local and global states, actions, and a reasonable
reward. We develop an RL framework to implement dynamic
resource allocation and propose two cooperative PPO-based
resource allocation algorithms to maximize resource effi-
ciency by considering different characteristics of the slices.
Based on a decentralized execution framework, each pro-
posed algorithm works through distributed and centralized
training, respectively. We conduct a performance evaluation
in a typicalMEC environment to analyze the implicit relation-
ship between the state and action that we designed. Ourmodel
well explains the behavior of different types of services in the
end-to-end network slicing environment, and the proposed
algorithms improve resource efficiency and QoS.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III introduces the
considered hierarchical MEC architecture. Section IV illus-
trates the proposed resource allocation algorithms and heuris-
tics. Section V evaluates the proposed algorithms in a typical
network scenario. Finally, Section VI concludes the paper.

II. RELATED WORK
Many research interests from academia and industry were
attracted to the MEC concept because of its ability to
deploy cloud resources to the edge providing fast and pow-
erful computing, energy efficiency, and storage capacity
to end-users [4], [12]–[19]. According to [12], the Euro-
pean Telecommunications Standards Institute (ETSI), which
launched the MEC concept in 2014, illustrates ways to
deploy and integrate MEC into the 5G system based on the
3rd Generation Partnership Project (3GPP) 5G specifica-
tions. A study focused on the fundamental key enabling
technologies of MEC taking into account the ETSI reference
architectures [4]. A comprehensive survey of definitions,
architectures, and deployments in the MEC area is presented
in the literature [13], [14]. In [15], Mach and Becvar dis-
cussed integrating MEC functionalities to mobile networks
and standardization. It focused on computation offloading,
including allocation of computing resources within the MEC
and mobility management. In [16], Mach and Becvar devel-
oped aMEC latencymodel and an energy consumptionmodel
and reviewed the joint radio and computational resourceman-
agement for different types ofMEC systems. In [17], a survey
on the studies that have applied the game theory models to
MEC environments is conducted, discussing optimizing and
balancing resources and various trade-offs in MEC scenarios
by applying theoretical model games.
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TABLE 1. Comparison of related papers on network slicing with MEC.

With the explosive growth of mobile devices in 5G, there is
a need for the telecommunications industry for a new archi-
tecture supporting the performance requirements of various
services in MEC environments. To meet such requirements,
several standards developing organizations (SDOs), such as
ETSI and 3GPP, have recently been working on harmonizing
MEC and network slicing [20]. Based on the definitions
of those architectures from the SDOs, recent studies pro-
posed network slicing frameworks for MEC environments
recently [5], [8], [9]. A summary of the related works on
network slicing with MEC is provided in Table 1. In [5],
Cominardi et al. addressed integrating MEC with network
slicing based on an elaboration of ETSI. New solutions
are proposed to evolve the current MEC framework toward
end-to-end multi-domain network slicing support in 5G net-
works. Based on the latest ETSI and 3GPP specifications,
Ksentini and Frangoudis in [8] proposed an MEC orches-
tration architecture to enable integrating MEC as a sub-
slice. They proposed a new design considering both the
multi-tenancymodel and in-slice deployment. In [9], anMEC
slicing framework is proposed to instantiate heterogeneous
slice services on edge devices. Moreover, a distributed algo-
rithm based on similarity among edge nodes and resource vir-
tualization is proposed to instantiate slices faster because the
problem of optimally instantiating joint MEC slices without
incurring over-provisioning of resources is NP-hard. In [21],
Balasubramanian et al. proposed a unified service architec-
ture to enable mobility management of MEC and seamless
handover between heterogeneous network slices. The pro-
posed model provided subscription-based connectivity ser-
vices for end-users to improve packet delivery ratio while
guaranteeing latency requirements.

Moving on from the existing survey on the combination
of MEC and network slicing, the purpose of this paper is
to address the resource allocation problem of end-to-end
network slicing in response to the dynamic traffic and
strict service requirements of network slices. Several
studies have been paying attention to resource provision-
ing optimized for service using network slicing in an

MEC environment [10], [11]. In [10], a hierarchical radio
resource allocation architecture is proposed to reduce the
burden of centralized resource allocation burden. A Stack-
elberg game is established with the global radio resource
manager as the leader and the local radio resource managers
as followers to achieve optimization of the resource allocation
between two network slices with heterogeneous performance
metrics in fog radio access networks slicing. The resource
allocation problem considered in the paper only focuses on
radio resources, and it is infeasible to keep the changing
resource distribution because of the huge operational expen-
diture. In [11], Xiang et al. proposed an optimization algo-
rithm to perform a joint slicing of wireless network and edge
computation resources, minimizing the total latency of trans-
mitting, outsourcing, and processing user traffic into account.
If the resource allocation problem is formulated to minimize
the delay, the slices may greedily consume the resources
of low-layer servers without appropriately placing VNFs to
other layers of the MEC network. Besides, traffic dynamics,
affecting resource allocation in real-time, is not explicitly
incorporated into the formulation in the paper.

RL has been considered the most effective way to max-
imize the long-term reward for dynamic systems among
dynamic resource allocation methods [22]. In recent stud-
ies, the RL algorithms have been applied successfully as
an alternative to model-based optimization, which is diffi-
cult to handle because of dynamics complexity involving
slice requests and resource allocation [6], [7], [23]–[25].
In [2], we focused on the dynamic resource allocation of
network slicing against upcoming resource demand by apply-
ing Q-learning. The study aims at maximizing the profit of
slices while ensuring the QoS requirements of end-users. This
solution is mainly designed for a single small-scale network,
which does not account for the end-to-end delay in MEC
environments. Besides, it does not consider the cooperation
between slices by performing learning within a single slice.
In [6], Huynh et al. proposed the network slicing framework
with the deep dueling neural network taking into account
radio, computing, and storage resources in 5G networks.

56180 VOLUME 9, 2021



Y. Kim, H. Lim: Multi-Agent RL-Based Resource Management for End-to-End Network Slicing

The algorithm only chooses whether to accept or reject
the slice request arrival without determining the amount of
resources based on the traffic demand. In [7], Wang et al.
leveraged deep RL to enable dynamic adjustment of the
resources and simultaneously maximize resource utilization.
A deep convolutional neural network is adopted to solve the
optimization problem under a complex state space effectively.
The model does not consider the delay that could occur in the
end-to-end slicing environment. Hence, the resource status
does not affect each other, and only the satisfaction of each
VNF’s demand is considered.

In this paper, we propose RL-based algorithms to deter-
mine the amount of combined MEC resources (i.e., comput-
ing and bandwidth) across the end-to-end network slicing
according to real-time traffic demand and delay constraints.
This RL-based approach can be effectively applied to practi-
cal applications and solve the resource allocation problem as
an alternative to the model-based optimization because of its
low complexity. Unlike myopic solutions that consider only
the resource demand at a given moment, it is effective in opti-
mizing QoS satisfaction against upcoming resource demand
using only the current information. Our algorithm enables the
recognition of the relationship between service types and the
hierarchy of MEC from the edge to the core network and the
automation of dynamic resource allocation tomeet theQoS of
end-to-end network slicing as much as possible. Furthermore,
the proposed multi-agent RL approach maximizes resource
efficiency by enabling inter-slice cooperation in multi-layer
MEC environments.

III. SYSTEM MODEL
In this section, we describe the system model used in this
paper. We first introduce the reference network system archi-
tecture and define a resource allocation problem for the
end-to-end network slicing as an MDP model. Table 2 sum-
marizes the notation adopted in this paper.

A. END-TO-END NETWORK SLICING ARCHITECTURE
As shown in Figure 1, we consider the end-to-end network
slicing system architecture as a hierarchy composed of MEC
nodes, denoted as m ∈M = {1, 2, · · · ,M}, where M is the
total number of theMEC nodes. EachMEC server placed in a
certain MEC node can create multiple VNFs, processing the
mobile devices’ workload. We assume that the MEC nodes
act as both the computing server and the switch. There are
M nodes with capacity cm ∈ {c1, c2, · · · , cM } measured in
CPU cycle/s. Let bm ∈ {b1, b2, · · · , bM } denote the available
bandwidth at the MEC node’s interface. We consider the tree
topology typically used for performance assessment in MEC
scenarios. Let L = {1, 2, · · · ,L} denote a set of layers,
where L is the total number of the layers. The ingress point
of flows belonging to slices can be one of the leaf nodes in
the bottom layer of the network. The layer of MEC node m is
denoted as lm ∈ L. We assume that the size of the layer from
the core node up to all leaf nodes is the same.

We consider a network slicing infrastructure consisting
of network slices, denoted as n ∈ N = {1, 2, · · · ,N },

TABLE 2. Frequently used notations.

where N is the total number of the slices. Based on user
requirements, different slices can be created to serve different
types of user traffic (e.g., computation-intensive service or
delay-sensitive service). Therefore, the network slices can be
characterized by specific performance requirements, usually
expressed using tolerable delay, data rate, and workload.
Considering different service types, we define the d̂n as a
tolerable delay requirement of slice n. To characterize the
data rate, we assume that the arrival rate of each flow in
slice n follows a Poisson distribution with the parameter λn.
The flow length follows an exponential distribution with the
parameter µn. The packet size of each flow and the number
of flows belonging to slice n are represented by fn and |fn|,
respectively. These parameters can be used to obtain the total
data rate of slice n at time step t , denoted as rn(t) (bit/s).
We characterize each slice by the processing density ωn
(CPU cycle/bit), the CPU demand as per data rate because
the processing resource demand is dependent on the service
type. Then, wn(t) = rn(t) · ωn (CPU cycle/s) represents the
total workload of slice n at time step t .
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FIGURE 1. End-to-end network slicing system architecture.

B. INTEGRATION OF NETWORK SLICING AND MEC
Network slicing provides customized services to mobile
users by integrating multiple resources of the MEC network.
In general, a network slice runs VNFs optimally placed to
fulfill a specific set of requirements and to offer customized
services to realize a particular use-case scenario. For simplic-
ity, we assume the scenario where each slice is associated
with only one server at each layer and served by multi-
ple servers across the entire layer. Let kn denote a set of
MEC nodes associated with slice n.
Since resource demand fluctuates over time, a sufficient

amount of resources to handle the traffic must be dynamically
allocated to the VNFs and links so that the QoS of the slices
can be satisfied. The computing resource of the node m
allocated to slice n at time step t is defined as αn,m(t). The
following constraints ensure that the allocated capacity of all
slices placed on the MEC node m at time step t does not
exceed the total capacity of the node m:

N∑
n=1

αn,m(t) ≤ cm. (1)

Note that if the amount of computing resource allocated to
slice n by the node m is zero, then m /∈ kn(t). Similarly,
the bandwidth of the node m allocated to slice n is defined
as βn,m. Then, the constraint for bandwidth is written as
follows:

N∑
n=1

βn,m(t) ≤ bm. (2)

The hierarchical MEC system provides an offloading capa-
bility to enable processing workload far away from the
core network. It allows supporting the control functionalities
needed to provide computing capabilities to hierarchical edge
nodes or to move VNF closer to end-users to satisfy their
delay constraint. Also, if the computing capacity is insuffi-
cient on a certain server, the slice’s workload can be offloaded
to the server of the upper or lower layer connected to it.
Let wn,m(t) denote the workload of slice n processed on the

MEC node m at time step t . We assume that the offloaded
workload is determined in proportion to the allocated com-
puting resource according to the following:

wn,m(t) = ρn,m(t) · wn(t), (3)

where ρn,m(t) = αn,m(t)/
∑

m αn,m(t) represents the
proportion of the allocated computing resource, where∑

m ρn,m(t) = 1. When the slice’s workload is outsourced
from the ingress point to the MEC node m, the total traffic
passing through the MEC node depends on the amount of
offloaded workload. Therefore, the data rate of slice n passing
through the node m at time step t is defined as follows:

rn,m(t) =
∑

h, if m∈path(h)

wn,h(t)
ωn

, (4)

where path(h) represents the set of nodes on the path from the
ingress point to the MEC node h.
Our goal is to satisfy the delay requirement of the slices

in the hierarchical MEC network as much as possible. The
data processing and transmission delay can be modeled
as G/G/1 queue. For tractability, we use an M/M/1 model
under the assumption of Poisson arrivals and exponential
inter-departure times of the system. The processing delay
ϕn,m(t) and transmission delay φn,m(t) of the slice n on the
server m at time step t are defined as follows:

ϕn,m(t) =


1

αn,m(t)− wn,m(t)
, if m ∈ kn(t),

0, otherwise,
(5)

φn,m(t) =


1

βn,m(t)− rn,m(t)
, if m ∈ kn(t),

0, otherwise.
(6)

The following constraint ensures that αn,m(t) is higher than
the wn,m(t) and the rn,m(t) does not exceed the βn,m(t),
respectively:

αn,m(t) > wn,m(t), βn,m(t) > rn,m(t), ∀n ∈ N ,∀m ∈M.

(7)

Note that if the resource demand is larger than the allocated
capacity, the delay becomes infinite, and the QoS is violated.
The service delay of the slice n serviced by the MEC node m
is determined by the sum of the processing and transmission
delays occurring on the path:

dn,m(t) = ϕn,m(t)+
∑

h∈path(m)

φn,h(t). (8)

Therefore, the total delay of the slice n depends on the longest
service delay among the MEC nodes:

Dn(t) = maxm∈kn(t)dn,m(t). (9)

If the total delay Dn(t) exceeds the delay requirement d̂n,
the slice n violates the QoS at time step t . In other words, if the
amount of allocated bandwidth and computing resources
is insufficient to the service resource demand, the QoS of
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some flows may be violated, in which a penalty may be
imposed. If we simply formulate our problem to be a mini-
mization problem of delay, the slices may greedily consume
the resources of low-layer servers without appropriately plac-
ing VNFs to other layers of the MEC network. Therefore,
we focus on deciding how much the MEC nodes’ resources
are allocated to adaptively place the workload at different
layers of the MEC network and satisfy the delay requirement
of many slices as possible.

C. MDP MODEL FOR RESOURCE ALLOCATION
In this section, we discuss the formulation of the resource
allocation problem of end-to-end network slicing. The state
observations are obtained from the real-time information of
the end-to-end network slicing system. The resource man-
agement agent monitors the status of network slices and
MEC nodes, including their resource allocation. Based on the
obtained information, the agent makes a decision on whether
to adjust the allocated resources for each slice to minimize
their QoS violations. The decisions are made at each control
interval. The value of the control interval depends on the
practical application (e.g., from several seconds to tens of
minutes). The environment returns a reward, which is calcu-
lated depending on the QoS and resource utilization of the
slices, and then a new decision process will be activated.
Our objective is to complete the decision process as soon as
possible to ensure the delay requirement. To achieve the goal,
we formulate this whole process as an MDP.

Suppose there are N slices, an MDP is modeled as
a tuple 〈o1, · · · , oN , a1, · · · , aN , ξ1, · · · , ξN ,P1, · · · ,PN 〉,
where on is the state space, an denotes the action space, ξn
represents a reward function used in measuring the decision
quality, and Pn is the state transition probability, modeling
the environment dynamics. The following are the detailed
descriptions of the MDP model.

1) State space: The observation of each slice n at the time
step t can be represented by

ont =
[
t, κn, in, %α(t), %β (t), ναn (t), ν

β
n (t), ρn(t)

]
. (10)

where κn represents service type that determines delay con-
straint, packet size, and processing density, and in is the
ingress node of the slice n. Let % = [%1, · · · , %M ] be a
vector with each element denoting the percentage of resource
utilization of each MEC node belonging to slice n:

%αm(t) =
N∑
n=1

αn,m(t)/cm,

%βm(t) =
N∑
n=1

βn,m(t)/bm. (11)

The vector νn = [νn,1, · · · , νn,M ] indicates the utilization of
the resource allocated from the MEC node m to slice n and is
a measure of the efficiency of resource allocation:

ναn,m(t) = min(1, wn,m(t)/αn,m(t)),

νβn,m(t) = min(1, rn,m(t)/βn,m(t)). (12)

The vector ρn = [ρn,1, · · · , ρn,M ] is the proportion of the
offloaded workload of each MEC node belonging to slice n.
Depending on our settings, each slice can be associated with
the same number of MEC nodes as the number of layers.
Therefore, we can set the number of elements of each vector
equal to the number of layers.
2) Action space: The action ant serves four functions for

different purposes: (1) selecting a node to adjust resources,
(2) deciding an adjustment size, and (3, 4) deciding whether
to increase or decrease CPU and bandwidth resources. Thus,
the action space ant is given as follows:

ant = asn(t)× a
u
n(t)× a

α
n (t)× a

β
n (t), (13)

where the action asn(t) ∈ {1, 2, . . . ,L} consists of actions as
the number of MEC nodes to which slice n can be associated
(i.e., the number of layers). The action aun(t) ∈ {0, 1, · · · ,U}
decides unit size of resource adjustment, uα = uu · 3a

u
n(t)

and uβ = uα/ωn, where uu is minimum size of resource
adjustment. The actions aαn (t) ∈ {+u

α, 0,−uα} and aβn (t) ∈
{+uβ , 0,−uβ} include the actions of adjusting the amount
of computing and bandwidth resources, respectively. At each
time step, the agent can sequentially increase or decrease the
resources of all MEC nodes associated with the slice n by the
unit size (i.e., uα and uβ ). Especially, in the case of bandwidth,
the amount of resources of all nodes on the path from the
ingress point to the MEC node asn is simultaneously adjusted.
Each action only affects one slice at a time, and the agent
gets a reward for the action of the slice. The time step moves
to the next step after completing the resource adjustment of
all slices.

3) Reward function: The reward function should be
defined to guide the agents to make decisions toward the
direction of optimizing our objective, which is QoS max-
imization. An effective solution to avoid QoS violation is
increasing resource utilization and decreasing the resource
wastage simultaneously. Inspired by this solution, we define
the reward function associated with resource allocation at
time step t as follows:

ξnt =

M∑
m=1

ναn,m(t)+
M∑
m=1

νβn,m(t)+ η · qn(t), (14)

where the first case indicates the efficiency of resources,
and qn(t) represents the QoS violation penalty, denoted as
follows:

qn(t) =

{
0, if Dn(t) ≤ d̂n(t),
−M , otherwise.

(15)

The parameter η denotes a weight factor balancing the
trade-off between the resource efficiency and the QoS. How-
ever, the resource allocation policy that maximizes the local
reward ξnt is not optimal for maximizing rewards for all
slices. Therefore, we model the reward function as the
common reward to improve resource efficiency and reduce
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QoS violations of all slices as follows:

ξt =

N∑
n=1

ξnt

N
. (16)

We can balance slices within a limited resource by returning
the common reward according to each slice’s behavior. In the
next section, we will describe our algorithm to maximize the
common reward.

IV. REINFORCEMENT LEARNING FOR END-TO-END
NETWORK SLICING
For resource allocation for multiple slices, one may consider
a single centralized agent that can fully observe the system
state and determine the behavior of all slices. When the slices
request a virtual network with specific QoS requirements,
it is fully up to the provider to manage the slices’ resources
to ensure QoS. Therefore, it is reasonable that the agent is
considered as a super-agent. Even though the super-agent-
based decision may be the best in performance, it is usually
impractical because it may cause a heavy signaling overhead.
Furthermore, in practical implementations, it is difficult for
algorithms to find an optimal solution because the action
space increases exponentially as the number of slices N
increases. Instead, in this paper, we adopt two decentralized
approaches based on PPO algorithm, which is explained in
the following section.

A. PROXIMAL POLICY OPTIMIZATION
In RL, an agent seeks to select an action that maximizes
the accumulated reward over time when interacting with
a complex and uncertain environment. One of the most
noticeable results was achieved through the policy gradient
method, which directly updates policy θ using policy gradient
estimator:

ĝ = Êt
[
∇θ logπθ (at |ot )Ât

]
, (17)

where πθ represents a stochastic policy, and Ât represents
the estimation of the true advantage at time step t . The
estimator ĝ is obtained by an objective function

J (θ ) = Êt
[
logπθ (at |ot )Ât

]
. (18)

The general actor-critic algorithms estimate the advantage
based on a critic: Ât = ξt + γVυ (ot+1) − Vυ (ot ), where the
critic Vυ is the estimation of the true value function. The critic
can be trained by adjusting the parameter υ to minimize the
loss

J (υ) = Êt
[
(yt − Vυ (ot ))2

]
, (19)

where yt = ξt + γVῡ (ot+1), and Vῡ is the target value
function that is periodically updated with the latest υ. The
optimization problem of the aforementioned objective func-
tion can be solved by stochastic optimization methods, such
as gradient-based methods. However, performing stochastic
policy gradient is often unstable because the magnitude of a
gradient step in parameter space is often not proportional to

its magnitude in policy space, leading to an excessively large
step size in policy space. In addition, the original policy-based
algorithms have low training efficiency because a collected
trajectory is used to train the agent only one time.

To attain the reliable performance and data efficiency of
the learning, Schulman et al. [26] proposed PPO, optimizing
a clipped surrogate objective function that penalizes changes
to the parameters that yield large policy changes. In PPO,
the agent comprises an actor network and a critic network,
which are responsible for decision making and policy eval-
uation, respectively, as shown in Figure 2. In other words,
the actor updates the policy probability distribution with the
direction suggested by the critic and determines the best
action. The surrogate objective function can be represented
as follows:

J ′(θ ) = Êt
[
logπθ (at |ot )Ât

]
= Êt

[ πθ (at |ot )
πθold (at |ot )

Ât
]

= Êt
[
ψt (θ )Ât

]
, (20)

FIGURE 2. PPO-based resource allocation framework.

where ψt (θ ) denotes the ratio of the current policy and old
policy. Then, the surrogate objective function is clipped to
avoid having too large a policy update by imposing a con-
straint on the difference between the new policy and the old
one:

J̄ (θ ) = Êt
[
min(ψt (θ )Ât , clip(ψt (θ ), 1− ε, 1+ ε)Ât )

]
= Êt

[
F(ψt (θ ), Ât )

]
, (21)

where ε is a clipping parameter, and clip(ψt (θ ), 1−ε, 1+ε)Ât
modifies the surrogate objective by clipping the policy prob-
ability ratio ψt (θ ). In other words, the ratio ψt (θ ) is clipped
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Algorithm 1 ICPRA algorithm
1: Initialize critic Vυn and actor πθn
2: Initialize the current policies πθnold
3: Initialize buffer B
4: for e = 1 to E do
5: for t = 1 to T do
6: if control interval then
7: Obtain ont
8: Execute ant according to πθnold (a

n
t |o

n
t )

9: Compute ξt according to (16)
10: B← B ∪ {(ont , ant , ξt , ψn

t (θ
n))}

11: end if
12: if t/τ = 1, 2, 3, · · · then
13: for k = 1 to K do
14: Sample the data from buffer B
15: Compute Ânt according to (22)
16: Compute J̄ (θn) according to (23)
17: Compute J (υn) according to (24)
18: θn← θn + ζ∇θ J̄ (θn)
19: υn← υn − ζ∇υJ (υn)
20: end for
21: θnold ← θn and ῡn← υn

22: B← ∅
23: end if
24: end for
25: end for

at 1 − ε or 1 + ε depending on whether the advantage Ât is
positive or negative. This method has stability and reliability
for policy updates and improves performance over a vanilla
policy gradient method.

B. INDEPENDENTLY COOPERATIVE PPO-BASED
RESOURCE ALLOCATION
We first propose an independently cooperative PPO-based
resource allocation (ICPRA) for end-to-end network slic-
ing. As shown in Figure 2, ICPRA allows each slice to
independently update the actor and critic according to the
individual trajectory (ont , a

n
t , ξt , ψ

n
t (θ )). Actor policies (πθ )

are trained to maximize global reward, given decentral-
ized states, whereas the critic network estimates the value
function (Vυ ). Recall that the ont and a

n
t refer to observations

and actions of the slice n, respectively. Each ont contains
6 elements per slice (i.e., current time step, service type,
ingress node, resource utilization of associated nodes, effi-
ciency of resource allocation, and proportion of resource allo-
cation). The action ant indicates how to control the computing
and bandwidth resources of a selected node. Our objective is
to obtain the optimized policy that maximizes the common
reward ξt presented in (16).

Algorithm 1 presents an ICPRA’s pseudo code. The actor
network and the critic network are created with the parame-
ters πθ andVυ , respectively. The agent has a buffer memoryB
to store the trajectories of interacting with the environment

Algorithm 2 JCPRA algorithm
1: Initialize Qυn , πθn , πθnold and B
2: for e = 1 to E do
3: for t = 1 to T do
4: if control interval then
5: Obtain ont
6: Execute ant according to πθnold (a

n
t |o

n
t )

7: Compute ξt according to (16)
8: B← B ∪ {(xt , at , ξt , ψn

t (θ
n))}

9: end if
10: if t/τ = 1, 2, 3, · · · then
11: for k = 1 to K do
12: Sample the data from buffer B
13: Compute Â

n
t according to (26)

14: Compute J̄(θn) according to (25)
15: Compute J(υn) according to (27)
16: θn← θn + ζ∇θ J̄(θn)
17: υn← υn − ζ∇υJ(υn)
18: end for
19: θnold ← θn and ῡn← υn

20: B← ∅
21: end if
22: end for
23: end for

using policy πθold . Each slice sequentially collects trajectory
at the moment of resource adjustment, where E is the num-
ber of episodes. This data collection period runs during τ ,
the length of the trajectory segment (where τ is less than the
episode length). After the data collection period, the training
period runs for K epochs. The following advantage function
Ânt is estimated by the generalized advantage estimation [27]:

Ânt = δ
n
t + (γϑ)δnt+1 + · · · + (γϑ)τ−t+1δnτ−1, (22)

where γ is the discount factor, ϑ is the smoothing parameter,
and δnt = ξt + γVῡn (o

n
t+1) − Vῡn (o

n
t ). The clipped surrogate

objective function J̄ (θn)) in (21) is calculated as follows:

J̄ (θn) = Êt
[
F(ψt (θn), Ânt )

]
. (23)

The critic is also updated with the following loss function:

J (υn) = Êt
[
(ynt − Vυn (o

n
t ))

2], (24)

where ynt = Ânt + Vῡn (ont ). The algorithm iteratively
updates the parameters in K training epochs using Adam
optimizer [28] with learning rate ζ . After the training,
θnold and ῡn are updated. However, the local critic of the
ICPRA algorithm does not approximate the true global
state-value function. Therefore, the advantage function con-
sidering all slices cannot be estimated accurately. It is dif-
ficult to estimate the influences of each slice’s action on
the common reward because only the state information is
used.
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C. JOINTLY COOPERATIVE PPO-BASED RESOURCE
ALLOCATION
We propose a jointly cooperative PPO-based resource allo-
cation (JCPRA) in centralized training with a distributed
execution framework. Different from the ICPRA algorithm,
the centralized critics estimate the joint action-value function
Qυn based on global information that includes the observation
and action of all slices, whereas the distributed actors make
decisions only based on local observations of the slices in the
same way as the ICPRA as illustrated in Figure 2. We can
update the policy of the actor network using the clipped loss
function:

J̄(θn) = Êt
[
F(ψt (θn), Â

n
t )
]
, (25)

where Â
n
t is the joint advantage function indicating how the

behavior of all agents, including a given agent, contributes to
the common reward:

Â
n
t = δ

n
t + (γϑ)δnt+1 + · · · + (γϑ)τ−t+1δnτ−1, (26)

where δnt = ξt+γQῡn (ot+1, at+1)−Qῡn (ot , at+1). The critic
is also updated with the following loss function:

J(υn) = Êt
[
(ynt − Qυn (ot , at ))

2]. (27)

Note that the critic for each slice n is updated separately,
but has the same joint action-value function. The detailed
learning process of JCPRA is presented in Algorithm 2.

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We obtained all numerical results from the executions on a
server equipped with an Intel(R) Xeon(R) Gold 6136 CPU@
3.00 GHz and NVIDIA Titan RTX GPU with 24 GB of
memory and with CUDA 10.1. The RL environments were
implemented with Python 3.3, Pytorch 1.6. Figure 3 shows
the network topologies with the different number of layers.
One of the leaf nodes, in, can be an ingress point of slice n, and
the slice’s workload is outsourced from the ingress point to
the MEC nodes. For measuring the performance, we selected
the binary tree topology, which is typically used for per-
formance assessment in hierarchical MEC scenarios. The
capabilities of servers close to the core are higher than those
of servers close to the edge. Therefore, we set the available

FIGURE 3. Network topologies for performance evaluation.

CPU capacity cm to 18000 · 21−lm CPU cycles/s depend-
ing on the layer lm of each node and the bandwidth bm to
18000 Mbps. Unless otherwise stated, we set N = 10,
M = 7, L = 3, and the initial values of all parameters are
listed in Table 3.

TABLE 3. Simulation parameters.

We considered three common types of slices included in
the 5G applications: automotive (low tolerable latency, small
traffic, and low computation), data transmission (medium
tolerable latency, large traffic, and medium computation),
and utility (medium tolerable latency, low traffic, and large
computation). We used fn, λn, and µn to calculate the data
rate rn(t) at each time step and the processing density ωn
to calculate the computation capacity wn(t). For example,
the packet sizes fn of requests from each type of services
are set to 5, 200, and 5 Mbits, respectively. The flow arrival
rate of each slice is governed by a Poisson process (λn), and
the length of flow follows an exponential distribution (µn).
The delay requirements for each service type are 0.01, 0.5,
and 0.5 s, respectively. The ingress node in of slice n is
randomly chosen. Check the different parameter settings for
different slice types.

To implement the PPO-based algorithm, we used three
fully-connected hidden layers with 256 units for the actor
network and the critic network, respectively. We applied the
rectified linear units (ReLU) activation function, which has
proven to be reliable and fast learning. Depending on the
environment settings, the size of the input layer of the actor
network is 18. We can also obtain the size of the action space,
which is the same as the number of 3 × 3 × 3 × 3 = 81.
The number of inputs of the JCPRA’s critic network is equal
to the number of global information for all agents. Using
Adam optimizer, we updated the prediction network with a
learning rate ζ = 0.0007. The discount factor γ and the
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smoothing parameter ϑ for estimating the advantage function
in (22) and (26) were set to 0.98 and 0.95, respectively.
We chose reward weight η = 1.2 for the reward function.
For the resource adjustment, we set the control interval to 5,
uu to 100, and U to 3. These parameter settings are fixed
unless otherwise noted in this section.

We evaluated the performance of the proposed algorithms
and compared it with that of other algorithms, which are
fixed-resource (FR) algorithm, previous-demand (PD) algo-
rithm, random action algorithm, and sequential fixing (SF)
algorithm in [11]. The most straightforward algorithm, the
FR strategy allocates sufficient resources exclusively and
excessively. In other words, the algorithm statically allocates
the same amount of resources as the peak-time resource
demand. The PD strategy is based on allocating resources
corresponding to the resource demand of the previous control
interval. According to our setting, the algorithm dynami-
cally allocates the same amount of resources as the amount
multiplied by 1.2 to the previous demand. This algorithm
is a typical dynamic resource allocation method. In the two
greedy algorithms, resources are allocated to slices sequen-
tially from edge to core. The random algorithm is based
on randomly selecting actions of dynamic resource alloca-
tion. The SF algorithm focuses on minimizing the service
delay. It determines the ranking of MEC nodes based on the
probability of node selection. It also assigns a rank to the
slices according to the data rate and delay requirements and
sequentially allocates the MEC nodes to the slices.

B. TRAINING PERFORMANCES
To demonstrate the effectiveness of the proposed algorithms,
we first observed the cumulative reward of the proposed
algorithm for training episodes. In Figure 4, the red and blue
curves show the total reward variation of JCPRA and ICPRA,
respectively, over thewhole training process. For comparison,
we used the results derived by applying other algorithms.
The reward is observed for 25 sampling intervals with an
exponential moving average window of 20. As can be seen,
the performance curves of the proposed algorithms increase
at different rates as the training process goes on. The reward
starts from a low initial value but is quickly converged within
hundreds of episodes. The graph shows that the converged
reward obtained by the proposed algorithms is significantly
higher than that of other algorithms. ICPRA converges faster
than JCPRA in the early stages of learning because it is more
difficult to learn the policy of JCPRA, which has many inputs
for the joint learning of the critic network. However, the con-
verged result demonstrates that JCPRA performs better than
ICPRA. Hence, we can find that JCPRA achieves a more
reasonable policy compared with ICPRA by considering the
interrelationships between the slices.

C. QoS UNDER DIFFERENT LEVELS OF NETWORK LOAD
Figure 5 shows the QoS satisfaction results according to the
amount of network resources. To evaluate the performance
according to different network loads, we set the peak CPU
demand to 50%, 100%, 150%, and 200% compared with

FIGURE 4. Comparison of training performance for different algorithms.

FIGURE 5. QoS satisfaction ratio under different levels of network load.

the core node’s available CPU resource. The amount of core
resources naturally determined the amount of resources in
the lower layer. To guarantee QoS when network resources
are limited, it is necessary to balance resource allocation
among the slices. The proposed algorithms perform better
than other algorithms, and PD, a comparable dynamic alloca-
tion method, shows the worst performance. This is due to the
fact that the proposed algorithms reserve enough resources
for upcoming demands, whereas the PD algorithm allocates
the resources based on the previous request. SF and PD have
almost the same performance. This is because SF is a greedy
method that makes a decision using current information about
the data rate and delays in a greedy manner, similarly to
PD under the dynamic traffic environments. Under low net-
work loads, FR performs well because of its ample resource
occupancy, but its performance drops as the network load
increases. We can see that the proposed JCPRA and ICPRA
balance resources across slices for future resource demands
under all network load conditions. The most remarkable
aspect is that JCPRA achieves better performance under
higher network loads than ICPRA, suggesting that JCPRA
achieves a better end-to-end resource balance, as discussed
in Section V-F.
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D. RESOURCE EFFICIENCY UNDER DIFFERENT LEVELS
OF NETWORK LOAD
Figure 6(a) and 6(b) show resource utilization according to
the network load. The utilization of all algorithms shows a
trend of increase as the network load increases. These are
the results of the increasing amount of consumed resources,
despite allocating available resources as much as possible as
the network load increases. As can be observed, the proposed
algorithm achieves high utilization while guaranteeing QoS
by allocating an appropriate amount of resources compared
with PD. PD performs poorly because of its inability to
prepare for sudden decreases in resource demand, despite
allocating 1.2 times as much amount as resource demand.
SF is slightly better than PD under overload conditions. The
utilization of FR, which is a static allocation method, is low
because it allocates resources excessively even when network
demand is low. The random algorithm has similar utilization
(∼30%–40%) under all network load conditions.

E. TRADE-OFF BETWEEN QoS AND UTILIZATION WITH
DIFFERENT REWARD WEIGHTS
We varied the weight factor η of reward to observe the
trade-off between QoS and resource utilization. In Figure 7,
the result shows that the algorithm learns to guarantee
QoS instead of increasing resource efficiency strictly when
increasing the weight. QoS increases significantly from 88%
to 99% as the weight increases from 1.0 to 1.6. On the
other hand, resource utilization values decrease from approx-
imately 81% to 74%. In particular, as the weight increases,
the effects of the weight on QoS and utilization gradually
decrease. This result shows that it is meaningful to choose
an appropriate reward weight to balance QoS and utilization.

F. RESOURCE ALLOCATION BY LAYER ACCORDING
TO SERVICE
Finally, we investigated the effect of different service types
on the proportion of resource allocation to layers in the end-
to-end network slicing scenario. Figure 8 illustrates the pro-
portion of the CPU resource allocation of each service type
according to the learning episode when ICPRA is applied.
We considered three types of services: a delay-sensitive
service (type-1), a large-bandwidth service (type-2), and
a computation-intensive service (type-3). The results show
that the CPU resource for the type-1 service is allocated at
the largest proportion from edge nodes, which are closest
to mobile devices. Meanwhile, the type-2 service, which
requires relatively high bandwidth, is assigned more to the
middle point of the hierarchy. The rational reason that the
closer it is allocated to the core, the higher the bandwidth
utilization of the whole network, resulting in performance
degradation. It can be seen that the type-3 service with
relatively large CPU requirements is most allocated to the
core. Figure 9 shows the proportion of CPU resource allo-
cation when JCPRA supporting inter-slice cooperation is
applied. Converged results with JCPRA show that the layer
dependence of the different services is very high compared

FIGURE 6. Resource utilization under different levels of network load.

FIGURE 7. QoS and resource utilization under different reward weights.

with ICPRA. This means that resources are effectively allo-
cated to different layers that fit the characteristics of the
service as the episode progresses. The results show that the
JCPRA algorithm works well to achieve the best balance for
resource allocation to layers according to the different service
types in end-to-end network slicing scenarios.
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FIGURE 8. The proportion of resources allocated by the ICPRA algorithm according to the service type.

FIGURE 9. The proportion of resource allocated by the JCPRA algorithm according to the service type.

FIGURE 10. Number of episodes for convergence.

G. SCALABILITY
RL methods suffer from scalability issues because of a
large number of states [29]. We evaluate the scalabil-
ity of our algorithms depending on the different num-
ber of layers in the network topology shown in Figure 3.
We have investigated the convergence speed to reach a goal
(i.e., QoS ≥ 0.9). The network load is set to 100%. Figure 10
shows the number of episodes according to the number of
layers. The scenarios with a larger number of layers require
more training episodes to reach highQoS. The results indicate
that our algorithms can achieve the goal of QoS satisfaction
in more complex network topologies, even though the con-
vergence speed decreases as the number of layers increases.

We evaluated the performance when the number of slices
is greater than 10. While only three slice types are defined
in 3GPP (i.e., eMBB, URLLC, MMTC), the use of more
slice types has been proposed in a recent study [30].
Figure 10 shows the number of episodes for QoS satisfaction
for N = 20. It is seen that more training episodes are needed

for convergence as the number of slices increases. Especially,
the convergence speed difference between N = 10 and 20
for JCPRA is larger than that for ICPRA. This is because
the number of global states of its critic network signifi-
cantly increases as the number of agents increases. If N and
L are extremely large, we can consider to adopt large-scale
RL schemes such as imitation learning [31], hierarchical
learning [32] and parallel learning methods [33].

VI. CONCLUSION AND DISCUSSION
We have investigated the dynamic resource allocation of
end-to-end network slicing with heterogeneous requirements
in MEC environments to increase resource efficiency and
guarantee QoS. We formulated the problem as a cooperative
multi-agent task. Moreover, we developed the independent
and joint learning algorithms, i.e., ICPRA and JCPRA, using
policy gradient-based PPO algorithm to solve this prob-
lem. Simulation results demonstrated that the proposed algo-
rithms achieve better performance than the existing meth-
ods, and JCPRA achieves a balance of resource allocation
between the different types of services in a hierarchical
MEC environment.

Our proposed work can contribute to network slicing man-
agement in various networks including 5G-and-beyond net-
works and industrial networks. The complexity of the net-
working systems increased by many devices, applications,
and machines pose challenges in managing the network
resources. In these networks, network slicing will play a more
important role to supply resources on-demand and provide
a more dynamic network that can adapt to the needs of
emerging applications. To support the increasing heteroge-
neous services and complex networks, network slicing is an
essential element of future networks. Without appropriate
coordination among slices, it is difficult to achieve optimal
resource allocation among slices in terms ofmanagement cost
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and time. Our work will be a practical solution for future
network slicing that enables automated and efficient resource
management.
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