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ABSTRACT Virtual power plant (VPP) technologies continue to develop to embrace various types of
distributed energy resources (DERs) that have inherent real-time uncertainty. To prevent side effects on
the power system owing to the uncertainty, the VPP should manage its internal resources’ uncertainty as a
whole. This paper proposes an optimal operation strategy for a VPP participating in day-ahead and real-time
energy market so that a distributed energy resource aggregation (DERA) can cope with real-time fluctuation
due to uncertainties while achieving its maximum profit. The proposed approach has bidding models of
the DERAs including microgrid, electric vehicle aggregation, and demand response aggregation, as well
as the VPP. The VPP determines internal prices applied to the DERA by evaluating its real-time responses
to the day-ahead schedule and updating proposed pricing function parameters, and the DERA adjusts its
energy reserves. By repeating this coordination process, the VPP can establish an optimal operation strategy
to manage real-time uncertainty on the DERA’s own. The effectiveness of the proposed strategy is verified by
identifying a capability of the DERA to cope with real-time fluctuation through scenario-based simulations.
The result shows that the VPP can reduce 1.6% of cost while the internal price applied to the DERA is close
to the maximum.

INDEX TERMS Virtual power plant, distributed energy resource aggregation, electricitymarket, uncertainty,
real-time dispatch.

NOMENCLATURE
A. SET AND INDICES
c VPP participant classification code

(PV, ESS, EVA, DRA, MG)
i number index of participants
N total number of participants
T total scheduling time
1t scheduling time interval
k index of k-th day
P̂V set of PVs participating in VPP
ÊSS set of ESSs participating in VPP
ÊVA set of EVAs participating in VPP
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D̂RA set of DRAs participating in VPP
M̂G set of MGs participating in VPP

B. PARAMETERS
π sDA (t) /π

s
RT (t) Energy selling price in

day-ahead market (DAM)/
real-time market (RTM) at
time t

πbDA (t) /π
b
RT (t) Energy purchasing price in

DAM/RTM
PcDAbid,i (t) / P

c
RTbid,i (t) Energy bid of i-th partici-

pant c in DAM/RTM at time
t(∀c ∈ P̂V )

PcDAload,i(t)/P
c
RTload,i(t) Forecasted load of i-th par-

ticipant c in DAM/RTM at
time t
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PcDAsche,i (t) / P
c
RTsche,i (t) Schedule reference of

i-th participant c in
DAM/RTM at time t

ηci ESS charging and dis-
charging efficiency of i-th
participant c

Capci ESS battery capacity of
i-th participant c

SOCc,ini
i / SOCc,end

i ESS initial/final state of
charge (SOC) of i-th par-
ticipant c

SOCc,lb
i / SOCc,ub

i ESS SOC lower/upper
bound of i-th participant c

PVPP,b,maxDAbid (t) / PVPP,b,maxRTbid (t) Upper bound of
purchasing bid of VPP in
DAM/RTM at time t

PVPP,s,maxDAbid (t) / PVPP,s,maxRTbid (t) Upper bound of selling bid
of VPP in DAM/RTM at
time t

Pc,minDAbid,i(t)/ P
c,min
RTbid,i(t) Lower bound of bid of

i-th participants c in
DAM/RTM at time t

Pc,maxDAbid,i(t)/ P
c,max
RTbid,i(t) Upper bound of bid

of i-th participant c in
DAM/RTM at time t

Pc,ch,maxDAbid,i (t) / P
c,dch,max
DAbid,i (t) Upper bound of battery

charging and discharging
of i-th participants c in
DAM at time t(∀c ∈ ÊSS)

Pc,ch,maxRTbid,i (t) / P
c,dch,max
RTbid,i (t) Upper bound of battery

charging and discharging
of i-th participants c in
RTM at time t(∀c ∈ ÊSS)

Cc
i (t) Pricing function of i-th

participant c at time t
γ ci (t) Error rate between DAM

bid and RTM response of
i-th participant c at time t

π swh(t)/π
s
re(t) Selling price in whole-

sale/retail market at time t
πbwh(t)/π

b
re(t) Purchasing price in

wholesale/retail market at
time t

PcRT ,i (t) Real-time power of i-th
participant c

EMG Sum of DAM MG reserve
in real-time environment
(for 24 h per 5 min)

C. VARIABLES
PVPP,sDAbid (t)/ P

VPP,s
RTbid (t) Selling bid of VPP in

DAM/RTM at time t
PVPP,bDAbid (t)/ P

VPP,b
RTbid (t) Purchasing bid of VPP in

DAM/RTM at time t

PcDAbid,i (t) / P
c
RTbid,i (t) Energy bid of i-th partic-

ipant c in DAM/RTM at
time t
(∀c ∈ ÊSS, ÊVA, D̂RA,
M̂G)

Pc,chDAbid,i(t)/ P
c,dch
DAbid,i(t) Charge/discharge energy

of i-th participants c in
DAM at time t
(∀c ∈ ÊSS)

µ
c,ch
DA,i(t)/ µ

c,dch
DA,i (t) Binary variable of battery

charging / discharging in
DAM at time t
(∀c ∈ ÊSS)

Pc,chRTbid,i(t)/ P
c,dch
RTbid,i(t) Charge/discharge energy

of i-th participants c in
RTM at time t
(∀c ∈ ÊSS)

µ
c,ch
RT ,i(t)/µ

c,dch
RT ,i (t) Binary variable of battery

charging / discharging in
RTM at time t
(∀c ∈ ÊSS)

SOCc
i (t) ESS SOC of i-th partici-

pant c at time t
µbDA (t) /µ

b
RT (t) Binary variable of pur-

chase in DAM/RTM at
time t

µsDA(t)/µ
s
RT (t) Binary variable of sales in

DAM/RTM at time t

I. INTRODUCTION
Renewable energy sources are consistently deployed in the
power generation sector to reduce greenhouse gas emissions,
which is the main cause of climate change. As of 2018, mod-
ern renewable energy accounts for 11 % of the world’s final
energy consumption and continues to increase [1]. In Korea,
the government aims to expand the portion of renewable
energy from 7 % of the total power generation to 20 % by
2030 under the 3020 renewable energy policy. Most of the
renewable energy corresponding to this goal is solar and wind
power. Solar and wind energy account for 57 % and 28 % of
the capacity goals, respectively [2]. However, uncertainties
inherent in distributed energy sources (DERs) such as solar
and wind power can adversely affect power supply plans from
an energy perspective and worsen the power quality from a
power perspective. To address these problems, a virtual power
plant (VPP) is being developed [3]. VPP aims to contribute
to the supply and demand balance at the transmission system
level through direct participation in the power market [4], [5].

Resources in the VPP consist of power generating units,
power utilization units, power storage units, and micro-
grids (MGs), as shown in Fig. 1 [6]. According to [7],
the aggregation of DERs such as energy storage, distributed
generation, demand response, energy efficiency, and electric
vehicles connected to the distribution network are allowed
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FIGURE 1. VPP system composition diagram.

to participate in the power market. For a VPP with inherent
uncertainties to obtain maximum profits in the power mar-
ket, a bid scheduling when considering the uncertainties and
their countermeasures, as well as a strategy to minimize
purchase or sales in a real-time market (RTM), is required [8]
because the purchase price in RTM is generally higher than
that in the day-ahead market (DAM) and the sales price is
cheaper than in DAM [9].

Optimal operation strategies of VPP participating in power
markets considering uncertainties have been studied in many
literatures [8]. However, they have rarely addressed aggre-
gation resources participating in the VPP, and penalties for
each resource with regard to not properly responding day-
ahead schedule in real-time environment. In [10], a problem
for minimizing cost ofMGs integrated with renewable energy
resources have been solved using binary particle swarm opti-
mization. In [11], a joint day-ahead and real-time market for
VPP with DR model has been constructed using a two-level
robust optimization model to minimize penalty in real-time
market considering an uncertainty margin. Authors in [12]
have presented a hybrid optimization model including grid
search algorithm and a proprietary derivative-free algorithm
for DGs, ESSs, andMGs in VPP. ADAMbidding strategy for
a VPP as a price maker to minimize RTM penalty has been
studied through uncertain resources modeling using interval
interpretation [13]. A strategy for a VPP to purchase DR
services to reduce penalty cost has been presented in [14]. The
problem is formulated as multistage stochastic optimization
model, which is a time order.

A study using fuzzy optimization techniques considering
the uncertainty of renewable energy can be found in [15].
The VPP trades energy and DR internally with consumers in
its territory based on demand curtailment requests. Authors
of [16] proposed a self-scheduling strategy using a multi-
horizon information-gap decision theory model instead of
assuming a probability distribution function or confidence
interval for uncertain parameters, and ensure that a prede-
fined minimum allowable benefit is achieved. In [17], deter-
ministic price based unit commitment model that takes into
account balance and security constraints of VPP participating
in the joint market of the energy and spinning reserve service
has been proposed. Using technical and economic dispatch
model, technical and economic dispatch problems has been

established by utilizing wind power plants, hydroelectric
power plants, and on-site solar power in [18].

Reference [19] has proposed an optimal power dispatch
strategy to minimize power purchase costs and maximize
power sales benefits when VPP including interruptible loads,
energy storage systems, and battery switch stations partici-
pate in a unified electricity market combining day-ahead and
real-time trading. A short-term operational planning frame-
work for a VPP has been proposed in [20]. The stochastic
bidding model is proposed in the first stage, that utilizes
the Monte-Carlo method to deal with uncertainty, and in
the second stage the real-time control operation is optimized
using the model predictive control methodology.

Reference [21] have proposed a two-stage stochastic offer-
ing model for the maximum profit of VPP participating in
DAM and RTM, and evaluated the model for wind power
plants, conventional power plants, and pumped hydro storage
plants. In [22], DERs and VPP conduct internal transac-
tions to maximize market participation profits of VPP and
the surplus profit are distributed to each DER using game
theory-based methods. In [23], an interactive dispatch model
of multi-VPP based on the DR and game theory has been
proposed. Reference [24] has been addressed an architecture
and a strategy for cost minimization of a VPP participating
in demand side management programs. In [25], a deep rein-
forcement learning algorithm for an optimal online economic
dispatch strategy for VPP with a design of edge-computing
based three-layer system architecture has been proposed.

Authors in [26] have proposed a coordinated offering and
bidding mechanism for a hybrid power plant containing a
concentrated solar power plant, a wind farm, a compressed
air energy storage, and a demand response provider by
establishing a bi-objective optimization model for constant
value-at-risk (CVaR) based strategy as well as consider-
ing of participation in the intraday market. In [27], using
CVaR approach a multi-objective optimization problem in
a joint market of energy and spinning reserve has been
proposed, where the demand side resources participate in
reserve provision. The problem is solved in a risk-averse
probabilistic framework considering various normal opera-
tion uncertainties and N-1 contingencies. In [28], authors
have proposed a multi-objective bidding strategy of VPP
including wind-thermal-photovoltaic system participating in
the energy and spinning reserve market to maximize profit
and minimize emission. Authors in [29] have proposed a
three-stage stochastic multi-objective model for the purpose
of profit maximization and emission minimization of wind-
thermal-energy storage resources participating in energy,
spinning reserve, and imbalance market. To deal with multi-
objective problem, lexicographic optimization and hybrid
augmented-weighted epsilon constraint method are imple-
mented. In [30], a coordinated operation strategy for hybrid
power plant containing wind, photovoltaic, battery energy
storage, CAES, and thermal units has been presented con-
sidering uncertainty of intraday demand response exchange
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market and risk measuring indices corresponding to CVaR
and deviation of the objective function.

In most of the literature, only individual resources have
been addressed as participating in a VPP, and participation
of aggregation resources has rarely been considered except
for [10]–[12]. As mentioned in [6], a distributed energy
resource aggregation (DERA) such as MGs can also partici-
pate in VPP. The DERA may have a dedicated management
system, so in terms of distributed control, direct interaction
between the VPP and the DERA’s individual resources is
inefficient. Thus, the VPP may establish a bidding strategy
for the electricity market in forms of interaction with each
DERA.

In addition, most of the literature have not addressed the
issue of ownership participating in VPP in detail. In practical
circumstances, a VPP operator and owners of each resource
may be different and will trade energy and services with
each other through specific contracts. Thus, it is necessary to
deal with control authority or profit distribution issues when
different resources participate in the VPP. Profit distribution
according to ownership has been covered in [9] and [22], but
these studies have not considered participation of aggregation
resources such as MGs in the VPP.

Penalties should also be considered if resources with dif-
ferent ownerships do not respond properly to VPP’s real-time
dispatch signal. In practical, there may be a case in which the
VPP resource does not properly respond to the DAM bid in
real time due to problems such as forecast errors or system
failures. It is unreasonable for VPP to equally compensate for
resources that properly responded to the real-time dispatch
signal of the VPP and the resource that did not respond to it.
However, most studies have not properly addressed this issue.

In this paper, it is proposed that an optimal operation
strategy of the VPP considering uncertainties of real-time
dispatch response of the DERA in order to achieve maximum
profit of the VPP and the DERA. The degree of responses of
the DERA’s DAM bid in a real-time environment is assessed
daily by the VPP. According to results of the assessment,
the VPP determines internal prices of the DERA, and the
DERA adjusts its bid range. By repeating these processes,
the optimal operational strategy can be established. A pricing
function of the DERA is set as a cost that the VPP pays to
the DERA. Then, parameters of the pricing function are con-
tinuously updated according to the responses of the DERA’s
DAM bid in the real-time environment to impose penalties
to the DERA. Through the iterative process, coordination
between the VPP and the DERA can be established and as a
result the responsiveness of the real-time dispatch responses
of the DERA is improved.

The main contributions of this paper are summarized as
follows:
• Establish a profit or cost distribution methodology of
DERAs in a VPP to manage real-time uncertainty by a
proposed pricing function parameter updating process.

• The DERA can take responsibility on its own uncer-
tainty by a proposed coordination process that the VPP

transmits evaluation results of the DERA’s real-time
operation, and the DERA adjusts its energy reserve for
the next day.

• The DERA’s capability to manage real-time uncertainty
can be increased.

The remainder of this paper is organized as follows.
Chapter II describes the problem. Chapter III deals withmath-
ematical models, including a DAM bidding model, DERA
pricing function, and an RTM bidding model. In Chapter IV,
a simulation based on certain scenarios conducted to verify
the proposed model is described. Chapter V presents some
concluding remarks and areas of future study.

II. PROBLEM DESCRIPTION
A. DER TYPE AND PARTICIPATION
In this study, the proposed method is modeled for photo-
voltaic (PV) systems, ESS, MG, electric vehicle aggrega-
tion (EVA), and demand response aggregation (DRA). With
regard to PV systems, it is assumed that if the owners are the
same, it is treated as a single PV system regardless of whether
it is a single PV system connected to one transformer or a
large-scale PV plant and is always controlled through maxi-
mum power point tracking for maximum profit in the power
market. That is, the PV generation is not curtailed. Thus, PV
generation is treated as a forecasted value. PV generation
forecasts are not discussed herein, because they are outside
the scope of this paper. The ESS in this paper indicates
BESS, which is currently the most widely deployed version.
For the VPP to participate in the power market, ESSs are
essential because they have a fast response time and can act as
both load and power generation. Thus, it is assumed that the
VPP operator has the authority to control the ESSs through
dedicated contracts between the VPP operator and the ESS
owners. DERAs, such as MG, EVA, and DRA, are all in the
form of an aggregation of individual resources. Individual
resources belonging to DERAs may have different owners,
but it is common for DERAs to have a dedicated management
system. In the case of MG, the MG energy management
system is responsible for cost-minimization operations by
maximizing the self-consumption and islanding operations
to provide resiliency even in the case of a power system
fault [31]. EVA can be regarded as an EV charging station,
and the charging station management system can provide ser-
vices to each EV through functions such as charge/discharge
metering, time of use based minimum cost charge/discharge,
and participation in the power market through a vehicle-
to-grid system [32]. DRA also provides a load curtailment
capacity by interacting with external systems through con-
tracts with individual load resources.

DERAmanagement systems are characterized by schedul-
ing functions, individual resource control functions, and
external system interaction functions. If VPP directly inter-
acts with individual resources inside the DERAs, operational
inefficiencies owing to redundant infrastructure construction
and computational complexity will be extremely large and
may also not benefit individual resources because it directly
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leads to a decline in VPP profits. Therefore, it is efficient
for the VPP to interact only with DERA operators to transact
energy and services with each other.

Each DERA submits its own bidding schedule before the
VPP implements the electricity market bidding schedule.
In this paper, it is assumed that MGs have ESSs for efficient
self-consumption, and thus it is possible to adjust their own
bidding range. In addition, EVAs and DRAs do not have
dedicated ESSs, thus they are not able to efficiently respond to
uncertainties. The purpose of this assumption is to ensure that
the uncertainties that may occur in a real-time environment
can be addressed by the dispatchable resources, and that the
profit distribution of each participant is determined according
to their responsiveness, thereby inducing active participation
of the participants.

B. ELECTRIC POWER MARKET
In this paper, the power market in which a VPP participates
is assumed to be an energy market composed of DAM and
RTM. The Korean power market is a cost-based pool and
only has DAM, in which an operation schedule that reflects
power system constraints is determined after the market
price is determined through a non-constrained problem that
does not reflect power system constraints such as transmis-
sion and heat constraints. The difference between the power
generation plan and the actual output of the generators is
then compensated with the constrained settlement. However,
to solve the problem of accepting renewable energy at the
market level while reflecting the actual conditions of the
power supply and demand as well as the power system, Korea
is currently pursuing a reform of the power market. First,
through the reform of the energy settlement, the generation
scheduling will be unified, and the compensation for flexible
resources will be systematized through the reform of the
auxiliary service settlement. Finally, DAM and RTM with
price bidding are expected to be opened in 2024. The Korean
power market is based on the North American power market.
In North America DAM, RTO/ISO receives bidding data with
economic and technical characteristics from generators to
optimize the market in a centralized fashion. During an RTM
operation, the RTOs/ISOs are responsible for the balance of
supply and demand, and deviations from the DAMgeneration
schedule are settled at RTM prices. Therefore, to utilize the
human and physical infrastructure already deployed in Korea,
it is expected that the direction of the reform of the Korean
power market will also be based on the North American
model.

The electric power market prices applied to the VPP in
this study consist of wholesale market sales/purchase prices
and retail market sales/purchase prices. Thewholesalemarket
sales price is generally the price at which the dispatchable
generator sells the energy required to operate the power sys-
tem; in this case, the price when the VPP energy is sold to the
wholesale market. The wholesale market purchase price is the
price at which the load serving entity (LSE) purchases power
from the wholesale market to supply power to their load. The

retail market sales price is the price of selling surplus energy
of behind-the-meter ESS and PV to LSE, and the retail market
purchase price is the price applied to consume the load. For
purchases, the LSE profits depend on the difference between
the wholesale market purchase price that the LSEs pay to the
wholesale market and the retail market purchase price that the
load pays to the LSEs. In general, the retail market purchase
price is generally higher than the wholesale market purchase
price. For sales, it is reasonable that the wholesale market
sales price, which is the source of profit for the dispatchable
generators, is higher than the retail market sales price at which
the BTM resources sell surplus energy to the LSEs. In addi-
tion, for the same product, the price purchased in the market
is higher than the price sold in the market. Therefore, in this
study, it is assumed that the energy prices have an order of
the retail market purchase price, wholesale market purchase
price, wholesale market sales price, and retail market sales
price. Then, from the perspective of the VPP, minimizing the
quantity of purchase is more advantageous than maximizing
the profit from selling the surplus energy. In other words,
the VPP will operate in the direction of maximizing self-
consumption. From the perspective of DERs inside the VPP,
it is more profitable to sell the surplus energy to the wholesale
market than to sell it to the retail market, which guarantees the
feasibility of the participation of the DER in the VPP.

C. DER COMMUNICATION
It is assumed that communication latency between the VPP
and each participant is zero or negligible. A VPP may have a
cloud platform-based management system owing to its geo-
graphical dispersion characteristics. Wired and/or wireless
communication such as TCP/IP, LTE, and Wi-Fi can be used
between the VPP and each participant [6]. Communication
methods may have latency, but a latency of a few seconds,
which can occur in practice, is not expected to have a sig-
nificant impact on the application of the strategy proposed in
this paper. It is therefore assumed that the interaction between
the VPP and the participants, by which the VPP receives the
real-time monitoring status of each participant and transmits
dispatch signals, is immediately applied.

III. MATHEMATICAL MODELING
Mathematical modeling of the problem discussed in
Chapter II is described in this chapter. The purpose of this
study is to distribute profit or cost to each DERA according
to the real-time responsiveness with respect to their DAM
schedule so that they take responsibility for handling the real-
time uncertainty on their own. Thus, the mathematical model
includes a DAM bidding, DERA pricing function, and an
RTM bidding as well as each DERA’s bidding.

The pricing function consists of a quadratic equation, and
the whole problem becomes mixed-integer quadratic pro-
gramming. The objective function result that does not include
the pricing function is the VPP’s maximum profit. The result
is the optimal solution that the VPP can obtain. In other
words, the VPP’s maximum profit is not guaranteed outside
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FIGURE 2. Total flow chart for solving two-stage problem.

this solution. Because the purpose of the pricing function is
for the VPP to price according to participants’ dispatch result
and allocate profits to them, if the pricing function is included
in an entire problem, the solution result may be lower due
to the quadratic equation of the pricing function. Therefore,
the entire problem is divided into two stages: Stage 1, which
determines bid quantity for the VPP’s maximum profit and
whether to purchase or sell, and Stage 2, which determines
the DERA’s internal price by the pricing function for a prede-
termined energy bid in Stage 1. In this case, Stage 1 becomes
a mixed-integer linear programming problem, and Stage 2
becomes a quadratic programming problem. Fig. 2 presents
a flow chart for solving these two-stage problems. First,
after the initial setting, Stage 1 is applied to maximize the
VPP profit in DAM, and Stage 2 is conducted, except dur-
ing the initial iteration, to evaluate the DERA performance
once a day. After that, the real-time market operation every
5 minutes over 24 hours is performed to fully satisfy the
DAM schedule, and the parameters for evaluating the real-
time operation result are updated. DAM bidding is conducted
again for the next day.

As proposed in this paper, however, it is necessary to
determine whether difference in error along the iteration falls
below a tolerance in the simulation to verify the validity of the
methodology for securing additional reserve energy in DAM
to reduce the real-time fluctuation of DERA on its own.When
a VPP is actually in commercial operation, each parameter is
determined through a daily performance evaluation process.
Because one iteration corresponds to one day, it may take
time to identify that difference in error converges on an actual
operation. However, if a decrease trend of difference in error
within a certain level is identified with a simulation, it is

expected that it will not be needed to check whether differ-
ence in error converges every time on the actual operation.

A. DAY-AHEAD MARKET BIDDING
1) STAGE 1: BIDDING MODEL FOR MAXIMIZING
DAY-AHEAD MARKET PROFIT OF VPP
An objective function for the maximum profit of the VPP
when bidding for DAM is as follows:

Max
T∑
t=1

[
π sDA (t)P

VPP,s
DAbid (t)− π

b
DA (t)P

VPP,b
DAbid (t)

]
(1)

The constraints are as follows:

PcDAbid,i (t)

=



PPVDAbid,i (t)− P
PV
DAload,i(t), ∀c ∈ P̂V

PESSDAbid,i (t)− P
ESS
DAload,i (t) , ∀c ∈ ÊSS

PEVADAsche,i (t)+ P
EVA
DAbid,i (t) , ∀c ∈ ÊVA

PDRADAsche,i (t)+ P
DRA
DAbid,i (t) , ∀c ∈ D̂RA

PMGDAsche,i (t)+ P
MG
DAbid,i (t) , ∀c ∈ M̂G

(2)

PVPP,sDAbid (t)− P
VPP,b
DAbid (t)

=

N∑
i=1

PcDAbid,i(t) (3)

SOCc
i (t + 1)

= SOCc
i (t)

+
ηci P

c,ch
DAbid,i (t)−

(
1/ηci

)
Pc,dchDAbid,i (t)

Capci
1t, ∀c ∈ ÊSS

(4)

SOCc
i (0)

= SOCc,ini
i (5)

SOCc
i (T )

= SOCc,end
i (6)

SOCc,lb
i

≤ SOCc
i (t) ≤ SOC

c,ub
i (7)

µ
c,ch
DA,i (t)+ µ

c,dch
DA,i (t)

≤ 1

|µ
c,dch
DA,i (t) , µ

c,ch
DA,i (t) ∈ {0, 1}, ∀c ∈ ÊSS (8)

0

≤ Pc,chDAbid,i (t) ≤ P
c,ch,max
DAbid,i (t) µ

c,ch
DA,i (t) ,

∀c ∈ ÊSS (9)

0

≤ Pc,dchDAbid,i (t) ≤ P
c,dch,max
DAbid,i (t) µc,dchDA,i (t) , ∀c ∈ ÊSS

(10)

PcDAbid,i (t)

= Pc,dchDAbid,i (t)− P
c,ch
DAbid,i (t) ,

∀c ∈ ÊSS (11)

0

≤ PVPP,bDAbid (t) ≤ P
VPP,b,max
DAbid (t) µbDA (t) (12)
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0

≤ PVPP,sDAbid (t) ≤ P
VPP,s,max
DAbid (t) µsDA(t) (13)

µsDA (t)+ µ
b
DA (t)

≤ 1|µsDA (t) , µ
b
DA (t) ∈ {0, 1} (14)

Pc,minDAbid,i(t)

≤ PcDAbid,i (t) ≤ P
c,max
DAbid,i(t) (15)

Equation (2) is a constraint on each DER or DERA bidding
on the VPP. Asmentioned earlier, the PV generation is treated
as forecast values, and the ESS is directly controlled by the
VPP operator to manage fluctuations. The DERA submits
its bidding plan to the VPP in the form of adding reserves
to its plan if needed. Equation (3) means that when the bid
quantity of each DER or the DERA is summed, the total
quantity of bidding in the power market of the VPP is
obtained. Equations (4)–(7) are constraints on the ESS SOC.
Equation (4) represents the SOC change over time, (5) and
(6) represents the initial/end conditions of the SOC, and (7)
represents its upper/lower limits. Equations (8)-(10) means
that the ESS cannot be allowed to charge and discharge at
the same time while satisfying the upper limits. Internal bid
quantity of the ESS is calculated by subtracting charge energy
from discharge energy, as presented in equation (11).

Equations (12)–(14) are the VPP purchase/sell bidding
restrictions. They are the constraints such that the VPP cannot
be allowed to purchase and sell at the same time while satis-
fying the upper limits. Equation (15) is the upper and lower
limit of the participant bids. Because the DERA calculates
its energy reserves independently, the upper and lower limits
refer to the range of bidding submitted by theDER to theVPP.

2) STAGE 2: BIDDING MODEL CONSIDERING
DER PRICING FUNCTION
In Stage 2, profit sharing is conducted by considering the
results of Stage 1 and the DERA pricing function. The objec-
tive function of Stage 2 is a form that considers the objective
function of Stage 1 with the pricing function and is expressed
as follows:

max
T∑
t=1

[
π sDA (t)P

VPP,s∗
DAbid (t)− π

b
DA (t)P

VPP,b∗
DAbid (t)

−

N∑
i=1

Cc
i (t)

]
(16)

The constraints are the same as for Stage 1 except for
(12)–(14) because it is assumed that sales or purchase has
been determined in Stage 1. A superscript ‘∗’ in equation (16)
means the bid quantity already determined in Stage 1.

3) DERA PRICING FUNCTION
Here, the pricing function in the form of a quadratic equation
for determining the internal price of each DERA is formu-
lated. In general, the cost function of the generator used in
the power dispatch schedule required for the operation of the

FIGURE 3. Determining each coefficient (selling case).

entire power system is expressed in the form of a quadratic
equation that opens upward, and the market price is deter-
mined at the point where the marginal cost of all generators
becomes the same as a result of the economic dispatch cal-
culation. In this study, using this principle, we assumed that
the pricing function of each DERA also follows the quadratic
equation form and tries to find the marginal price:

Cc
i (t) = aci (t)P

c
DAbid,i (t)

2
+ bci (t)P

c
DAbid,i(t) (17)

Cc′
i (t) = 2aci (t)P

c
DAbid,i (t)+ b

c
i (t) (18)

The pricing function coefficients of each DERA, aci (t) and
bci (t), are repeatedly updated according to the predefined
criterion. Equation (18) is a derivative of (17); thus, it is a
linear equation representing the marginal price. The price
applied to each DERA is the marginal price, which is updated
repeatedly depending on aci (t) and b

c
i (t). Fig. 3 shows the

marginal price curve and how each coefficient is determined
for the sales time period. The purchase time period has a
negative power; however, because the mechanism is the same
as that of the sale time period, only themethod of the sale time
period is described here.

For the sales time period, themaximum internal price of the
DERA is the wholesale market sales price, and the minimum
internal price is the retail market sales price. The internal
price applied to the DERA is determined within this price
range. The coefficients for the marginal price function of
(18) represent the slope and y-intercept, respectively. First,
the slope for the k+1-th day is determined as follows:

aci (t) =
1
2
1y
1x

(19)

If the DAM schedule is not satisfied owing to uncertainties
such as a forecast error or failure in real-time circumstances,
the DERA adjusts the DAM bid quantity for the next day.
Because the resources held by the DERA have already been
determined in an actual environment, it is impractical to
reinforce additional DER equipment to cope with real-time
uncertainty. In this study, it is assumed that by narrowing
the SOC range of the ESS held by the DERA, the range of
energy reserves for the DAM bidding is widened, and the
additional energy generated by the narrowed SOC range is
assumed to cope with the real-time uncertainty. If the amount
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of generated energy is as insufficient as 1Edown, and uncer-
tainty can be properly responded to in a real-time situation
over a day, the lower SOC limit needs to be increased to a
certain extent. In addition, if the amount of energy generated
exceeded 1Eup, the upper limit of SOC must be lowered:

SOCc,ub
i = SOCc,ub

i − ε1Edown (20)

SOCc,lb
i = SOCc,lb

i + ε1Eup (21)

Equations (20) and (21) indicate that the DERA has an addi-
tional energy reserve for charge/discharge. Coefficient ε is
the step size for adjusting the SOC upper/lower limits. The
DERA reflects the adjusted SOC upper/lower limits in its
DAM bidding on the next day.

For any DERAs, supposing that the maximum bid quantity
for each k-th day is Pc,max,kDAbid,i (t) and that the maximum bid
quantity for the k+1-th day that reflects the adjusted SOC
on the next day is Pc,max,k+1DAbid,i (t), because it cannot respond to
uncertainty, the DERA will bid for DAM with the adjusted
upper/lower limit of the SOC. This means that less energy is
available than on the previous day, and 1x can be calculated
as follows:

1x (t) = Pc,max,kDAbid,i (t)− P
c,max,k+1
DAbid,i (t) (22)

Because the size of1ywill be determined between thewhole-
sale market sales price and the retail market sales price, 1y
will be a ratio multiplied by the difference between the two
prices:

1y(t) = γ ci (t) · (π
s,k+1
wh (t)− π s,k+1re (t)) (23)

The larger the error rate is, the larger the ratio γ c
i (t). This

means that the larger the error rate is, the lower the DERA
internal price according to the marginal price curve:

γ ci (t) =

∣∣∣Pc,kDAbid,i (t)−∑Pc,kRTbid,i (t)/12
∣∣∣

Pc,kDAbid,i (t)
(24)

In equation (24), the second term of the numerator on the
right-hand sidemeans the 1-hour average of real-time bidding
values. This values are used to coherently calculate γ ci (t)
from 1-hour based day-ahead values and 5-minutes based
real-time values.

The coefficient bci (t) for the k+1-th day can be obtained
using Equation (18):

bci (t) = π
s
wh(t)− 2aci (t)P

c,max,k+1
DAbid,i (t) (25)

Internal price Cc
i
′ in equation (18) does not directly affect

DERA’s real-time responsiveness to manage uncertainty.
In actual VPP operation, the DERA will adjust addi-
tional reserve indirectly through Cc

i
′, and directly through

1Eup or 1Edown determined by the VPP operator as a result
of real-time response. That is, Cc

i
′ has meaning of a sort

of performance score that indirectly informs the DERA’s
adjustment results. If the DERA determines that its internal
price is acceptable within an expected range, then no further
reserve adjustment will be made. Otherwise, the DERA will

continue to adjust the reserve based on the parameter ε in
equation (20) and (21).

B. REAL-TIME MARKET BIDDING
The RTM bidding model is formulated based on the DAM
bidding model. The purpose of RTM bidding is to satisfy
the DAM schedule as much as possible. According to [33],
the current RTO/ISO real-time market settlement takes place
every 5 min. In this paper, therefore, the time interval of
real-time market operation is basically 5 min, but it can
be flexibly applied according to the policy of any market
operators.

The objective function is as follows:

max
T∑
t=1

[
π sRT (t)P

VPP,s
RTbid (t)− π

b
RT (t)P

VPP,b
RTbid (t)

]
(26)

The constraints are as follows:

PVPP,s∗DAbid (t)− P
VPP,b∗
DAbid (t)+ PVPP,sRTbid (t)− P

VPP,b
RTbid (t)

=

N∑
i=1

(
Pc∗DAbid,i + P

c
RTbid,i(t)

)
(27)

SOCc
i (t + 1)

= SOCc
i (t)+

Pc∗DAbid,i (t)

Capci

+
ηci P

c,ch
RTbid,i (t)−

(
1/ηci

)
Pc,dchRTbid,i (t)

Capci
1t, ∀c ∈ ÊSS

(28)

0

≤ PVPP,bRTbid (t) ≤ P
VPP,b,max
RTbid (t) µbRT (t) (29)

0

≤ PVPP,sRTbid (t) ≤ P
VPP,s,max
RTbid (t) µsRT (t) (30)

µsRT (t)+ µ
b
RT (t)

≤ 1|µsRT (t) , µ
b
RT (t) ∈ {0, 1} (31)

SOCc
i (0)

= SOCc,ini
i (32)

SOCc
i (T )

= SOCc,end
i (33)

SOCc,lb
i ≤ SOCc

i (t)

≤ SOCc,ub
i (34)

µ
c,ch
RT ,i (t)+ µ

c,dch
RT ,i (t) ≤ 1

|µ
c,ch
RT ,i (t) , µ

c,dch
RT ,i (t) ∈ {0, 1} (35)

0

≤ Pc,chRTbid,i (t) ≤ P
c,ch,max
RTbid,i (t) µ

c,ch
RT ,i (t) , ∀c ∈ ÊSS (36)

0

≤ Pc,dchRTbid,i (t) ≤ P
c,dch,max
RTbid,i (t) µc,dchRT ,i (t) , ∀c ∈ ÊSS (37)

PcRTbid,i (t)

= Pc,dchRTbid,i (t)− P
c,ch
RTbid,i (t) | ∀c ∈ ÊSS (38)
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Pc,minRTbid,i(t)

≤ PcRTbid,i (t) ≤ P
c,max
RTbid (t) (39)

N∑
i=1

PMG,RTbid,i (t)

= EMG (40)

A superscript ‘∗’ in (27), (28) means the bid quantity already
determined in the DAM.

C. DERA BIDDING
The DERAs in this paper include a MG, an EVA, and a
DRA. Inside the MG, ESSs and PVs may exist for resiliency
and self-consumption, and their self-scheduling results are
supposed to be submitted to the VPP. The EVA randomly set
the entry/exit time and entry SOCs of each EV, whereas exit
SOCs are received from the EVs. It is assumed that the DRA
have a small-scale PV and submit a DAM bid energy to the
VPP considering the hourly based flexible load response.

1) MG BIDDING FORMULATION
The MG in this paper is assumed to have members of one PV
and ESS. The objective function is as follows:

min
T∑
t=1

(
πbre (t)P

MG
b (t)− π sre (t)P

MG
s (t)

)
(41)

where PMGb / PMGs is theMG’s purchase/sales energy at a point
of common coupling.

The constraints are as follows.
Balance constraint:

PMGb (t)− PMGs (t)+ PESSdch (t)− P
ESS
ch (t)

= Pload (t)− PPV (t) (42)

where PESSdch /P
ESS
ch are discharge/charge energy of the ESS

respectively, Pload and PPV means forecasted values of the
MG load and PV generation.

ESS SOC constraint:

SOC (t + 1) = SOC (t)

+
ηESSPESSch (t)− (1/ηESS)PESSdch (t)

CapESS
1t (43)

where SOC (t) is SOC of MG ESS at time t, ηESS is an ESS
efficiency, and CapESS is a rated capacity of the ESS.

Constraints on avoiding simultaneous purchase/sales, and
charging/discharging:

0 ≤ PMGb (t) ≤ µMGb (t)PMGb,max (44)

0 ≤ PMGs (t) ≤ µMGs (t)PMGs,max (45)

µMGb (t)+ µMGs (t) ≤ 1|µMGb (t), µMGs (t) ∈ {0, 1} (46)

0 ≤ PESSdch (t) ≤ µ
ESS
dch (t)P

ESS
dch,max (47)

0 ≤ PESSch (t) ≤ µESSch (t)PESSch,max (48)

µESSdch (t)+ µ
ESS
ch (t) ≤ 1|µESSdch (t), µ

ESS
ch (t) ∈ {0, 1} (49)

where µMGb /µMGs are binary variable to indicate pur-
chase/sales energy, PMGb,max /P

MG
s,max are upper bounds of pur-

chase/sales energy, µESSdch /µ
ESS
ch are binary variable to indicate

ESS discharging/charging status, and PESSdch,max /P
ESS
ch,max mean

ESS discharge/charge energy upper bounds.
Lower/upper bounds constraints:

SOCMG,lb
≤ SOC (t) ≤ SOCMG,ub (50)

where SOCMG,ub, SOCMG,lb corresponds to equation (20),
(21) respectively so that the MG’s reserve adjusts through
iteration process.
Constraint on the initial SOC condition:

SOC init = SOCend = 0.5 (51)

The MG calculates the internal bidding energy according
to followed procedure.
(a) At first, the MG calculates its net demand:

Pnetd (t) = Pload (t)− PPV (t) (52)

(b) The MG solves scheduling model above.
As a result, MG decides on its components’ schedule and

energy to purchase (PMGb (t)) from the grid, or sell (PMGs (t))
into the grid.
Positive Pnetd (t) mean that additional energy is supplied

from the grid. At this time, if PMGb (t) is greater than Pnetd (t),
it means that some components are acting as an additional
load. In this case, the range of purchase bids of the MG is as
follows:

Pnetd (t) ≤ PMGDAbid (t) ≤ P
MG
b (t)

On the contrary, if PMGb (t) is smaller than Pnetd (t), the range
of purchase bids of the MG is as follows:

PMGb (t) ≤ PMGDAbid (t) ≤ Pnetd (t)

Negative Pnetd (t) mean that excess energy is injected to the
grid. At this time, if the value of PMG

s (t) is larger than the
absolute value ofPnetd (t), it can be considered that distributed
resources additionally supply and sell energy.
Therefore, the range of the MG’s sales bidding is as

follows:

−PMGs (t) ≤ PMGDAbid (t) ≤ Pnetd (t)

On the contrary, if the value of PMG
s (t) is smaller than the

absolute value of Pnetd (t), it means that distributed resources
such as ESS are charging. Therefore, the sales bidding range
is:

Pnetd (t) ≤ PMGDAbid (t) ≤ −P
MG
s (t)

2) EVA BIDDING FORMULATION
The EVA in this paper is assumed to have a total of N numbers
of EV resources. The objective function is as follows:

min
T∑
t=1

(πbre (t)P
EVA
b (t)− π sre (t)P

EVA
s (t)) (53)

where PEVAb /PEVAs are purchase/sales energy of the EVA.
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The constraints are as follows.
Balance constraints:

PEVAs (t)− PEVAb (t) =
N∑
j=1

(PEVdch,j (t)− P
EV
ch,j (t)) (54)

where PEVdch,j/P
EV
ch,j are discharging/charging energy of j-th EV.

Constraints on EV battery SOC for j-th EV:

SOCEV
j (t + 1) = SOCEV

j (t)

+
ηEVPEVch,j (t)− (1/ηEV )P

EV
dch(t)

CapEV ,j
1t (55)

SOCEV
j (1) = SOCEV

init,j(t) (56)

SOCEV
j (T ) = SOCEV

end,j(t) (57)

where SOCEV
j (t) is SOC of j-th EV at time t, ηEV is an EV

efficiency, and CapEV ,j is a rated capacity of j-th EV.
Constraints on avoiding simultaneous charging and

discharging:

µEVdch,j (t)+ µ
EV
ch,j (t) ≤ 1|µEVdch,j (t) , µ

EV
ch,j (t) ∈ {0, 1} (58)

0 ≤ PEVdch,j (t) ≤ µ
EV
dch,j (t)P

EV
rate,j (59)

0 ≤ PEVch,j (t) ≤ µ
EV
ch,j (t)P

EV
rate,j (60)

where µEVdch,j/µ
EV
ch,j are binary variable to present discharging/

charging status of j-th EV, and PEVrate,j is a rated power of j-th
EV.

Constraints on avoiding simultaneous purchase and sales:

µEVAb (t)+ µEVAs (t) ≤ 1|µEVAb (t) , µEVAs (t) ∈ {0, 1} (61)

0 ≤ PEVAb (t) ≤ µEVAb (t)PEVAb,max (62)

0 ≤ PEVAs (t) ≤ µEVAs (t)PEVAs,max (63)

where µEVAb /µEVAs are binary variables indicating purchase/
sales status and PEVAb,max/P

EVA
s,max are purchase/sales energy of the

EVA.
Constraints on upper and lower bounds of EVA energy:

0 ≤ PEVdch,j (t) ≤ b
op
j (t)P

EV
rate,j (64)

0 ≤ PEVch,j (t) ≤ b
op
j (t)P

EV
rate,j (65)

where bopj (t) is an operation time index that indicates whether
the EVs are ready for charge (1: connected to the charger, 0:
not connected to the charger, or not be in the charging station).

EV SOC constraints:

SOCmin,j ≤ SOCEV
j (t) ≤ SOCmax,j (66)

0 ≤ µEVdch (t) ≤ b
op
j (t) (67)

0 ≤ µEVch (t) ≤ b
op
j (t) (68)

The EVA solves the schedule model so that it can decide
the bid energy PEVAb and PEVAs . The EVA is assumed not to
have internal resources that can be dispatched while the MG
decides the bid energy with reserve for adjustment.

3) DRA BIDDING FORMULATION
TheDRA in this paper is assumed to have a total ofM number
of DR resources, where each DR resource have both non-
flexible loads and flexible loads. Flexible loads are adjusted
to respond to DR signals. Flexible loads here are assumed to
be shiftable loads such that if the loads are reduced at some
times, then the loads should be increased at the other times.
The objective function is as follows:

min
T∑
t=1

(πbre (t)P
DRA
b (t)− π sre (t)P

DRA
s (t)) (69)

where PDRAb /PDRAs are purchase/sales energy of the DRA.
The constraints are as follows.
Balance constraints on each DR resource containing avoid-

ance of simultaneous reduction and increase of flexible loads:

PDRb,k (t)

= PDRload,k (t)+ P
DR
upflex,k (t)− P

DR
downflex,k (t)− P

DR
PV ,k (t)

(70)
M∑
k=1

PDRupflex,k (t)

=

M∑
k=1

PDRdownflex,k (t) (71)

µDRupflex,k (t)+ µ
DR
downflex,k (t)

≤ 1|µDRupflex,k (t) , µ
DR
downflex,k (t) ∈ {0, 1} (72)

0

≤ PDRupflex,k (t) ≤ µ
DR
upflex,k (t)P

DR,max
upflex,k (73)

0

≤ PDRdownflex,k (t) ≤ µ
DR
downflex,k (t)P

DR,max
downflex,k (74)

where PDRb,k is purchase energy, PDRload,k is forecasted non-
flexible load amount, PDRupflex,k /P

DR
downflex,k are up/down energy

of flexible load amount, PDRPV ,k is forecasted PV generation,
µDRupflex,k /µ

DR
downflex,k are binary variables indicating up/down

of flexible load, and PDR,maxupflex,k /P
DR,max
downflex,k are upper bounds.

A subscript k means k-th DR resource.
Balance constraints on the DRA containing avoidance of

simultaneous purchase and sales:

PDRAs (t)− PDRAb (t) =
M∑
k=1

(PDRdownflex,k (t)

−PDRupflex,k (t)− P
DR
load,k (t)

+PDRPV ,k (t)) (75)

µDRAb (t)+ µDRAs (t) ≤ 1

|µDRAb (t) , µDRAs (t) ∈ {0, 1} (76)

0 ≤ PDRAb (t) ≤ µDRAb (t)PDRAb,max (77)

0 ≤ PDRAs (t) ≤ µDRAs (t)PDRAs,max (78)
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TABLE 1. Simulation parameters of PV, ESS, and MG.

where µDRAb /µDRAs are binary variables presenting purchase/
sales status of the DRA, and PDRAb,max /P

DRA
s,max are upper bounds

of the DRA purchase/sales energy.
Constraints of upper/lower bounds:

PDRb,min,k ≤ PDRb,k (t) ≤ P
DR
b,max,k (t) (79)

0 ≤ PDRupflex,k (t) ≤ ak (t)P
DR,max
upflex,k (80)

0 ≤ PDRdownflex,k (t) ≤ ak (t)P
DR,max
downflex,k (81)

0 ≤ µDRupflex,k (t) ≤ ak (t) (82)

0 ≤ µDRdownflex,k (t) ≤ ak (t) (83)

where PDRb,min,k /P
DR
b,max,k are lower/upper bounds of purchase

energy of k-th DR resource, PDR,maxupflex,k /P
DR,max
downflex,k are upper

bounds of the flexible load of k-th DR resource, and ak (t)
is an index that indicates whether k-th DR resource can be
adjusted at time t (0: non-adjustable, 1: adjustable).

IV. SIMULATION
A. DATA
Asmentioned in Section II, the participants in theVPP consist
of the PV, the ESS, the MG, the EVA, and the DRA. In the
simulation, one of each participant is assumed to participate.
The detailed parameters are listed in Tables 1 and 2. The data
on the electricity market price, load, and solar irradiation in
the Newark area belonging to PJM are used [34]. Through
these data, the load curve and PV power generation profile
of each participant were derived. For the RTM parameters,
a random error-based normal distribution is generated and
applied to the DAM forecast to verify the validity of the
proposed strategy. The market prices as well as load and
PV power of the MG among all the parameters are shown
in Fig. 4.

The EVA is assumed to be an EV charging station. The time
and SOC for the entry and exit of EVs at the EV charging
station are set randomly. Entry and exit times are assumed
to occur during rush hours. Because the time and SOC of
entry/exit may vary in practical situations, when simulating
real-time results, these parameters are randomly changed
considering the forecast error.

B. SIMULATION SCENARIO
The following scenarios in Table 3 are configured to verify the
validity of the proposed strategy. Case 1 is the case in which

TABLE 2. Simulation parameters of EVA, DRA.

   
   
   

   

   
   
   

   

(a) Market price 

(b) Load and PV power of the MG 

FIGURE 4. Simulation parameters (selected).

the bid quantity of the DERAs finally determined by the
VPP operator is settled at the wholesale market price without
adjustment of the bidding strategy of the DERA. Therefore,
the pricing function is not used. In other words, because the
VPP pays at the wholesale market price for all participants,
the VPP’s profit is totally distributed to the participants.
Case 2 has the same conditions as Case 1 except that the
internal price is determined between the wholesale market
price and the retail market price based on the calculated error
according to the proposed method. Accordingly, participants
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TABLE 3. Simulation scenario case.

FIGURE 5. Case 1: VPP operation result in DAM/RTM.

who fail to comply with the DAM schedule in real time will
have less profits or more costs.

In both of Case 3-1 and Case 3-2, the proposed method is
applied so that the DERA adjusts the internal bid quantity
in the DAM considering the errors between the DAM and
the RTM. The DERA adjusts its internal bid quantity through
iterations. The only difference is that the price applied to the
DERA is the wholesale price in Case 3-1 and the price by the
pricing function in Case 3-2. The effectiveness of the pricing
function can be confirmed through comparing Case 1 and
Case 2 results. The responsiveness of the DERAs in real time
can be confirmed through comparing Case 2 and Case 3-2.
Here, the MG is able to adjust its own bids because only the
MG is assumed to have its own ESS. In the case of the EVA
and the DRA, the bid quantity cannot be adjusted as intended
because they only have entrusted resources.

C. BIDDING RESULTS OF CASE 1 AND CASE 2
Fig. 5 shows the operational results of the VPP for the DAM
and the RTM. TheDAM results show that scheduled purchase
(or charging) value in negative and sales (or discharging)
value in positive are based on the price curve. That is, selling
bids are applied only during higher price times, and purchas-
ing bids are applied during lower price times. It also shows
the results of responding to uncertainty for complying with
the DAM schedule in a real-time environment.

In Fig. 6, forecast errors occur in the PV and the load of
each participant, and the ESS repeatedly recalculate the RTM
bid every 5minute to complywith errors. Fig. 6-(c) shows that
the ESS output has changed to copewith the uncertainty in the
real-time environment. Accordingly, it can be seen that ESS
SOC in Fig. 6-(d) is also changed from the results expected on
the previous day. Fig. 7 shows the bidding results of the MG

(a) Case 1: Load results of PV and ESS 

 (b) Case 1: PV output results.  

(c) Case 1: ESS output results.  

 (d) Case 1: ESS SOC results.  

FIGURE 6. Case 1 simulation results of ESS, PV in DAM/RTM.

in the DAM and the RTM. Asmentioned earlier, because only
the MG is assumed to have the ESS, the MG can comply with
the DAM schedule in response to changes in the PV and load
by adjusting the ESS output power, as shown in Fig. 7-(a).
As a result, the ESS SOC differs from the result based on
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 (a) Case 1: ESS output results of MG 

(b) Case 1: ESS SOC results of MG 

 (c) Case 1: bidding results of MG 

FIGURE 7. Case 1 simulation results of MG in DAM/RTM.

the day-ahead values. The MG tries to comply with the DAM
schedule as much as possible, but failed to comply at some
time due to lack of reserve energy to cope with uncertainty.

In the case of the EVA and DRA, the optimal results
are derived according to the parameters such as entry/exit
time and SOC of the EVs, the PV and the load prediction
values of users participating in DR, which is changed by
re-forecasting every 5 minute. Thus, Figs. 8-(a) and (b) show
that the differences between the real-time output and DAM
schedule are relatively large. In Fig. 8-(b), the dotted line
represents the day-ahead SOC values of the EVs and the solid
line represents the SOC values of the EVs in real time. In the
case of the EVA, because there has been uncertainty about
the entry and exit of the EVs, the RTM bidding results were
changed by determining charging at a better time considering
the conditions of unexpectedly early or delayed exit of some
EVs. The reason why the EVA simply carried out purchase

 (a) Case 1: EVA bidding results.  

(b) Case 1: EVA SOC results.  

 (c) Case 1: DRA bidding results.  

FIGURE 8. Case 1 simulation results of EVA, DRA in DAM/RTM.

bidding is that it was a solution to satisfy the EVs’ require-
ments without selling in consideration of the SOC conditions
at the entry/exit time of the EVs.

In the case of the DRA, differences from the DAM sched-
ule occurs because the parameters of the next day are taken
into account when determining the RTM bid quantity, as well
as factors due to uncertainties in the PV and the load of users
participating in the DR. It seems that the result of increasing
purchase bidding is slightly higher at night when the prices
are relatively low. This can be seen as a result derived though
the rolling horizon technique.

Although many deviations occur owing to real-time fore-
cast errors of the PV, there are no significant fluctuations in
the VPP’s total bid quantity because the ESS and the MG
ESS adjust their output as much as possible and suppress the
fluctuations. From the ESS output and SOC result of the MG
in Fig. 7, it can be seen that the SOC reached the lower limits
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FIGURE 9. Case 3: VPP operation result in DAM/RTM.

at 11h and 20h and the ESS output could not be dispatched as
intended. Accordingly at 9h-11h, 13h, and 20h-21h the MG
cannot comply with the DAM schedule. That is, scheduling
every 5min. is conducted through considering all fluctuations
for the next 24 hours, however, additional purchases and
sales were performed because charging/discharging was not
possible owing to the physical limits of the ESS.

Two conclusions can be drawn from these results. First,
to manage real-time uncertainty, dispatchable resources such
as ESS are required. Second, even if the dispatchable
resources are equipped, when the schedule is configured to
maximize the profits or minimize the costs of the DAM
without considering the real-time uncertainty, the real-time
uncertainty cannot be properly managed. Therefore, each
participant needs to configure a bidding schedule to manage
real-time uncertainty when determining the internal DAM
bidding.

In Case 2, no differences with Case 1 in the internal bid
are made except the costs and profits of each participant cal-
culated by the VPP operator. On the other hand, in Case 3-1
and Case 3-2, the adjustments in the internal DAM bid of the
MG is identified when the coordination is applied according
to the proposed strategy. No differences between Case 3-1
and Case 3-2 are made except the costs and profits as well.
Comparisons between all cases are presented in Section IV-E.

D. BIDDING RESULT OF CASE 3-1 AND CASE 3-2
Case 3-1 and Case 3-2 shows the results of the operation of
the MGwith adjusting the range of its internal bid through an
iterative process.

Comparing Fig. 5 in Case 1 to Fig. 9, the VPP’s DAM
bid has decreased because the MG has repeatedly adjusted
the internal bid to manage real-time fluctuation. Table 4
representing the difference of average bid quantity in kWh
between the day-ahead schedule result and the real-time
result also shows that the MG responded to uncertainty better
than Case 1. The smaller this value, the better the day-ahead
schedule is fulfilled.

As to the EVA, the differences is same as Case 1 since there
was no change in the bid quantity. In the result of theDRA, the
difference of average bid quantity has decreased as the VPP’s
capability to manage real-time uncertainty increased due to
the MG’s bid quantity adjustments. In Fig. 10, the VPP’s

TABLE 4. Difference of average bid quantity between day-ahead and
real-time results.

 (a) Case 3: ESS output results.  

(b) Case 3: ESS SOC results.  

FIGURE 10. Case 3: Simulation Results of ESS in DAM/RTM.

capability of managing fluctuation is improved through real-
time charging/discharging of the ESS controlled by the VPP,
and also as the MG responds to real-time fluctuation.

Fig. 11 shows the MG operation results where the adjust-
ment is applied and the DAM bid quantity is finally
converged. Because the MG ESS has reserve energy to
sufficiently respond to real-time fluctuation, time duration
exceeding the SOC limit is reduced. As a result of satisfying
most of the DAM schedule, the MG will be paid based on
the wholesale market price, thereby obtaining the maximum
profits.

Fig. 12 and Fig. 13 show the SOC upper/lower limits and
differences of errors between the DAM schedule and the real-
time response of the MG ESS through the iterative process
respectively. When the error between the DAM schedule and
the real-time response occurs, theMG receives feedback from
the VPP and adjusts the upper and lower limits of its own
ESS according to the proposed strategy. At the beginning of
the iteration, the DAM bid is calculated without considering
real-time fluctuation. Thus, errors occur due to the failure of
complying with real-time fluctuation. Through the iteration
processes, real-time responsiveness are guaranteed owing to
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(a) Case 3: ESS output results of MG 

(b) Case 3: ESS SOC results of MG 

(c) Case 3: bidding results of MG 

FIGURE 11. Case 3: MG operation results in DAM/RTM.
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FIGURE 12. MG ESS SOC upper/lower limit adjustment result.

additional energy reserves, and the errors gradually disappear.
Because not all participants can fully respond to fluctuation,
it is inappropriate to set the size of the error as a criterion
for stopping iteration. Instead, a difference of errors is used.
If the difference remains at a certain level, additional reserves
are no longer required. Here, the reference value for stopping
iteration is set to 0.001.
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FIGURE 13. Differences in errors between the DAM bidding and RTM
response according to the iteration.

It can be explained in two ways that there is no variation
in the difference of errors. First, even if the bid quantity is
adjusted further, there may be a certain level of error due to
physical limitations. Second, the lower bidding range further
causes reduced errors, but the DAM bid quantity will be
reduced according to that action, and thus the cost or profit for
bidding quantity will be adjusted. In other words, the former
is physically impossible to coordinate, and the latter focuses
on the DAM profit. As a result, because the adjustment of
the bid quantity through the iteration process is determined
by the step size (ε), the adjusted bid affects the optimal point
when the adjustment by the VPP’s feedback is repeated once.
Because the adjustment process can be achieved through
receiving actual operational data, it can be gradually cor-
rected by interactions with participants as time passes, even
if a somewhat insufficient result is initially produced.

E. COST AND PROFIT COMPARISON
In this section, the cost comparison of each participant and the
profit comparison of the VPP between Case 1 and Case 2 is
presented. The cost and profit comparison between Case 3-1
and Case 3-2 is presented in the same way. This paper assume
that the all of the VPP’s profits through transaction with the
energy market are basically allocated to each participants
while the VPP tries to obtain maximum profits. That is,
the VPP’s own profits are supposed to be zero. Instead, the
VPP can earn a kind of transaction fee according to specific
contracts with each participants.

When applying the proposed methodology, however,
the participants may get a penalty based on responsiveness to
the real-time dispatch signal by the VPP. The VPP operator
may earn the profits as much as the penalty.

Table 5 shows the cost of each participant and the profit
of the VPP operator for each case. All participants basically
have reduced costs by participating in the VPP. As mentioned
above, the VPP’s own profit is zero in Case 1 and Case 3-2.
The sum of the costs of each participant and the cost of
the VPP are not same because the results also included one
PV and one energy storage system for which the VPP has
operation authority. In real time, additional purchasing and
selling bids are processed to buy at a higher price and sell at
a lower price by the weight factor. For example, if the weight
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TABLE 5. Total cost/profit result of participants/VPP in case study.

FIGURE 14. Marginal pricing function at sales time for MG according to
iteration.

factor is 0.2, energy must be purchased at a price 20% higher
than the DAM price in RTM, and must be sold at a 20% lower
price. In case of the MG, the cost in real time is higher than
that of day-ahead. For the EVA and the DRA, the cost results
in real time are lower, as the bid quantity has been decreased
due to real-time fluctuation of uncertainty resources. It means
that the cost has been decreased by reducing the purchased
bid quantity during the purchasing bid time period.

In Case 2, each participant’s cost increased compared to
Case 1 because internal price was applied. That is, they buy at
a price higher than the wholesale market price for a purchase
bid and sell at a price lower than the wholesale market price
for a sales bid. As a result, theVPP could earn the same profits
as much as the increased costs of each participants, resulting
in a profit of about $12.40.

Fig. 14 and Fig. 15 show the first derivative of the pricing
function for the MG’s purchasing bid time and selling bid
time according to iteration.

In the case of the purchase bidding time, since a negative
sign is applied to the bid quantity, the x-axis is designated
as a negative number. As the iteration progresses, the MG’s
bid quantity is adjusted and the pricing function is adjusted
accordingly. Therefore, the pricing function is not derived as
a quadratic equation at every time and every iteration. The
results of the iteration number derived from the quadratic
equation of the pricing function are summarized in the graph
below. As mentioned earlier, the graphs below show the first
derivative of the pricing function. In the graph of the sales
time period, it can be seen that the selling price increases for
the same quantity of bid as the iteration passes. On the other

FIGURE 15. Marginal pricing function at purchase time for MG according
to iteration.

hand, in the graph of the purchasing time period, it can be
seen that the purchase price decreases for the same quantity of
bidding as the iteration passes. In other words, the MG’s bid
quantity adjustment improves the responsiveness to uncer-
tainty, which means that the MG is able to get the profit
at a higher price or purchase cost at a lower price. Finally,
if the real-time operation result conforms to the day-ahead
schedule, the error disappears and the price made by the
pricing function becomes the wholesale market price.

In Case 3-1 and Case 3-2, the DRA’s bidding results
changed according to the bid quantity of the MG for the
DAM. In the case of the EVA, the bidding result did not
change because the SOC of available EVs and the SOC of
entry and exit of the EVs did not change. In the adjusted
results, the DRA has higher costs in real time because they
made additional purchases of sales. TheMG’s responsiveness
to the real-time uncertainty was high by adjusting the bid
quantity. Therefore, no significant changes are seen when
comparing the MG’s real-time cost. The VPP’s profits are
also reduced. Consequently, if all of the participants can com-
ply with their day-ahead schedule in real-time environment,
the proposed methodology can have an advantage of manag-
ing most of the real-time uncertainties properly although the
VPP’s profits may be decreased.

Fig. 16 shows total cost of the VPP. As mentioned earlier,
all these costs are borne by the participants. The lower cost
in the RTM compared to the DAM means that the RTM
bid quantity of the VPP is reduced compared to that of the
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FIGURE 16. Total cost result of VPP in DAM/RTM.

TABLE 6. Increased cost of participants and decreased profit of VPP
according to weight factor.

DAM. The actual profits of the VPP operator by the pricing
function is as much as the difference between the RTM costs
in Case 1 and Case 2, or as much as the difference between
the RTM costs in Case 3-1 and Case 3-2. These benefits are
derived from the cost of penalty imposed on the participants.

Table 6 shows the cost difference between Case 1 and
Case 2, and between Case 3-1 and Case 3-2 for each par-
ticipant. It shows the cost trend by the proposed pricing
function according to the price weight factor in the RTM.
Positive numbers mean an increase in cost/profit. First, in the
case of the MG and the EVA, no change in the bid quantity
was shown regardless of the change in weight factor. This
means that there were no resources to have capability to
change the bid even if the price was increased by the weight
factor. In the case of the MG, because the price is set to the
same rate for each time period, the MG has no incentive to
adjust its ESS schedule even though the bid quantity must
be adjusted using its ESS resource. The EVA did not adjust
its schedule because it did not have authority to adjust EVs
schedule, resulting in no change according to the weighted
price. And also the EVA did not have cost difference because
no additional purchases or sales were performed in the RTM.
However, in the case of the MG, the cost difference tended to
decrease even though there were no change in the real-time
bid quantity. This is due to the internal price by the VPP’s
pricing function calculated by time. Because the internal price
was calculated according to the fluctuation that occurred over
time, the difference from the wholesale market price was
not constant by time. For example, on the other hand, if a
penalty of 2 cent is applied to the wholesale market price in
all purchase and sales time periods by the pricing function,

FIGURE 17. Example of degree of increasing cost according to weight
factor.

FIGURE 18. Total cost of MG between case 2 and 3-2 according to weight
factor.

the cost reduction increases as the weight factor increased.
Fig. 17 shows the example case.

Since applied penalties for each time period are different,
the cost increase or decrease depend on the weight factor
event if the quantity does not change. This can be seen by
looking at the results of the first and second rows of Table 6.
In Case 1 and Case 2 of the MG, the cost difference has
a decreasing trend. In Case 3-1 and Case 3-2 of the MG,
the cost difference has an increasing trend. Though these are
not a big differences, it means that the weight factors do not
dominantly affect the cost increase. The internal price change
due to the fluctuation derived over time has some influences.

In the case of the DRA, the cost difference decreased as
the weight factor increased. It means that the DRA’s real-
time operation was adjusted according to the weight factor
and thus the DRA adhered its day-ahead schedule more.
In other words, it means that the penalty impact has been
reduced. However, at the weight of 0.9, it can be seen that
the cost difference slightly increased, which means that the
effect of the weight increase slightly. In addition, because
the internal price calculation is not linear, the cost difference
trend according to the weight increase appears differently.
However, if the cost calculated by the proposed pricing
function is increased compared to the original case, and the
responsiveness of coping with real-time fluctuation is high,
the cost difference is small. It means that the proposed pricing
function is applied as intended.

Fig. 18 shows the cost between Case 2 and Case 3-2 of the
MG according to the real-time price weight factors. It can be
seen that the larger the weight factors, the smaller the cost of
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Case 3-2 is than that of Case 2. This implicates that the MG’s
option to prepare reserve energy for real-time uncertainty by
adjusting the day-ahead bid quantity can reduce the cost due
to less penalty.

Through the above results the VPP can establish an opti-
mal DAM bidding strategy to have more responsiveness to
fluctuation in a real-time, and the participants in the VPP
can manage real-time uncertainty by themselves so that the
VPP can faithfully achieve its own purpose. If all participants
of the VPP can cope with uncertainties in real time, a more
efficient distribution network operation can also be possible.

V. CONCLUSION AND FUTURE STUDIES
VPP technologies continue to develop as a way to cope with
uncertainty caused by the increasing deployment of various
DERs in an electric power system. If the uncertainty inherent
in VPP participants, that is, DERs, is not well managed, side
effects such as an unbalanced supply and demand of the
power grid and deterioration in the power quality may occur,
and the feasibility of the VPP may also deteriorate. In this
paper, the optimal operation strategy of the VPP is proposed
considering the real-time dispatch uncertainty of the DERA.
The DERA’s responsiveness to real-time uncertainty is eval-
uated continuously by the VPP on a daily basis. Based on the
DERA’s real-time responsiveness evaluation results, the VPP
transmits the day’s error result to the DERA and determines
the internal price of the DERA by the proposed pricing
function. According to the error result, the DERA adjust its
energy reserve for the next DAM internal bid. They repeat the
process again for the next day. Using this iteration process,
an operation strategy that manages real-time uncertainty in
the DERA while satisfying their maximum profit can be
established. In other words, defining the DERA pricing func-
tion as the cost that the VPP pays to the DERA and updating
the parameters of the pricing function continuously according
to the real-time responsiveness of the DERA to the DAM
schedule can establish a coordination process between the
VPP and DERA, and thus the real-time responsiveness of the
DERA can be increased. The effectiveness of the proposed
strategy is verified by identifying a capability of the DERA
to cope with real-time fluctuation through scenario-based
simulations. The result shows that the VPP can reduce 1.6%
of cost while the internal price applied to the DERA is close
to themaximum. To increase the effectiveness of this strategy,
it is necessary to strengthen the incentives obtained when the
real-time response complies with the DAM schedule or the
penalties imposed when the DAM schedule is not complied
with.

In this study, DERAs including MG, EVA, and DRA were
considered. Among them, only the MG was assumed to have
capability to adjust its energy reserve. In the future, additional
research is needed to develop further models for other types
of the DERAs. In addition, when updating the parameters of
the pricing function, using artificial intelligence techniques
such as reinforcement learning is required to achieve more
effective results.
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