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ABSTRACT Sensors using ultrasonic sound have proven to provide accurate 3D perception in difficult
environments where other modalities fail. Several industrial sectors need accurate and reliable sensing in
these harsh conditions. The conventional LiDAR/camera approach in many state-of-the-art autonomous
navigation methods is limited to environments with optimal sensing conditions for visual modalities. The use
of other sensing modalities can thus improve reliability and usability and increase the application potential of
autonomous agents. Ultrasonic measurements provide, compared to LiDAR, a much sparser representation
of the environment, making a direct replacement of the LiDAR sensor difficult. In this work, we propose
a method to predict LiDAR point cloud data from an in-air acoustic sonar sensor using a convolutional
stacked autoencoder. This provides a robotic system with high-resolution measurements and allows for easier
integration into existing systems to safely navigate environments where visual modalities become unreliable
and less accurate. A video of our predictions is available at https://youtu.be/jlx 1S-tsImo.

INDEX TERMS Machine learning, ultrasonic sensing, computer vision, inverse problems.

I. INTRODUCTION

Autonomous robotics have proven to be tremendously useful
for many applications in several sectors, going from manufac-
turing [1] over predictive maintenance [2], [3] to security and
surveillance [4], [S]. The navigation of autonomous robots is
done by processing the measurements of sensors in order to
understand and anticipate the environment. As the sensor sig-
nals are used to make navigational decisions, it is evident that
the accuracy and reliability should be as high as possible for
the safety of the robot and its surroundings. The perception
and understanding of the environment can be seen as a fun-
damental and probabilistic signal processing and computer
vision problem and has therefore been a popular research
topic for many years. Specifically, for the autonomous navi-
gation of robotic systems, countless methodologies and novel
approaches can be found in order to improve sensor mea-
surement quality and environment understanding [6], [7].
As stated in [5] the application potential of unmanned
autonomous vehicles has brought tremendous interest and
popularity to the field but the vision and perception problems
remain, especially for vehicles operating in harsh and difficult
sensing environments. The current state-of-the-art robotic
systems in the academic and industrial world primarily use
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Time-of-Flight (ToF) sensors (e.g. LiDAR), cameras and
radar sensors [8], [9]. These sensing modalities are proven
robust and reliable sensors that perform well in specific envi-
ronmental conditions. However, visual sensing modalities
(ToF and cameras) will prove less reliable in difficult or harsh
environments, for example, limited visibility due to dust or
fog [10], [11]. The measurements produced by these sensors
in non-optimal sensing environment should not be solely
trusted for making navigation decisions.

In previous work, our research group (CoSys-Lab) has
developed a novel 3D in-air sonar sensor (eRTIS) [12], which
is capable of generating accurate 3D images of the environ-
ment using ultrasound. In this work, we propose a method for
learning a transformation of sonar measurements into LIDAR
point clouds. The goal of this transformation is to predict
how a LiDAR sensor (point cloud) would perceive a certain
environment based on sonar measurements from our eRTIS
sensor. This prediction will be used to improve the usability
of sonar data as this allows for the predicted data to be used in
existing state-of-the-art methodologies designed for LiDAR
point clouds.

In general, this work proposes a method for transforming
sensing modalities into the representation domain of other
modalities using deep learning. The goal is to determine
whether this inverse problem of approximating the environ-
ment perception of one modality based on the measurements
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of another, can be done reliably and accurately. This can
essentially be understood as an approximation of measure-
ments of one sensing modality based on the measurements of
another. This prediction method can benefit robotic naviga-
tion and computer vision in general in several ways. The first
advantage of this approach is that the algorithms designed
for specific modalities can still be used, even when that
modality is not available in certain situations, by converting
the measurements from another.

A second opportunity is the possibility to incorporate the
prediction results in fusion algorithms. The information of
the prediction can affirm the measurements from the orig-
inal sensor and thus increase the data reliability. The dif-
ficulty in sensor fusion is that the data needs to be spa-
tially, temporally, and geometrically aligned to obtain usable
results. This problem can be mitigated by first converting
the data to the desired modality and fusing the approxi-
mation with the original sensing modality. This allows to
easily create a multimodal sensor system that can deal with
different sensing conditions. Sensor fusion is a commonly
used method to improve the accuracy and reliability of the
data extracted from sensor measurements [13], [14]. Several
different approaches exist to mitigate the effects of unreli-
able sensors and improve the measurement accuracy (e.g.,
extended Kalman filters [15]). Recently, heterogeneous mul-
timodal sensor fusion using deep neural networks can be
considered as the important novel approach for autonomous
navigation [6], [8], [10]. This sensor fusion method exploits
the behaviours of different sensing modalities by combining
them into one complementary sensor system. The benefit
of this multimodal approach is that the fused measurements
will be positively affected by each sensing modality, as each
modality measures fundamentally distinct aspects of the envi-
ronment. By designing the sensor systems for specific tasks,
the multimodal fusion technique can be optimized for differ-
ent environments. The goal of multimodal sensor fusion is to
use a set of sensors that complement each other in different
situations, one modality can perform worse than another, but
the overall performance should be less affected. We argue that
the eRTIS in-air sonar sensor [12] is an excellent addition to
multimodal sensing systems that should be capable of accu-
rately sensing in difficult and harsh environments. In bad vis-
ibility situations, the LiIDAR and camera sensors will perform
worse or fail, the eRTIS sensor is still able to perform in this
situation. This complementary behaviour of sensors is exactly
what is necessary to develop robust multimodal sensing sys-
tems. While the eRTIS sonar sensor can be used to obtain
robust navigation behaviour and motion primitives [16],
the use of the eRTIS in multimodal sensor systems is still to
be explored. To facilitate this incorporation, we experiment
with the conversion of 3D sonar measurements into LiDAR
point cloud data. We see our eRTIS sensor as an addition to
multimodal sensing systems rather than a replacement. The
modality prediction approach presented in this work can be
seen as a means to easily integrate into multimodal sensing
systems.
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The rest of this paper is structured as follows: in section II
we argue why our approach to this sonar to LIDAR conversion
is a suitable method based on similar research problems.
Section III provides an in-depth discussion of the proposed
approach and the steps taken to obtain the results that will be
discussed in section IV. Finally, in section IV conclusions are
made from the overall research and potential future research
directions are introduced.

Il. BACKGROUND
We start by introducing inverse problems to better argue why
machine learning, and more specific convolutional neural net-
works (CNNs), are a suitable approach for the conversion of
one sensing modality to another. Inverse problems are math-
ematical problems where to goal is to obtain hidden informa-
tion based on outside or indirect measurements [17]. Creating
a medical image from tomography data, reconstructing an
image from a blurred one, and more recently upscaling image
resolution (super-resolution) are among popular examples of
inverse problems [18]. Most inverse problems belong to a
special class of mathematical problems, namely the ill-posed
problems, which means that there is likely not one unique
solution or that the solution is highly unstable with respect to
the input measurements. It is evident that no one algorithm
or mathematical method exists to solve an inverse problem,
each problem should be carefully analyzed in order to find a
suitable approach. However, solving ill-posed inverse prob-
lems is already a rich and well-developed research field in
which many problems have already been overcome and a
vast amount of knowledge exists in order to better identify a
fitting approach (e.g. [19]). An in-depth textbook discussion
on ill-posed inverse problems can be found in [17] and [20].
In short, inverse problems arise when it is not possible
to directly measure the required information, due to safety
or other constraints. Indirect measurements will instead be
used, along with a mathematical model describing the rela-
tionship between the required information and the indirect
measurements to approximately reconstruct the desired data.
Based on this description of inverse problems it can be easily
understood that the modality conversion aimed in this work
can be considered as an inverse problem. We aim to approxi-
mate point cloud data, representing the environment just as a
LiDAR sensor would have perceived that environment, based
on sonar measurements in situations where the LiDAR sensor
is less reliable. In other words, we intend to obtain LiDAR
measurements without directly measuring with a LiDAR sen-
sor. By analyzing sonar and LiDAR data, in figure 1, one
can quickly conclude that sonar measurements are sparse
representations of the LiDAR measurements due to the specu-
lar nature of ultrasonic reflections. Mathematically speaking,
to make this approximation we need the relationship between
the LiDAR and sonar measurements. Many inverse problems
can be formulated as solving the equation:

y=Hx)+e with yeY, xeX @))
where y represents the measured data, which in this case are
the sonar measurements, x represents the data we wish to
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FIGURE 1. Overview of the differences between sonar and LiDAR measurements. The measurements of this simple environment
demonstrate the differences between the ultrasonic and visual sensing modalities. The difference can be explained by the length of
the used wavelength and the resulting reflection mechanism on (most) objects. The short wavelength of the LiDAR sensor will result
in diffuse reflection, providing a denser representation of the environment, while the long wavelength of the sonar sensor will result
in specular reflections and therefore a sparser environment representation.

reconstruct (LiDAR) and e represents a measurement error.
The forward operator H : X — Y describes the relation-
ship between a LiDAR data point and a sonar data point
in the absence of measurement errors and noise. In theory,
the inverse of this relationship H~' can then be applied
on the sonar measurements to approximately reconstruct
the LiDAR point cloud. In [17] and [20], knowledge-driven
approaches can be found for deriving the forward operator
and a probability model for the measuring error in order
to find a stable solution to the inverse problem. However,
more recent research has argued for the use of data-driven
approaches, and more specifically CNNs. The work in [21]
and [22] provide a summary of recent studies that had
great success and even improved state-of-the-art by using
data-driven learning-based methods. Both works also provide
a discussion on the contrasts between traditional approaches
and the more recent data-driven methods.

The benefit of using a data-driven learning approach is that
with a vast amount of available data the trained model can
become very robust against input noise. It is also worth noting
that CNNs, are forward non-iterative models that can be
fully implemented in hardware, which can be important when
the model is used for the control of vehicles and execution
time is important. The disadvantage of using CNNs to solve
ill-posed inverse problems is that large amounts of data are
needed during the training phase to obtain robust results.
This limits the use of the approach as measuring lots of data
can sometimes be too difficult or expensive. In this research,
however, we experiment with a way to overcome this issue,
as a simulation is used to generate the training data. Further,
we propose a deep convolution encoding-decoding neural
framework in order to approximate this inverse relationship.
Section III describes our approach to predicting LiDAR data
based on sonar measurements in extensive detail.

In order to understand the difficulty of this conversion, and
why it is impractical to use traditional methods, one needs to
understand the inherent differences between the LiDAR and
sonar sensors. It is more straightforward to understand the
differences of the measurements when comparing the used
wavelength of both sensors. The sonar sensor uses a relatively
long wavelength as the used sensing modality is ultrasound.
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The LiDAR sensor, however, uses a visual modality (light),
the wavelength can thus be considered as short. Both sensing
systems rely on the reflections of the sent waves to reach back
to the sensor in order to estimate the travelled distance.

Because of the long wavelength used by the sonar sen-
sor, most surfaces will be seen as smooth surfaces, which
results in specular reflections and means that the angle of the
reflected wave is equal to the angle of the incident wave. This
makes the received reflections significantly less, resulting in
a sparse environment representation. The short wavelength
of the LiDAR sensor enables diffuse reflections, as the wave
is reflected on the (microscopically) small edges and imper-
fections on the surfaces. With a diffuse reflection, the wave
is reflected in practically all directions, resulting in a more
dense measurement. Figure 1 provides a visual representation
of this phenomena and depicts the resulting differences in
the measurements of both sensors. In nature animals such as
dolphins and bats use ultrasonic echolocation effortlessly to
obtain useful information from the environment. In many sit-
uations, the use of sound as a sensing modality can have many
advantages over vision. However, it is still a difficult and com-
plex task for a computer to use the ultrasonic measurements
usefully. By using modality conversion, the measurements
can be interpreted in another manner to increase the usability
of the data tremendously. The following two subsections each
highlight similar research in the conversion of sensor data to
increase performance of navigation algorithms and usability
of the data. Both studies also employ a data-driven learning
method towards solving the inverse problem. The proposed
methods also served as an inspiration to the approach we
have taken in this work. Lastly, we also believe these works
emphasize the use of CNNs as a suitable approach to solve
these types of problems.

A. BATVISION

The work presented in [23] also supports our claim that the
use of ultrasonic sensors can be extremely useful in situations
where other sensors would not perform. They train a CNN to
transform a binaural sound signal into a visual representation
of the scene. The input of the network is obtained by ultra-
sonic measurements generated by one microphone, sending a
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frequency-modulated chirp, and two microphones recording
the echoes. The output of the network represents a depth map
and a greyscale representation of the scene. To train the model
a large dataset was used containing real-world synchronized
echoes labeled with RGB images and depth maps. It is worth
emphasizing that the model is trained using real-world mea-
surements, instead of using a simulated approach.

In contrast to the sonar sensor used in this work, we used
a novel sonar sensor created within our research group which
provides a wide field-of-view with accurate 3D localization
using 32 microphones [12], [24].

B. EVENT-TO-VIDEO
In [25] a method for reconstructing video from an event data
stream is proposed. The reasoning for this conversion comes
from the idea that the performance of specialised algorithms
designed for video data streams, is challenging to be achieved
by algorithms designed for event data. This work shows that
by transforming the event camera data stream using a trained
CNN to a video stream the same algorithms can still be
used and outperform the approaches directly applied to the
event data. The resulting trained network even has benefits
over using normal camera data. In contrast with a conven-
tional camera, which captures each frame at a fixed rate,
an event camera captures the brightness changes of each pixel
asynchronously. This means that with the use of the trained
network high temporal resolution and dynamic range with no
motion blur can be achieved.

The video reconstruction is performed by a recurrent
encoder-decoder neural network. It is interesting to note
that while the network was trained using simulated data,

Y-axis (m)

5 .

-5 0
X-axis (m)

the performance of the conversion on real-world data is still
cleaner and more detailed than other similar research.

Ill. LIDAR POINT CLOUD PREDICTION

In the discussion above we argued using a deep neural
network as an appropriate approach for the prediction of
LiDAR point clouds based on the measurements of a sonar
sensor. We interpreted the problem as an inverse imagining
problem where the goal is to reconstruct LiDAR data using
the measurements of the eRTIS sonar sensor developed by
our research group [12]. We use the sonar data at the input
of our network, the measurements are processed into ener-
gyscape images which similarly represent the environment as
the LiDAR data. In these energyscape images, the measured
ultrasonic reflections are represented with respect to their
range and direction angle to the sensor. A sonar energyscape
image, as depicted in figure 2, can be interpreted as a non-
uniform, sparsely, seemingly random sampled version of the
LiDAR measurements. The goal of our CNN will thus be
to intelligently interpolate between the sonar data points.
The CNN will thus learn a world model that enables the
reconstruction of LIDAR data based on the sparse sonar mea-
surements. We provide multiple sonar energyscape images as
the input of the network, these images are used to incorporate
time and provide more information about the environment.
The use of multiple energyscapes gives the network the ability
to differentiate walls from small point circle reflectors as
large surfaces are not guaranteed to have many reflectors.
Only edges and the echo at the normal of the surface and
the sensor are measured. The energyscapes are obtained by a
beamforming technique on the echoes measured by the eRTIS
sensor, for more information about the sonar sensor and the

Sonar Energyscape (Cartesian)

1 2 3 4

v

0
Range (m)

LiDAR (Carian)

0
Range (m)

FIGURE 2. Example of a simulated scenario (left). The red lines represent the view of the LiDAR sensor, the blue lines
depict the ultrasonic reflections that the sonar sensor receives. The blue crosses in the simulated environment are the
ultrasonic reflectors, i.e. the points of an object the sonar sensor will measure. Each time step the sonar and LiDAR
measurements are calculated and random noise is added to better approximate real-world data. The top

measurement (right) represents the sonar energyscape of the current position of the robot. The bottom image represents
the corresponding LiDAR measurement. This figure showcases the difference between LiDAR and sonar representations.
The sonar energyscape is a non-uniform sparsely sampled version of the LiDAR measurement.
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processing to obtain the energyscape images the reader is
redirected to [12] or [24].

A. NETWORK ARCHITECTURE AND DESIGN

We opted for a stacked autoencoder network, mainly inspired
by the UNet architecture proposed in [26]. In this encoder-
decoder network, the sonar measurements are first encoded
into a latent space. After further processing, the latent space
representation is then decoded into the LiDAR point cloud
representation. A high-level overview of the network can
be found in figure 3. The input consists of the K most
recent sonar energyscape images (with K =1, 3 or 5 in our
experiments), each sampled with equal time Af between each
measurement. We found that better results can be achieved
by using multiple sonar images, this way the information
of previous measurements can be propagated through time
to obtain more reliable predictions at each step. The use of
multiple sonar images also helps to deal with the limitations
of ultrasonic sound as a sensing modality (e.g. the specular
nature of ultrasonic reflections). The reflections measured
by the sonar sensor are not dense enough to determine the
complete shape of an object, the use of multiple measure-
ments mitigates this limitation. Comparable results could
also be obtained with the use of a recurrent neural network
(RNN), which provides mechanisms for information to be
kept within the network and propagated each forward pass.
The training of such an RNN is however much more difficult
as the memory of the network needs to be trained as well.
This means that previous measurements are not guaranteed
to be memorised and used in future forward passes, making
it more difficult to converge the network to useful results.

The three encoding layers are followed by a residual layer,
this block is inspired by the work in [27] and aims at increas-
ing the learning capacity of the network, as well make it easier
to train the deep convolutional neural network. The resulting
output data is then decoded by the transposed convolution
layers to obtain the predicted LiDAR point cloud. The resid-
ual block can therefore be interpreted as a mapping between
the sonar latent space and LiDAR latent space.

Throughout the whole network, we use 3D convolutional
layers, the kernel height differs in each layer, but the depth
and width are fixed at K and 5 respectively. The fixed
depth effectively means that we are using the K most recent
sonar measurements for each prediction. A rectangular shape,
instead of a conventional cubic shape, is used as kernel.
The height changes between layers to compensate for the

Conv_3

Conv_2
Conv_1

20 40 80 80

& Distance (m)

®®
>
% Direction (deg)

Residual_1

TABLE 1. Network architecture details (K = 5).

Layer Kernel Stride Padding Filters
conv_1 (5,13,5) (1,5,2) (2,6,2) 20
conv_2 (5,15,5 (1,1,1) (2,7,2) 40
conv_3 5,15,5) (1,1,1)  (2,7,2) 80
residual_1 (5,25,5 (1,1,1) (2,12,2) 80
transp_conv_1 (5,155 ((1,1,1) 2,7,2) 80
transp_conv_2  (5,15,5) (1,1,1) (2,7,2) 40
transp_conv_3  (5,13,5) (1,5,2) (4,6,2) 20

difference in resolution between the range and azimuth axis.
Furthermore, we added a stride to the first and last layer
to use a downsampled version of the input in the core of
the network. Border effect problems are dealt with by the
appropriate amount of padding, a detailed overview of all
parameters is provided in table 1. We found the best results
could be achieved by increasing the number of convolutional
filters towards the center of the network.

B. TRAINING AND DATASET GENERATION

We created a simulated and real-world measurements dataset
to train the network. The real measurements dataset was
mainly used to prove our approach works on real sonar ener-
gyscape images, while the simulated dataset was primarily
used to experiment and tweak our model and hyperparame-
ters. Training on simulated data has the advantage of easily
creating a large number of labelled samples, as the model
should be trained on many samples in order to achieve reli-
able and robust predictions. Another advantage of having a
simulation model is being able to quickly extend and test
upon this in future research. After training on simulated data,
we tried to fine-tune the model on our real measurements
dataset, the results of this are discussed in section IV.

1) SIMULATED DATASET

We created a robot simulation in MATLAB to easily gener-
ate large amounts of labelled data. This generation is done
by traversing a simulated robot through an environment
and calculating for each time step the corresponding sonar
and LiDAR measurements. The sonar sensor is simulated
as described in [16], for the LiDAR simulation we use a
ray-tracing algorithm. We simulate the essential properties of
both sensors as close to reality as possible, without making
the computation too complex. To obtain a more robust model,
we added random noise to the measurements. Simulating
noise also helps to generate more realistic data, which can
be useful to extend upon in future research. We assume the

Transp_Conv_1
Transp_Conv_2

Transp_Conv_3

Distance (m)

80 40 20

Direction (deg)

FIGURE 3. Overview of the proposed network architecture. The input of the network is composed of the K most recent sonar
energyscape images. The convolutional and deconvolutional layers are each followed by an activation layer, specifically ReLU. The
residual block consists of batch normalized convolutional layers and an activation layer, the goal of this residual structure is to
increase the learning capacity of the network and ease the training of the deep convolutional neural network [27].
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noise on physical measured data to be uniformly distributed
for both the sonar and LiDAR measurements. This way we
can simply add random values to the measurements, sampled
from a uniform distribution. The validity of the simulation
has been shown in previous research by the implementation
of a closed-loop controller. This controller has been suc-
cessfully deployed on a physical platform without tweaking
the algorithm [16]. Figure 2 shows an example simulated
environment and the corresponding simulated measurements.
The simulator supports random world generation as well
as load environments from SVG images to easily generate
large datasets. Currently, only circle and wall objects are
supported, these are arguably enough as most shapes can be
approximated using these objects. We created approximately
12500 labelled samples using twelve different simulated sce-
narios. These scenarios differ for example in object size,
rotation, or number of ultrasonic reflections.

2) REAL DATASET

For the creation of the real-world dataset, we mounted our
eRTIS sonar sensor and a Hokuyo (UST-20LX) on a Turtlebot
2i and created measurements in an indoor environment. The
measurements are synced using a synchronised clock for both
sensors. We created approximately 5000 labelled samples,
spread over hallways and office / cluttered rooms. Before
training, the data was pre-processed to match angular and
range resolution as well as minimum and maximum ranges.
We used measurements between 0.2 to 5 m with an angular
resolution of one degree, this is mainly determined by the
sonar sensor.

The input of the network consists of five consecutive
sonar energyscape images. For the corresponding ground
truth LiDAR data, we used the data that was measured with
the third sonar image. This introduces a time delay on the
predictions of the model, but is necessary for more reliable
results, as objects further away become less accurate.

During training, we used held-out validation with approx-
imately ten percent of the data for which we ensured the val-
idation samples came from scenarios that are not represented
in the training data. To evaluate the generality of our model
we also verified with k-fold cross-validation, the results of
this are discussed in the results section. We used PyTorch [28]
for the implementation and training of the network. We used
a batch size of 12 and optimized the network with an Adam
optimizer, as described in [29], with the initial learning rate
setto le—4.

We used mean squared error loss (MSE), averaged over
all output pixels (containing the LiDAR data). The MSE loss
function was used as this provided the best experimental
results. This network consists of over eleven million train-
able parameters, to keep training time and computational
resources within respectable bounds we did not use per-pixel
loss. Lastly, we used the structural similarity index (SSIM),
described in [30] as a performance metric to track learning
progress and provide an early stopping mechanism when no
or limited progress has been made over several epochs.
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IV. RESULTS AND DISCUSSION

To verify the generality of our method, and to prove the
trained model has learned a useful relationship between the
sonar measurements and the LiDAR label we validated our
model with k-fold cross-validation. We tested the model on
samples that were never used during training and calculated
similar performance metrics as during training. For these new
samples, we calculated an average prediction accuracy using
the MSE between the actual and the predicted LiDAR data.
The training on simulated and real measurements results will
first be discussed separately before a final discussion and
conclusions are drawn at the end of this section.

Comparing the performance of our model to state-of-
the-art models aimed at solving a similar problem is difficult,
as to our knowledge no similar research results can be found
transforming sonar measurements into LiDAR point cloud
predictions. The work presented in [23] and [25] has a similar
goal, but a direct comparison cannot be made as the used
modalities are different.

A. TRAINING ON SIMULATED DATA

The cross-validation training progress and validation
losses (MSE) for our network trained on simulated data
are plotted in figure 5. We used k-fold cross-validation
with k equal to eight and trained each fold for a maximum
of 15 epochs (with approximately 12500 samples). In this
plot, the mean and standard deviation of all folds is presented
as well as the validation loss curves. What we can infer
from this data is that our approach is able to generalise, and
once convergence has been reached the model achieves high
accuracy. At the start of training, the model performs very
poorly, and predictions are not consistent (large std.) after
approximately ten epochs the model performs equally for
all validation samples (small std.). Figure 4 shows several
model predictions with their respective ground truth LiDAR
image. By empirically analysing the results in simulation,
we can state that our trained model achieves very high visual
accuracy. The delay introduced by the network becomes clear
when comparing the predicted data with the latest LIDAR
measurements. This effect becomes a dominant problem
when the robot is moving at high speeds, however, high-speed
vehicles are not the use case for our sonar sensor. This is
because the speed of the sensor is dependent on the speed
of sound, which limits the sensor from high-speed mea-
surements. Another aspect of ultrasonic sound as a sensing
modality that influences the accuracy of the predictions is the
number of reflections received for an object. In LIDAR data
objects can be easily identified and borders of the objects
are easily detected. Our trained model guesses the locations
where an object starts and ends based on the intensities and
location of the ultrasonic reflections. It is clear, from the
results in the simulator, that the predictions are heavily influ-
enced by the number of reflections received from an object.
In figure 4 images A and B showcase this effect. In 4-A
a corridor can be seen with many reflectors on the walls,
these reflectors can be interpreted as edges or details on the
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FIGURE 4. Prediction results of the trained model in the MATLAB simulator. Each column represents a scene for which (the most
recent) sonar image is displayed at the top, the middle plot shows the ground truth LiDAR data, and our prediction results are
presented in the bottom plot. A) Corridor with many reflectors. B) Corridor with a limited number of reflectors. C) Shows the model
prediction for a more complicated object. D) Showcases the loss of detail in the prediction, the detail increases when the sensor
gets closer to the object. E) Shows a predicted result that matches very closely with the ground truth and can thus be used for

navigation.
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FIGURE 5. K-fold cross-validation (K = 8) training results with simulated
data. The model was retrained eight times by splitting the dataset into
eight data-folds and using a different fold as validation data each time.
We present the mean and standard deviation over all training folds and
plotted the validation loss curves for every fold. This plot shows that the
model generalises once training convergence has been reached.

wall that reflect the ultrasonic sound wave. Figure 4-B shows
the same corridor with the number of reflectors reduced,
the model becomes less certain of the wall object and does
not interpolate over the full object any more.

In order to numerically validate the performance of our
approach, we simulated complex environments and calcu-
lated for each time step the mean square error (MSE).
We tested several different scenarios: a limited amount of
ultrasonic reflectors (only specular reflections), a random
amount of reflectors and a random amount of reflectors with

TABLE 2. Analysis of LiDAR predictions for a complex simulated environment.

added noise to the input. To better understand the impact
of the number of sonar energyscapes at the input, we per-
formed these tests for three different networks, each with a
different number of sonar images at the input (1, 3 and 5).
Table 2 shows the average MSE over several runs for each
case, the standard deviation is also calculated as a stability
measure.

These results show that the amount of ultrasonic reflectors
has a tremendous impact on the accuracy of the prediction
results. The predictions are however still relatively accurate
and stable. Based on this simulation we lose approximately
10% of accuracy in this worst-case scenario with very lim-
ited reflections. As can be expected, the amount of input
noise also has a significant impact on the performance of
the network. To enable future possibilities we verified that
through retraining or fine-tuning the network with an adapted
dataset the predictions can still be improved. The result of
our fine-tuning is also presented in table 2. Finally, by com-
paring the different input sizes, we conclude that the model
performs better when more sonar energyscape images are
presented at the input. Figure 7 shows the performance of
each tested input size in the simulated environment. We see
that larger inputs perform better and more robust, especially
in corners and situations whit a limited number of reflectors.
However, the performance of the model with only one sonar
energyscape at the input is also surprisingly accurate and
robust. For future usage of the model, a trade-off should
be made for the number of input images and the necessary
output characteristics (e.g. time consistency, robustness, etc.)

Input Size Minimal Refl. Many Refl. Noisy Input
Mean (1) | Std. (o) Mean (1) | Std. (o) Mean (1) | Std. (o)
1 sample 0.332096 | 0.087096 | 0.221591 0.090386 | 0.452140 | 0.059057
MSE | 3 samples 0.326139 | 0.090352 | 0.212811 0.079313 | 0.448643 | 0.058173
5 samples 0.316683 | 0.100296 | 0.202580 | 0.086304 | 0.420531 0.063021

[ MSE [ Retrain (5) [ 0.305678

[0.096573 | 0.191520 | 0.093840 | 0.385094 | 0.114044 |
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FIGURE 6. K-fold cross-validation (K = 5) training results with real-world
data. The model was retrained five times by splitting the dataset into five
data-folds and using a different fold as validation data each time.

We present the mean and standard deviation over all training folds and
plotted the validation loss curves for every fold. Compared to the
simulated cross-validation results this model trained overall more stable.
On this plot, the model looks generalised over the complete training
session. However, samples are more alike than in our simulated dataset,
as our real measurements were only created in an office environment.

with respect to increased calculation time a larger input
entails.

To conclude, the overall performance of the sonar to
LiDAR transformation in simulation is certainly suitable
for making navigation decisions. As we have proven in the
past, this simulation can be used to develop control algo-
rithms that when applied on real-world vehicles still per-
form [16]. We will explore this further and work towards a
navigation stack implementation using the proposed model
in simulation.

B. TRAINING ON REAL DATA

Verification of our approach on real sonar measurements is
important as the goal of this model is to improve the sens-
ing and navigation capabilities of an autonomous agents in
harsh sensing environments. We tried two methods to obtain
a trained model for real ultrasonic acoustic images. First,
we experimented with fine-tuning the simulated model on

1 Sonar Energyscape

Network Output (Cartesian)

our real dataset. This experiment can be seen as a transfer
learning step of the model trained on simulated data with
real measurements. This would allow for training on the most
training samples as we can then train on both simulated and
real measurements to obtain a more robust and general model.
However, due to some characteristics of ultrasound our sim-
ulation does not fully calculate, this fine-tuning step does not
work optimally. Figure 8 presents a real sonar measurement
that was used for the prediction of LiDAR data with our
model trained on simulated data. It is clear the model has not
learned that multiple or secondary acoustic reflections exist
due to the lack of this characteristic in our simulated data.
Therefore, we conclude that optimising the simulated model
in a fine-tuning step for real-world measurements is not a
viable option.

In order for the model to learn an accurate and robust trans-
formation from real sonar images to real LiDAR point cloud
data, we fully retrained the network on our real measure-
ments dataset. The cross-validation loss curves are presented
in figure 6. The mean and standard deviation over all
data-folds are again plotted as well as the validation loss
curves for each fold. At first glance, this figure also shows that
the model generalises and achieves high accuracy when train-
ing convergence is reached. However, our real-world dataset
only contains data from inside and office environments. It is
evident that the samples are consequently more alike the
samples created in simulation, where different scenarios are
easily created. In figure 9 several real sonar measurements
are presented with their respective LIDAR ground truth and
model prediction. One can see that the trained network has
learned a useful relationship between the sonar and LiDAR
data as the model achieves a similar level of accuracy as the
simulation. Our approach still performs, despite the different
data characteristics compared to simulated data. The conclu-
sions from training on simulated data also still hold, for exam-
ple, the number of ultrasonic reflectors in the environment is
still an important factor for the final quality and accuracy of
the final result (e.g. figure 9-B).

We conclude that the use of CNNs to deal with inverse
problems can be a suitable approach when enough labelled

5 Sonar Energyscapes

Network Output (Cartesian)

3 Sonar Energyscapes

Network Output (Cartesian)

Top-down view of simulated world
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FIGURE 7. Influence of the number of input samples (energyscapes). Predicted LiDAR measurements on two locations in the
simulated environment. The top row shows the impact of the number of energyscapes used on the result in a corner. The
bottom row shows the results for a corridor with a limited amount of ultrasonic reflectors. Acceptable results can be
obtained with one input sample, but the performance of the network is generally more stable and reliable when the number

of input samples is increased.
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FIGURE 8. Prediction result of the model trained exclusively on simulated data when used to transform real sonar
measurements. As our simulation does not simulate all characteristics of ultrasound the model cannot be directly applied to
real data. It is evident that the model is not able to deal with characteristics that it has not seen during training. The sonar
demonstrates (left) multiple or secondary reflections, the model is not able to deal with this phenomenon and has therefore
not a correct result (middle) compared to the LiDAR ground truth (right).
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FIGURE 9. Prediction results of the trained model on our real sonar-LiDAR dataset. Each column presents a different scene for
which (the most recent) sonar image is displayed at the top, the middle plot shows the ground truth LiDAR data and our prediction
results is presented in the bottom plot. A) A complex indoor office environment, this result shows that the model can achieve very
high accuracy. B) An office environment with less clutter than in A and thus fewer ultrasonic reflectors. C) A corridor environment,
this result clearly demonstrate the multiple reflections received by the sonar sensor and the model being able to deal with this
phenomena. D) Heavily cluttered scene, with lots of acoustic reflectors.

data can be obtained or generated. We cannot expect
the approximation to contain as many details as the
high-resolution LiDAR data would contain. The prediction
will be a smoother, less accurate image of the scene, this can
be observed in the results in figure 4 or 9. The main idea
is that the closest obstacles are represented in the LiDAR
prediction. As discussed above, our approach has limitations
because of the ultrasonic sensing modality. Therefore the
use case for this method is to complement existing sens-
ing systems and increase performance in difficult and harsh
sensing situations. This trained model functions as a proof-
of-concept with which we defined a methodology that can
be extended in future research. This work functions as a first
step in our research on resource and context-aware robotic
control. In future work, we will use and validate this model
for LiDAR designed methodologies and experiment with
adaptive robot control to use the best modality in a given
situation. Finally, taking a closer look at the relationship the
network has learned can be a fascinating research direction
for further optimizations.
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