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ABSTRACT Adaptive Neuro-fuzzy Inference System (ANFIS) remains one of the promising Al techniques
to handle data over-fitting and as well, improves generalization. Presently, many ANFIS optimization
techniques have been synergized and found effective at some points through trial and error procedures. In this
work, we tune ANFIS using Grid partition algorithm to handle unseen data effectively with fast convergence.
This model is initialized using a careful selection of effective parameters that discriminate climate conditions;
minimum temperature, maximum temperature, average temperature, wind speed and relative humidity.
These parameters are used as inputs for ANFIS, whereas confirmed cases of COVID-19 is chosen as
dependent values for two consecutive months and first ten days of December for new COVID-19 confirmed
cases according to the Department of disease control (DDC) Thailand. The proposed ANFIS model provides
outstanding achievement to predict confirmed cases of COVID-19 with R? of 0.99. Furthermore, data set
trend analysis is done to compare fluctuations of daily climatic parameters, to satisfy our proposition, and
illustrates the serious effect of these parameters on COVID-19 epidemic virus spread.

INDEX TERMS Adaptive neuro fuzzy inference system, artificial Intelligence, COVID-19, climatic impacts,
epidemic diseases, grid partition algorithm, parameters tuning.

I. INTRODUCTION

The World Health Organization (WHO) reported over one
million six hundred thousand confirmed mortality rate, and
still counting more than seventy million active confirmed
morbidity cases from two hundred and twenty two countries
and territories respectively [1]. The deaths are due to the
outbreak of the novel coronavirus (COVID-19 virus) dis-
ease, which was declared as global pandemic on 12th of

The associate editor coordinating the review of this manuscript and

approving it for publication was Haris Pervaiz

55388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

March 2020 [2]. The first case was reported by the health
authorities in Wuhan of Hubei Provincial district of China
on 29th December 2019. On 23rd January 2020 the virus
forced the Chinese officials to impose a total lockdown in the
main city of Wuhan before extending the order to neighbor-
ing cities. Stay at home order, and travel restrictionsn were
imposed inside and outside china [3], [4]. As the virus contin-
ues to spread across the globe, Europe became an epicenter of
the virus as at 23rd march 2020 later USA and India, despite
measures taken by the authorities that includes travel ban,
social distancing and stay at home order [3]. The emergence
of the disease outbreak causes global economic hardships,
and major gatherings such as South East Asia Olympics
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were cancelled. As reported by Tedros and Antonio that the
virus causes human depression, anxiety, social disorders, and
deliberate migrations to many [1]. The pandemic disrupt gov-
ernment sustainable human development projects and as well
have future catastrophic negative impacts. Health authorities
and government officials believed that reliable estimation
of COVID-19 epidemic facilitates a best way of actualizing
preventive measures. These proactive measures are believe
to reduce the mortality rate and to stop the spread of the
virus. Authorities have taken measures of exit strategies to
slacken lockdown restrictions [5]. Reliable estimation could
help the authorities to lower the enforced lockdown, as well
as to avoid the risks of COVID-19 second wave, therefore
research on reliable predictions to the epidemic still remains
open. Several researches have been conducted to assess the
epidemic risk of COVID-19 using basic reproduction number
[6]-[12], the reckoned results are good chances to stop the
spread of the epidemic. However, environmental conditions
have serious impacts on the epidemic spread [13] and makes
the virus more effective at low climatic conditions. Works
in [13], [14] indicates that respiratory viruses spreads faster
during winter (thrive during cold and dry air) period, but very
inactive at temperatures above 30 degree Celsius (30°C). This
findings is contrary to our case studies, as the virus can sur-
vive at even more than 30 degree Celsius. In Altamimi et al.
confirmed that MERS-CoV coronavirus get worst around
April and August, due to warm temperature, low wind speed,
low relative humidity, and high ultraviolet index [15].
Recently, artificial intelligence (AI) techniques were
extremely successful in jointly learning time-series features
and predicting real-life scenarios [16]. Artificial intelligence
algorithms suffer numerical instability, and complex bound-
ary conditions that had existed in ill-defined mappings.
Instability happens in Al during computation and is tightly
coupled with insensitivity to meet exact predictions. Emer-
gence of Adaptive neuro fuzzy inference system (ANFIS)
tries to overcome these hindrances using trial and error learn-
ing. ANFIS is a machine learning approach, with hybridiza-
tion of Artificial Neural Network (ANN) and fuzzy [17]
logic networks to establish Adaptive neuro fuzzy inference
System model, to make up the shortfalls of ANN and fuzzy
inference methods. One benefit of ANFIS architecture is reli-
able representation of sophisticated non-linear relationships
among unions of real life cases [16], [18], [19], and conquers
disadvantages of classical approaches. One major challenge
of using ANFIS is the difficulty in parameter estimation,
which lead to noise at predicted output. Nature-inspired opti-
mizers [20]-[22] have been widely applied to ANFIS param-
eter estimation and have demonstrated significant success in
diverse real-life applications such as epidemiological disease
predictions, for example see [23]. Performance of ANFIS can
be enhanced using nature-inspired optimization approaches
[24]-[26] to predicts confirmed cases of COVID-19 using
time-series data; however, those methods basically focused
on forecasting epidemic virus spread using daily number of
cases, where each time of the day is correlated with the
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number of observed cases on that particular day, though
Al-qaness et al. [25] trained ANFIS using air quality index
time series data to predict PM 2.5 and relates it’s effects to
COVID-19 restriction order. It is desirable to train ANFIS
for predicting impacts of climate condition on respiratory
viruses such as COVID-19. For examples, Pirouz et al. uti-
lized artificial intelligence and multi-linear regression meth-
ods to demonstrate feasibility to classify confirmed cases of
COVID-19 with respect to climate conditions for sustain-
able development [27], [28]. The obtained results show that
there exists correlations between fluctuations of environmen-
tal conditions such as wind, humidity, average temperature
and the confirmed cases of COVID-19. Also, their results
demonstrated that around April and August, the virus spreads
rapidly in warm temperature, low wind speed, low relative
humidity, and high ultraviolet index. But this approach cannot
be employed on another town or satellites as each environ-
ment exhibits different weather conditions (that is, specific
model that fit data at one region could not be suitable to some
other regions).

Henceforth, conventional methods [29], [30] suffers hand-
crafted features which might have affect the accuracy of
the tested sample. Motivated by these relevant literature,
in this paper we propose to extend application of Adap-
tive Neuro fuzzy inference system (ANFIS) as an artificial
intelligence (AI) model to automatically predict impacts of
climatic conditions on confirmed cases of COVID-19 virus
in China and Thailand Cities, and to construct a correlation
between first phase of the virus spread and spread of virus on
new phase (second phase) according to climate conditions.
Moreover, statistical analysis is employed to map correla-
tion between demographic information and COVID-19 cases,
as demographic data (population density, age, elevation, gen-
der ratio and sex) may likely to increase cluster of cases.

During winter period in Thailand, people like to travel
and spend much time outdoors than indoors, this creates
avenue to human-to-human contact and possible exposure,
where infected persons can transmit disease droplets during
cough, sneezing or if in contact with someone, as a result
may increase the number of COVID-19 cases, however, it is
clear that, number of confirmed cases of COVID-19 increases
not only due to human exposure but according to climate
conditions and season. characterization between wind speed,
relative humidity, temperature and COVID-19 may allow to
understand the virus index and its possible behavior. However
COVID-19 virus is not self-sustaining, it may possibly cluster
in places with high population density, which happens to
be around winter period. Therefore, having a robust model
to predict the number of confirmed cases of COVID-19 at
climate conditions is useful.

The proposed algorithms [27], [28] have learning capabil-
ity not like multivariate statistical models, and demonstrates
promising results, however accuracy of these methods need
to be improved. Moreover, serious bias on the effect of cli-
mate conditions on COVID-19 virus need to be extended to
different climate regions, we establish our propositions that
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FIGURE 1. Procedures of the proposed method.

those conclusions might not be suitable to tropical savanna
climate, tropical monsoon climate, and tropical rain forest
climate regions in Thailand, due to different countries exhibit
different climate conditions at the study period. In Thai-
land till date, there are not many studies about the climatic
effect of survival and spread of COVID-19 virus. Therefore,
our paper aims to contribute knowledge to research domain
of COVID-19 pandemic, and predict relationship between
tropical climate conditions and epidemic spread of coron-
avirus in different Thailand’s climate zones. This paper have
chosen five climate conditions: (a) temperature (minimum,
maximum, and average temperature), many existing studies
reported that temperature have significant effect on spread
and survival of COVID-19 virus [31]. (b) COVID-19 virus
remain active in air for many hours, it is a clear indication
that the virus spread has serious impact on wind speed [32].
In addition, wind speed is responsible to spreads pollutant
in air, as well stand as key parameter in measuring of air
pollutants such as biological contaminants [32] e.g. epidemic
virus, therefore to establish this relationship we have cho-
sen wind speed parameter, (¢) humidity shift can seriously
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impact the spread and survival of COVID-19 virus [33].
However, these climate parameters cannot be directly ignored
while looking for a way to control epidemic virus. Readers
are referred to [29]-[31], [34] for details why temperature,
humidity and wind speed are selected as our input variables.
The major contributions of this paper as are follows:

(a) To examine the number of confirmed cases of
COVID-19 data and establish the nature of rela-
tionship between increment/decrements of number of
COVID-19 cases at climate conditions, and scan virus
spread pattern according to clustering differences.

(b) To predict the climate effect on epidemic diseases such
as COVID-19 virus.

(c) To propose an Al model with good parameter estima-
tion algorithm capable to overcome the generalization
and over-fitting problems besides conventional ANFIS
volatility.

Il. MATERIALS AND METHODS
In this paper, we analyzed the correlations among the varia-
tions of confirmed cases of COVID-19 with respect to five
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TABLE 1. Research environment [27].

Country  Province/Region  Capital Population Density, Population (K'm?) Gender Ratio  Average Age (years) Elevation (m)
Hubei Wuhan 59,170,000 318 1.06 384 37
Guangdong Guangzhou 113460000 630 1.06 38.4 21
Henan Zhengzhou 96,050,000 575 1.06 38.4 104
Zhejiang Hangzhou 57,370,000 562 1.06 38.4 19
Hunan Changsha 68,990,000 329 1.06 384 63
Anhui Hefei 63,240,000 454 1.06 38.4 37
Jiangxi Nanchang 46,480,000 278 1.06 38.4 37
Shandong Jinan 100470000 653 1.06 38.4 23
Jiangsu Nanchino 80,510,000 785 1.06 38.4 15
Chonggqing Chongqing 31,020,000 377 1.06 38.4 244
Sichuan Chengdu 83,410,000 172 1.06 38.4 500
Heilongjiang Harbin 37,730,000 83 1.06 38.4 126

China Beijing Beijing 21,540,000 1313 1.06 384 435
Shanghai Shanghai 24,240,000 3823 1.06 38.4 4
Hebei Shijiazhuang 75,560,000 403 1.06 384 83
Fujian Fuzhou 39,410,000 324 1.06 384 14
Guangxi Nanning 49,260,000 209 1.06 38.4 499
Shaanxi Xi’an 38,640,000 247 1.06 38.4 405
Yunnan Kunming 48,300,0000” 123 1.06 38.4 1892
Hainan Haikou 9,340,000 275 1.06 38.4 222
Guizhou Guiyang 36,000,000 205 1.06 38.4 1275
Tianjin Tianjin 15,600,000 1380 1.06 38.4 1078
Shanxi Taiyuan 37,180,000 181 1.06 38.4 800
Liaoning Shenyang 43,590,000 299 1.06 38.4 55
Jilin Changchun 27,040,000 2704 1.06 384 202

critical environmental factors, namely, minimum tempera-
ture, maximum temperature, average temperature, population
density of province, relative humidity and wind speed. These
five factors are fed to the ANFIS inputs, whereas the number
of confirmed cases of COVID-19 is used as ANFIS output
for two consecutive months in Bangkok, Thailand and first
10 days of December, as well as 30 days in Wuhan, Hubei
province China. Furthermore, this paper will track variations
of confirmed cases of COVID-19 from four provinces of
Thailand with large number of cases according to variations
of parametric climate conditions. The following are the four
provinces with greater than or equals to 90.31 percent of
the outbreak per capita cases; Phuket, Nonthaburi, Yala and
Samut Prakan. In addition, we try to predict the present
situations in Bangkok for the second phase of COVID-
19 confirmed cases (New normal) of the last 10 days of
December.

A. CONDITIONS OF ANALYSIS

(1) The following demographic and parametric climate
conditions are considered for the analysis; population
density of province, sex ratio, average age, elevation,
maximum, minimum, and average temperature, rela-
tive humidity, and wind speed.

(2) The variations of confirmed cases of COVID-19 for
daily climate variations is calibrated according to the
available data of Wuhan, and Thailand provinces.

(3) Most of the obtained climatic information is recorded
from stations in the main city of the provinces, as it
contains the majority population.

(4) We consider two periods for analysis: (a) For
Wuhan, Hubei Province, a period is taken from
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28 January 2020 to 26 February 2020 (30 days). (b) For
Bangkok province, Thailand, a period is taken from
01 March 2020 to 30 April 2020 (two months).
(5) We further analyzed daily variations of confirmed cases
of COVID-19 according to the average data per month.
(6) We formulate our hypothesis as follows:

Nig = func(tmax., tmin. Tavg., Sws H;) (D

the number of confirmed cases of COVID-19 (Ni9) as
function of climatic parameters (maximum temperature
(tmax.), minimum temperature (f,,.), average temper-
ature (f4y4.), wind speed (S,,) and relative humidity

(Hy)).

B. RESEARCH ENVIRONMENT

We employed two research environments from the China
Republic and the Kingdom of Thailand. In the China republic,
30 days data sets from January 28, 2020, to February 26,
2020, of Hubei province is adopted from [27]. In Thailand,
complete two months (March 2020 and April 2020) and
the first ten days of December 2020 data sets are collected
from the number of confirmed cases of COVID-19 reported
by the department of disease control (DDC) Thailand and
the Thai meteorological department (TMD). The data set
is comprised of a total of 101 days of data of confirmed
cases. These data sets are collected during the winter period
of the two countries. Example of complete data sets are
demonstrated in Table 1 to validate that confirmed cases
of COVID-19 is a function of environmental conditions.
This analysis is conducted by briefly visiting the procedures
in [27], [28].
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TABLE 2. Cont. [15].

Country  Province/Region Capital Population  Density, Population (Km?) Gender Ratio  Average Age (years) Elevation (m)
Bangkok Bangkok 10,539,000 5300 0.96 40.1 1.5
Samut Prakan Mueang Samut Prakan 1,344,875 1340 0.96 40.1 47200
Mueang Nonthaburi Nonthaburi 1,246,295 2003.7 0.96 40.1
Udon Thani Udon Thani 1,586,666 135 0.96 40.1 177
Chonburi Chonburi 1,535,445 3519 0.96 40.1 50
Nakhon Ratchasima Nakhon Ratchasiima 2,646,401 129 0.96 40.1 180
Chiang Mai Chiang Mai 1,763,742 88 0.96 40.1 305
Narathiwat Narathiwat 802,474 179 0.96 40.1 9
Yala Yala 536,330 118 0.96 40.1 1533
Pattani Pattani 718,077 370 0.96 40.1
Songkhla Songkhla 1,432,628 194 0.96 40.1 5
Satun Satun 321,574 130 0.96 40.1 4
Trang Trang 643,116 131 0.96 40.1 14
Patthalung Phatthalung 525,044 153 0.96 40.1
Nakhon Si Thammarat Nakhon Si Thammarat 102,152 4528 0.96 40.1 9
Phuket Phuket 416,582 755 0.96 40.1 2
Phang Nga Phang Nga 268,240 64 0.96 40.1
Surat Thani Surat Thani 1,063,501 83 0.96 40.1 5
Ranong Ranong 191,868 58 0.96 40.1 7
Chumphon Chumphon 510,963 85 0.96 40.1
Prachuap Khiri Khan Prachuap Khiri Khan 548,815 86 0.96 40.1 4
Samut Songkhram Samut Songkhram 193,305 465 0.96 40.1
Samut Sakhon Mueang Samut Sakhon 584,703 662 0.96 40.1
Nonthaburi Nonthaburi 1,246,295 2,003.70 0.96 40.1
Trat Trat town 229,958 81.57 0.96 40.1
Rayong Rayong 723,316 203.6 0.96 40.1 3
Chanthaburi Chanthaburi 536,496 84.6 0.96 40.1 3
Phetchaburi Phetchaburi town 484,294 78 0.96 40.1 2
Ratchaburi Ratchaburi 873,518 168 0.96 40.1 300
Chachoengsao Chachoengsao town 715,009 134 0.96 40.1
Nakhon Pathom Mueang Nakhon Pathom 920,030 424 0.96 40.1
Pathum Thani Pathum Thani 1,163,604 763 0.96 40.1
Nakhon Nayok Nakhon Nayok City 260,093 123 0.96 40.1 1292

Thailand  Prachinburi Prachinburi town 491,640 103 0.96 40.1
Sa Kaeo Sa Kaeo town 564,092 78 0.96 40.1 43
Phra Nakhon Si Ayutthaya  Ayothaya 817,441 320 0.96 40.1
Kanchanaburi Kanchanaburi 893,151 46 0.96 40.1 28
Suphan Buri Suphan Buri 848,720 158 0.96 40.1 7
Ang Thong Ang Thong town 280,840 290.1 0.96 40.1
Saraburi Saraburi 645,024 180.4 0.96 40.1 329
Sing Buri Sing Buri town 209,377 254.7 0.96 40.1
Lopburi Lop Buri 758,733 122 0.96 40.1 10
Buriram Buriram 1,594,850 155 0.96 40.1
Surin Surin 1,397,857 172 0.96 40.1 145
Sisaket Sisaket 1,473,011 167 0.96 40.1
Ubon Ratchathani Mueang Ubon Ratchathani 1,874,548 119 0.96 40.1 122
Amnat Charoen Amnat Charoen 378,621 120 0.96 40.1
Yasothon Yasothon 538,729 130 0.96 40.1
Roi Et Roi Et 1,307,208 158 0.96 40.1 150
Maha Sarakham Maha Sarakham 963,047 182 0.96 40.1 230
Chaiyaphum Chaiyaphum town 1,138,777 89 0.96 40.1 182
Khon Kaen Khon Kaen 1,805,895 166 0.96 40.1 187
Loei Loei town 642,773 56 0.96 40.1 253
Kalasin Kalasin town 985,346 142 0.96 40.1 152
Mukdahan Mukdahan town 352,282 81 0.96 40.1 138
Sakhon Nakhon Sakhon Nakhon 1,152,282 120 0.96 40.1 171
Nakhon Phanom Nakhon Phanom town 718,786 130 0.96 40.1 140
Nong Bua Lamphu Nong Bua Lam Phu 512,117 133 0.96 40.1
Nong Khai Nong Khai 522,103 173 0.96 40.1 173
Bueng Kan Bueng Kan 424,091 929 0.96 40.1
Phichit Phichit town 539,374 119 0.96 40.1
Chainat Chai Nat 328,263 1329 0.96 40.1
Uthai Thani Uthai Thani 329,433 49 0.96 40.1
Nakhon Sawan Nakhon Sawan city 1,063,964 111 0.96 40.1 34
Petchabun Petchabun 994,540 79 0.96 40.1 114
Kamphaeng Phet Kamphaeng Phet 727,807 85 0.96 40.1 80
Phitsanulok Phitsanulok 865,247 80 0.96 40.1 51
Sukhothai Sukhothai Thani 597,257 91 0.96 40.1 48
Tak Tak 654,676 40 0.96 40.1 125
Uttaradit Uttaradit town 455,403 58 0.96 40.1 63
Phrae Phrae 455,090 68 0.96 40.1 159
Lampang Nakhon Lampang 742,883 59 0.96 40.1 242

6 Lamphun Lamphun 405,955 90 0.96 VOLUME4,2016  40.1 296
Mae Hong Son Mae Hong Son 284,138 22.3 0.96 40.1 240
Phayao Phayao 475,215 75 0.96 40.1 397
Nan Nan town 478,989 42 0.96 40.1 211
Chiang Rai Chiang Rai 1,292,130 111 0.96 40.1 580

C. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
Our method adopted artificial intelligence (AI) approach,
which is the hybridization of Artificial Neural Net-
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work (ANN) and fuzzy logic [17] networks as one Adaptive
Neuro fuzzy inference System (ANFIS) model, to make up
the shortfalls of the ANN and fuzzy inference methods. One
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FIGURE 2. Study Locations. Most affected provinces in Thailand by
COVID-19 (a) virus, and City affected in Hubei by COVID-19 virus (b). Stars
show names of affected city, whereas solid purple color indicate number
of cases per capita. Solid red indicates density of COVID-19 cases from
light to dark.

benefit of this architecture is a reliable representation of
sophisticated non-linear relationships among unions. How-
ever special interests in using ANFIS to predict complex
relationships have risen due to its good representation, fast
convergence and soft computing [35]-[38]. ANFIS can be
described with the following equations:

It is assumed that exists linear and nonlinear parameters,
hi, ha, c1, c2, j1 and jo, when Q of m, tunes in Ky; Q of n,
tunes in L; and Q of m, tunes in K,, and Q of n, tunes in
L, respectively. Where the system output is demonstrated
by Z,,, with a denotes the order of the layer, and i denotes
the order of the node combination. The first and second fuzzy
rules can be generated from the two inputs m and n data for
simplicity as

fi = him+jin+ci;

f2 = hom+jan + c2;
Intuitively, the five layers are initialized using carefully
selected Climatic parameters according to the Pearson cor-
relation coefficient, which is later modified according to the

Grid partition algorithm and fed to the layers.

First Layer: The nodes are adaptive here, formulate as:
Z;=qk,(m), =12 2)
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With u; and k; as the premise parameters in Sigmoid mem-
bership function in (3),

1

1 4+ e—kitm—u) &)

gk, (m) =

Second Layer: The nodes here are fixed. And each layer
computes explosion power per each rule through multiplying
the input signals and print out results, according to

Li=yi =qK, (M) xqr, ), i=172 4

Third Layer: The nodes here are fixed. This layer computes
the quotient of the i order of the explosion power rules from
the previous layer, to the aggregate of all rules of explosion
power. This is defined as:

Vi

2
21V

Fourth Layer: The nodes are adaptive here. This layer
computes the consequent parameters per each node as the
multiplication of the normalized explosion power y; and poly-

nomial of order one. The output of the third layer is multiplied
with fuzzy rules of Sugeno function defined by:

23i=Yi = i=12 &)

Zyi=Yyi fi=yi (him+jin+cp) (6)

Fifth Layer: This is a single layer represented by X. The
layer handles all input signals from the previous layers. The
fifth layer function Zs ; can be formulated as follows:

Z Vi = Zzylyfz ) 7)

However, it is expected to evaluate function in (7) to be
estimated as f;, in place of observed function f; to predict a
new output for any available inputs. But the major challenge,
is how to make predicted data to be as close as observed data,
thus issue of minimizing function comes in, which is defined
as:

n
Zs,; = min Z[fi(mi cemig) =i 1 (8)
i=1

Therefore, our ANFIS formulation is updated according
to Gaussian membership function with a sigmoid activa-
tion function. Membership function is defined as a designed
curve to explains mapping relationship on membership val-
ues, strictly bounded within 0 and 1. MFs shapes play a
crucial role due to their influence on FIS, and computational
efficiency. Furthermore, data set input vectors are fuzzified by
adopting a Gaussian membership function with sigmoid acti-
vation, and account for the membership degree per input, as a
result, increases input vector dimensionality. These hybrid
MFs enables a smoother transition between members and
non-members when compared to triangular and trapezoidal
MFs. Moreover, this MF has few parameters as compared to
bell MF, thus the model becomes flexible. There are available
MF in fuzzy logic formed from the following basic functions:

(i) Gaussian distribution function
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(i) Piecewise linear functions

(iii) Triangular MF: simple, yet threatened non-smoothness
and overlap.

(iv) Sigmoid activation curve

However, Gaussian bell, triangles and trapezoids curves per-
formed nearly best to the approximated, but it takes negative
values in its lesser lobes, and these values are viewed as
low degrees of membership set [39]. Triangles and Gaussian
bell MFs do not always handle the vast function space of
IF-THEN fuzzy sets. Therefore they are not the best choices
for nonlinear system IF-THEN approximations. To achieve
accurate optimization capability of GP, an alternative Gaus-
sian MF with Sigmoid activation function is our motivation,
which is formulated in (9)-(10), and we extend it application
to the ANFIS learning approach.
Ac(m) ! ©))
T T+ ep(=m))
For a given symmetric logistic set function [39] centered at
k. with thickness b, > 0, sigmoid function can be reformu-
lated as follows:

2
(1 + exp((52)2)

Note, uc(m) and A.(m) defines joint set and multi-valued set
respectively. The factor 2 gives max,, € Ru.(m) = 1 [40].
Furthermore, ANFIS lacks good generalization capability
and faster learning speed. Addressing these issues involves
increasing input data set, input-output membership functions,
increasing membership functions type, and increasing the
number of rules. Tuning these parameters yields a complex
fuzzy inference system (FIS), however, initializing such a
system is troublesome. To design this FIS, a data-driven
technique is good choice to learn rules and tune FIS param-
eters [41]. However, during network training, optimization
algorithm generates candidate Sugeno FIS parameter sets.
Sugeno FIS normally employs a sum aggregation method.
It is updated with each parameter set and then evaluated using
anetwork input training data set. However, this technique suf-
fers from a data overfitting problem, but tuned FIS from learnt
data gives outstanding output for calibrated samples, whereas
woefully fails during the verification/testing phase. There-
fore, early stopping of tuned FIS according to objective ver-
ification with an unseen sample could address this issue. To
do that, we need the best way to handle overfitting and avoid
complex FIS tuning design. For this goal, we tune FIS using
Sugeno due to it’s demonstrated a few numbers of output
membership function parameters and faster defuzzification.
However, FIS that accommodate large dataset generally has
fast convergence with Sugeno FIS than Mamdani FIS [41].
Few numbers of membership functions and rules, decrease
number of tuning parameters and yields fast tuning. From
previous experience, too many rules lead to overfitting [42].
Therefore, we propose to adopt a Grid partitioning algorithm,
which uses three membership functions per each input data
point and yields 125 fuzzy rules for learning. We proposed

uc(m) = (10)
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(a) A Grid Partition of 5-inputs parameters
with its generated membership rules

output

input2 input1

(b) Surface view of extracted 2-input pa-
rameters partition

FIGURE 3. lllustration of FIS grid partition.

TABLE 3. Correlation among five climatic factors of Wuhan District.

tmaz. tmin. ta,'ug. Hr S’Ll)
tmas. 1 0.63 083 -0.11 035
tmin. 0.63 1 0.78 024 0.28
tavg. 0.83 0.78 1 -0.14 0.15
H, -0.11 0.24 -0.14 1 033
Sw 0.35 0.28 0.15 0.33 1

ANFIS learning capability according to formulations in (9)-
(10). FIS partitions of input space characterize prior fuzzy
model, and partitions of FIS defines several fuzzy member-
ship rules, illustrated in Figure 3. We obtained partition by
injecting hybrid learning procedures. This proposed model is
validated using five input variables (maximum temperature,
minimum temperature, average temperature, wind speed and
relative humidity) and single linear output (number of con-
firmed COVID-19 cases). The basic idea of grid partition is
details in section E.

D. DATA PREPROCESSING

As explained earlier we briefly adopt the procedures in [27],
in which we statistically used Pearson’s correlation coef-
ficient that establishes an independent relationship among
the chosen data set variables. Before training, the data had
undergone a correlation test to add more weight to its reli-
ability, this is shown using Pearson’s correlation coefficient
in Table 3-4. For more details of Pearson’s testing see [43].
Pearson’s correlation is defined by:

. COV(v,w)

A/Ov.Oy (an

VOLUME 9, 2021



S. B. Abdullahi et al.: Data-Driven Al-Based Parameters Tuning Using Grid Partition Algorithm

IEEE Access

TABLE 4. Correlation among five climatic factors of Bangkok Province.

tmaz. tmin. tavg4 Hr Sw
tmaa. 1 0.34 0.89  0.095 0.17
tmin. 0.34 1 0.74 0.052 -0.09
tavg. 0.89 0.74 1 0.10 0.07
H, 0.10 0.05 0.09 1 0.04
Sw 0.17 -0.09 0.07 0.04 1

where ¢ is the given two independent parameters’(v,w), COV
is the covariance between the two independent variables,
with their standard deviations as o, and o, respectively.
The results in Tables 3 and 4, shows that five input dataset
parameters are independent upon each other, except on two
instances when independent correlation among #,4,,. and #,4y.
is statistically insignificant. However, these parameters can
still be adopted as independent variables. the chosen cli-
matic factors are well selected for building the ANFIS model
to demonstrate the influence of Grid-tuning parameters to
increase Al model exactness and forecast ill-defined and
nonlinear mappings.

Ill. ANFIS MODELING

The construction of ANFIS architecture is detailed in equa-
tions (2-7). Best model selection is carried out by experts
using a trial and error approach, but in this approach, we tried
to select the best model by tuning FIS membership func-
tion parameters with Gaussian-shaped membership function
according to hybrid learning algorithms initialized from the
available clustering algorithms. Clustering is one of the best
methods to get insights embedded in data groupings. There-
fore, ANFIS clustering is considered as an alternative to the
group number of confirmed cases of COVID-19 patterns into
many clusters to ease scalability and learn relationship from
the number of confirmed cases of COVID-19. Optimization
of ANFIS parameters is done precisely using the following
five clustering algorithms:

A. FUZZY C-MEANS (FCM)

Fuzzy clustering is an unsupervised approach to cluster each
data point that dominates multidimensional space into X, dif-
ferent clusters [44]. The basic aim of this idea is to search for
a cluster such that similar patterns that exist within different
clusters would be minimized [45]. ANFIS parameters can
be optimized as in accordance by minimizing the objective
function of the FCM as follows:

No Xy

Objectivefunction, Ky = Z Zm’:kllxc — > (12)

c=1 k=1

where m; represents membership degree of x. in kth cluster,
can be updated as follows:

|
Mek = > (13)
Xo lmetull\ 7y
%G
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where hy represents cluster centers, can be computed as
follows:

ZICV:?Q Xe

Nomly
Zc:l
where N,, X;,f, and x. represents data size, the number
of clusters, fuzzy partition matrix exponent, and cth data
size, respectively. FCM is among the promising clustering
approach as each data point is associated with a minimum of
two clusters. However, FCM has an uncontrolled algorithm
and minimizes the initial output function before computing
new fuzzy clusters [16]. Also, this method is threatened
by accommodating a large number of parameters. Accord-
ingly, the best model combination is obtained with 5 inputs,
10 Gaussian membership functions per data point, where
each data point accommodated 2 parameters, thus yielded
100 premise parameters. Whereas linear equations accommo-
dated 5 parameters with 10 rules, which yields 60 consequent
parameters in total.

he = (14)

B. SUBTRACTIVE CLUSTERING (SC)

In subtractive clustering, each data patterns is considered a
capable cluster centre. The basic idea is to compute density
index p. agreeing to pattern m, with positive constant b, thus
ANFIS-SC formulation can be defined as follows [46].

2
Zexp( |m¢(bn)"21k|| ) s

SC algorithm chooses top density index to be the first
cluster center, which can be written as:
2
purep(— el (16)
(%)

The obtained cluster estimates are used to generate iterative
optimization-based clustering and ANFIS modelling param-
eters [46] cluster estimates obtained can be used to initialize
iterative optimization-based clustering methods and model
identification methods like ANFIS. In this study, 15 clus-
ter centers were determined for the given 101 data values
my, my, ...my,. Each data value serves as a member of the
cluster centre. The number of fuzzy rule set would be equal
to the number of cluster centres, each representing features
of the cluster. The procedures in (16) are repeated till an
adequate number of cluster centres converge.

SC clustering approach cannot handle small data points
effectively, but it is highly re-presentable when high dimen-
sion problems for a moderate number of data points are con-
sidered. Accordingly, the best model combination is obtained
with 5 inputs, 14 Gaussian membership functions per data
point, where each data point accommodated 2 parameters,
thus yielded 140 premise parameters. Whereas linear equa-
tions accommodated 5 parameters with 14 rules, which yields
14 consequent parameters in total. We achieved the best
model with a cluster radius of 0.3, against the maximum
iteration of 500.

P1 = Pi —
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TABLE 5. Parameters Setting of the proposed models.

Method Parameters Settings
Membership functions SC(14),FCM(10) and GP(3)
FIS generation algorithm SC, FCM, GP
Max. Iteration 300
No. of Inputs 5
ANFIS Initial step 0.01
Decrease rate 0.009
Increase rate 0.001
Fuzzy rules SC(14), FCM(10), GP(125)
Cross over % 0.5
No. of population 25
Iteration 1000
GA Gamma 0.7
Mutation rate 0.15
Beta 8
Inertia weight 1
PSO Inertia weight damping ratio  0.99

Personal learning coefficient 1
Global learniing coefficient

C. GENETIC ALGORITHM (GA)
GA exhibits natural selection. In ANFIS parameters esti-
mation, it is useful to model ANFIS in binary coded form,
with concatenated parameters. This makes it promising in
optimizing part of antecedents MFs in fuzzy rules, as well
as optimizing part of linear coefficients of consequent rules.
The function fitness of each binary digits string is computed
as follows:
1
n=— a7

o
where 1 and o represent fitness and objective function and
can be obtained from Eq. (8). Minimization of the objective
function is possible through maximizing fitness. GA make
this happen by random generation of an initial population of
binary strings, where the candidate solution takes a portion of
fuzzy rules within the partition. Accordingly using standard
genetic operations of Roulette wheel selection and parame-
ters in Table 5, slowly optimize binary string populations,
and optimize linear equations of output layers of Gaussian
membership function rules per chromosome of associated
fuzzy partitioning of premise layers. Therefore parameters
of ANFIS initialized from COVID-19 data sets are optimally
obtained according to the Genetic algorithm.

D. PARTICLE SWAMP OPTIMIZATION (PSO) ALGORITHM
In particle swamp optimization formulation each particle
is regarded as potential solution to M-dimensional problem
space.

PSO is adopted to optimize the parameters of the ANFIS
model. The ANFIS-PSO consisted of five input variables and
one output, with three fuzzy rules, a total of nine weighting
coefficients were generated per each parameter.

E. GRID PARTITION ALGORITHM (GP)
In ANFIS parameter estimation, GP is one type of FIS tuning
algorithm with notable competitive results. Despite its major
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FIGURE 4. Grid partition algorithm procedures.

challenge of an exponential increase in fuzzy rules, when the
number of input data sets increases. However, the algorithm
performs wonderfully good for small input data sizes. Besides
better performance to small data size, another big advantage
of GP is that it is flexible, due to the high number of rules
and parameters [46]. Besides, GP handles internal parameters
of ANFIS very effective and improves the prediction per-
formance better than ANFIS-FCM, ANFIS-SC, ANFIS-GA
and ANFIS-PSO algorithms, in modelling climate variability
effects on epidemic diseases. Moreover, its application in the
potential impact of climate on the COVID-19 epidemic virus
is limited. GP algorithm partition the data space into sub-
spaces, according to axis paralleled partition for a pre-defined
size and type of membership functions per each dimension
as we briefly adopt procedures in [46], [47]. Figure 4 below,
explain the partitioned subspace of function in equation (1),
where this function is numerically integrated according to
the trapezoidal rule. We can simply denote equation (8) as
trapezoidal area A; having thickness b at space interval. The
next regime is to partition function into N equal points. How-
ever, this can be better explained if we use the grid point of
N+1. Then b and A; are obtained as zlv and equation (9),
respectively. Since the data is known, procedures can use
equation (10).

In Grid partition procedures for mapping input and
output spaces, here we adopted Sugeno-FIS with linear
equation parameter (first-order Sugeno-FIS). Sugeno-FIS +
grid partition improves intelligent learning according to
prior knowledge. The number of partitions is indepen-
dent of iterations. The proposed model is Sugeno-FIS +
adaptive grid partition, with five layers, which are ini-
tialized with the weights of maximum temperature, min-
imum temperature, average temperature, wind speed and
relative humidity as the inputs m ...ms, whereas a num-
ber of confirmed cases of COVID-19 is used as network
output Z.

The cluster centres from procedures (8)-(11) are used to
activate first-order Sugeno fuzzy (Sugeno-FIS), using ran-
domly selected data sets of three months: March, April and
December. This proposed FIS is initialized with three
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months’ datasets partitioned into 80% (80 samples) and 20%
(21 samples) for both calibration and verification phase,
respectively. The number of FIS rule set would be equal to the
number of cluster centres, each denoting the characteristic of
the cluster. FIS is optimized using a hybrid approach with
equation (11), where back-propagation accounts for input
membership functions, and iterative approach accounts for
output membership functions.

1
Ar = b1 (mi) +f(mi1) = blf m 1), 1 (18)

N
Ar=b) fom;_y). (19)

i=1
Jot1 = fo + kf (s Zy). (20)
Therefore to avoid complex geometries, equation (10) is
solved using procedures in [48], their techniques adopted the
following iterative search using gradient descent:

1
9, = 5[0{.’_1 +01 1. 21)

This completes the grid partition procedures for the known
data-driven approach. It is assumed that equation (11) parti-
tion the data into number of problem sizes according to the
generated FIS rules. The optimum solution without serious
overfitting converges at the following tolerance:

N-1
¢=Y_ 16/ — 0. (22)
i=1

To better explore this data space and to evaluate opti-
mal ANFIS parameters, this paper develops metrics from
equations (13-16) to demonstrate the applicability of our
algorithm.

Algorithm 1

(1) Climate variability selections

(i) Collect dataset of COVID-19 number of confirmed
cases

(iii) Preprocess collected data:

(a) Normalization of dataset residuals

(b) Select suitable features from (i)

(c) Partitions of dataset into 80:20

(iv) Models Selection

Input. A (maximum temperature #,,ax, minimum temper-
ature t,in, average temperature f,vg., relative humidity
H,, wind speed S,, N19 (Nummber of confirmed cases of
COVID-19), model radius r, number of iterations Iter, pop-
ulation size nPop, input parameters membership function
P, selection pressure (8), mutation percentage mp

Output calibrated data, verification data, evaluation
parameters, sensitivity analysis.

(1) Determine model parameters.

(2) ANFIS loading..

(3) Load dataset; shuffle & partitions data

(4) Define an initial FIS with n GaussianMF
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(5) Model 1: ANFIS-SUBTRACTIVE CLUSTERING
(6) Define tunable parameter settings: A,N19,...
SubtractiveClustering,ClusterInfluenceRange,r.(tuning
membership function parameters);

(7) Solve Eq.(13) to obtain density index

(8) Solve Eq.(14) to get the highest density index and
establish the first cluster.

(9) Repeat (7)-(8) till an adequate number of clusters are
obtained.

(10) Model 2: FUZZY C-MEANS CLUSTERING

(11) Initialize cluster membership Eq.(9)

(12) Compute Eq.(10) & update Eq.(9)

(13) Compute Eq.(8); iterates till maximum number of
iterations achieved.

(14) Model 3: GENETIC ALGORITHM

(15) Define tunable parameter settings: population size,
Cross over percent, mutation percent, mutation rate, selec-
tion pressure.

(16) Do Roulette wheel selection & solve Eq.(12)

(17) If converge end; else repeat procedures

(18) Model 4: PARTICLE SWAMP OPTIMIZATION
(19) Definition as in (15)

(16) Update each fitness, personal best, and global best..
(17) If time to stop, yield a solution; else repeat procedures,
till desired solution

(18) Model 5: GRID PARTITION ALGORITHM

(19) Design of fuzzy architecture

(20) Initializing NN design

(21) Hybrid learning algorithm: Gradient search method.
(22) Generate FIS rules: MF rules.

(23) Generate different fuzzy structures; FIS.,c =
1,---14

(24) GP algorithm optimize this structure to yield ANFIS-

GP: FISSug: prsrortimization _ Gp prs, )
FISsugoptimization,MFoptimizatiun

(25) GP parameters tuning; FISf“g"MfOP timization

GP(FISS"8")

(26) Generate best FIS structure in step (25).

(26) Loading and building verification data into (21), (22),
and (24).

Return: ‘Statistical metrics’, ‘Sensitivity analysis’

F. MODEL PARAMETERS

The number of fuzzy rules, the initial training and testing step
value, maximum epochs, and goal errors of the parameters,
increase and decrease training rate after epoch 6 are shown
in Table 5. Different values of R? for the model’s fitness are
achieved according to these values, and the condition in (11).

G. EVALUATION METRICS

The following metrics terms are used to quantify performance
of proposed algorithms. The variables O, Of ., N,., 6,2, p
and Oavg,. denotes measured data, forcasted data, data size,
standard deviation residuals, total parameters, and average
measured data, respectively.
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FIGURE 5. Results for 4 calibration phases.

1) ROOT MEAN SQUARE ERROR (RMSE)

N,
1 o
e _ 2
RMSE = N > (Of . — O.) (23)
c=1
2) MEAN ABSOLUTE ERROR (MAE)

1
MAE = —
N

No
> 10f. = O] (24)
c=1

3) MEAN ABSOLUTE DEVIATION (MAD)

Y02 (Oc = Oavg,)
N,

MAD :=

(25)
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(d) Performance of ANFIS-GP using Bangkok data set
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4) COEFFICIENT OF DETERMINATION (R?)

Yoey(0c = Of
Z?’il(oc - Oavgc)2

R*:=1-— (26)

5) AKAIKE's INFORMATION CRITERION (AICc)

Small sample-size corrected Akaike’s Information Criterion
index measures model’s quality in terms of structural flexi-
bility and level of deviation from the mean value, determined
during the evaluation of the structure, where the model is
verified according to unseen observations [18], [49], [50].
According to this index, the best model must have the lowest
AlICc. AICc is computed as

2 —p—
AlCe — (2pNo + (Noln(o)(No—p — 1)) 27
No—p—1
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TABLE 6. Performance of optimized ANFIS models during different datasets Calibration.

Methods Source of Data Set MAD MSE RMSE MAE R? AlCc nn—s(%) SI

Wuhan dataset 0.002 1.53E-05 0.004 0.002 1 -333.185 99.369 8.26E-07
ANFIS-SC BKK March dataset 1.133 12.607 3.551 1.133 0.995 18.865 99.677 4.01E-04
BKK April dataset 0.69 2.062 1.436 0.708 0.997 0.273 99.593 4.76E-04
BKK December dataset ~ 3.26E-15  1.94E-29  4.40E-15 3.81E-15 1 -470.577 94.515 4.51E-10
Wuhan dataset 3.88E-04  3.77E-04 1 3.77E-04 1 -298.99 99.383  3.01E-07
ANFIS-FCM BKK March dataset 1.303 12.757 3.551 1.303  0.994 29.893 99.673  4.02E-04
BKK April dataset 0.708 3.521 1.876 0.708  0.997 -4.406 99.593  4.76E-04

BKK December dataset ~ 3.34E-06  1.95E-11  4.42E-06  3.15E-06 1 -260.011 9.61E+01  1.25E-05

‘Wauhan dataset 364.357  2.05E+05 0.0039 364.357  0.541  261.491 99.38 2.14E-04

ANFIS-GA BKK March dataset 13.955 448.246 21.172 13.932 0.812  118.874 99.69 9.79E-04
BKK April dataset 13.471 393.071 19.826 14.084 0.643  111.376 99.36 2.00E-03

BKK December dataset ~ 6.97E-01  6.20E-01  7.87E-01  6.56E-01 0.953  -12.551 94.317 5.00E-03

Wuhan dataset 188.869  6.90E+04  262.687 188.869  0.855  235.406 99.309 2.14E-04

ANFIS-PSO BKK March dataset 14.515 460.802 21.466 14.515 0.807  119.565 99.682 9.86E-04
) BKK April dataset 15.752 419.478 20.469 15.752 0.613 112936 99.317 1.60E-03

BKK December dataset 0.713 0.72 0.849 0.733  0.949 -11.355 96.604  6.00E-03

‘Wauhan dataset 0.002 0 0 0.00016 1 -376.948 99.409 3.72E-07

ANFIS-GP BKK March dataset 1.133 12.607 3.551 0.268 0.995 16.539 99.677 4.01E-04
: BKK April dataset 0.36 2.062 1.436 0.28 0.998  -127.091 99.593 4.76E-04

BKK December dataset 0 0 0 0.958 1 -155.917  9.45E+01 3.73E-05

TABLE 7. Performance of optimized ANFIS models during different datasets Verification.
Methods Source of Data Set MAD MSE RMSE MAE R? AlCc  nn—_s(%) SI

Wuhan dataset 276E+02  7.55E+03 86.862 1.00E-03 1 74.711 94.557 2.29E-07

ANFIS-SC BKK March dataset 1.301 11.36 3.371 1.301 0.996 29.923 99.766 3.15E-04
BKK April dataset 0.567 2.817 1.678 0.567 0.998 -8.6 99.739 3.60E-04

BKK December dataset 0.925 2.858 1.691 0.821 0.837 -1.228 98.737 5.20E-03

Wuhan dataset 194.698 80140 0.999 670.352 0999  74.127 93.882 0.0081

ANFIS-FCM BKK March dataset 221.686  15326.44 5.027 123.8  0.995 79.413 92.021 0.042
BKK April dataset 16 8077 89.872 87 0996  47.489 90.651 0.105

BKK December dataset 2.06 13.7 3.701 1.5 0.999 8.389 98.868 0.007

Wuhan dataset 8.31E+02  6.30E+06  0.000469  2.31E+03  0.541  87.548 91.825 1.30E-02

ANFIS-GA BKK March dataset 9.003 879.845 29.662 27.239 0.812  34.294 94.227 6.00E-03
BKK April dataset 9.483 256.229 16.007 14.406 0.643  26.892 90.964 4.50E-02

BKK December dataset 4.994 29.748 5.454 4.994 0953 4.761 71.198 4.70E-02

Wuhan dataset 295E+02  9.01E+05  949.423  8.70E+02 0.855 75.886 93.882 8.10E-03

ANEIS-PSO BKK March dataset 9.003 879.844 29.662 27.239 0.807  34.294 94.226 6.00E-03
BKK April dataset 9.972 255.541 15.986 14.334 0.613  26.875 90.988 4.40E-02

BKK December dataset 4.998 30.889 5.559 4.998 0949  4.837 72.022 4.70E-02

Wuhan dataset 13.814 2609.748 51.086 0.679 0999 74.127 95.883 8.10E-04

ANFIS-GP BKK March dataset 2.412 25.269 5.027 0.279 0.993  41.591 92.021 4.20E-02
BKK April dataset 1.044 4.65 2.156 0.224 0.999  42.091 91.692 4.13E-01

BKK December dataset 0.039 0.012 0.112 0.671 0999 7919 94.528 4.07E-02

6) NASH-SUTCLIFFE MODEL EFFICIENCY INDEX (ny_s)

To quantify model fitness and level of deviation, the Nash-
Sutcliffe model efficiency is defined as follows, with index
value from —oo to 1:

>N (0 — OF )?
YN (0. — Of ))?

v-s =1—[ 1% 100 (28)

IV. RESULTS AND ANALYSIS

In this section, an adaptive neuro-fuzzy inference system is
initialized using Sugeno-FIS with grid partition algorithms
to evaluate the data set overfitting from conventional ANFIS
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and to demonstrate its applicability in predicting climatic
impacts on epidemic diseases such as the COVID-19 virus.
This model is developed using the Matlab R2020a platform
and the climatic factors were carefully chosen using Pearson’s
correlation coefficient test, five independent input sets were
chosen as the model inputs whereas the number of confirmed
cases of COVID-19 from China and the Kingdom of Thailand
are used independently as the model’s output. Sugeno-FIS
using the linear parameter of the Gaussian membership func-
tion demonstrates a good fit for our proposed algorithm. Our
algorithm is numerically validated on the COVID-19 data set,
which indicates that nonlinear data with five input variables
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GP is highly dependent upon its learning parameters: C rep-
resents control parameters to determine the shape of the MF,
and o represents the standard deviation of differences. Our
approach is divided into calibration and verification phases.

A. ANFIS CALIBRATION PHASE

Considering Figures 7a-7d demonstrates performance of
the models during data set calibration, as the pre-
dicted values are nearly the same as the measured
values. For the statistical significance of the results,
equations (21-26) are used to evaluate the generaliza-
tion capability of our algorithm to known data, details
in Table 6. The ANFIS-FCM algorithm demonstrates a good
performance with the best average coefficient of determi-
nation of 99.7%, and achieved good AICc with low errors
than the ANFIS-GA and ANFIS-PSO algorithms for the five
inputs combinations. However, it outperformed ANFIS-SC
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FIGURE 8. Generalization results on different prediction algorithms and measured data.

during BKK April data set calibration. The ANFIS-SC
algorithm demonstrates a good performance with the best
average coefficient of determination of 99.8%, and achieved
good AICc with tolerable errors than the ANFIS-FCM,
ANFIS-GA and ANFIS-PSO algorithms, except at BKK
April data calibration where FCM shows superiority. How-
ever, it outperformed ANFIS-SC during BKK April data set
calibration. ANFIS-PSO achieved an average coefficient of
determination and good AICc values. However, ANFIS-GA
achieved higher errors than all other evaluated methods, with
a low coefficient of determination of 73% and achieved low
AlCc. Averaging the AICc and coefficient of determina-
tion accuracy metrics over the data set of considered cities,
we note that ANFIS-GP achieved the best performances
of 99.83%. The correlation of ANFIS-FCM, ANFIS-SC
and ANFIS-GP algorithms are almost similar. However,
the ANFIS-SC achieved the best AICc than the other algo-
rithms. Moreover, quantitative and qualitative evaluations
of the considered algorithms are presented in Table 6 and
Figure 7. For brevity, we display in Figure 5 the performance
of ANFIS-GP during data set calibration.

VOLUME 9, 2021

B. ANFIS VERIFICATION PHASE

Considering Table 7, provides quantitative evaluations of the
proposed algorithms in predicting unseen data. The obtained
values demonstrate good representations of observed data.
In accordance, 20% (21 data points) of the data is randomly
reserved for the verification. As indicated in Figure 21,
where the algorithms during verification stably predicted
the measured data. Therefore, it can be observed that the
five algorithms have generalization capability to estimate
ANFIS parameters, as this resulted in handles nonlinear and
ill-mapping unions. Averaging the AICc and coefficient of
determination accuracy metrics over the data set of consid-
ered cities, we note that, ANFIS-GP achieved best perfor-
mances of RZ = 99.7%. The correlation of ANFIS-FCM,
ANFIS-SC and ANFIS-GP algorithms are almost similar.
However, the ANFIS-SC achieved the best AICc accuracy
than all other algorithms. However, ANFIS-GA achieved
higher errors than all other evaluated methods, with a low
coefficient of determination of 73% and achieved low AICc.
For brevity, Figures 8 plots only the results of the best
method. As quantitatively shows in Table 7, it is clear that the
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TABLE 8. Optimal parameters combination for the considered models during dataset calibration.

Models Source of Data Set MAD MSE RMSE MAE R? AlCc nn—s(%) SI Linear parameters

Wauhan dataset 7.36E-04  1.32E-06 0.0012 7.37E-04 1 -460.522 99.195 448E-07 349 3156

MI [1-2-3] BKK March dataset 26.133 1435 37.881 26.133 0.398 173.469 99.346 1.30E-03 0 188
BKK April dataset 0.567 2.817 1.678 0.567 0.998 -8.6 99.739 3.60E-04 13 120

BKK December dataset  1.86E-06 ~ 7.18E-12  2.68E-06  1.96E-06 1 -270.009 97.568 9.74E-06 10 21
Wauhan dataset 194.698 80140 0.999 670.352  0.999 74.127 93.882 0.0081 349 3156

M2 [1-2-4] BKK March dataset 1.133 12.607 3.551 1.133  0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 4.625 114.313 10.692 4.625  0.895 87.719 99.622 0.001 13 120

BKK December dataset  1.83E-06  4.30E-12  2.07E-06  1.75E-06 1 -189.965 95.246  8.57E-06 10 21
‘Wuhan dataset 2.00E-03  1.14E-05 0.003 2.00E-03 1 -322.149 99.412 7.68E-07 349 3156

M3 [1-2-5] BKK March dataset 6.88 302.013 17.379 6.88 0.873 106.111 99.749 8.87E-04 0 188
BKK April dataset 0.75 3.542 1.882 0.75 0.997 -6.056 99.59 4.76E-04 13 120

BKK December dataset ~ 2.74E-06  1.22E-11  3.49E-06  2.75E-06 1 -182.681 95.513 1.11E-05 10 21
Wauhan dataset 6.10E-04  7.13E-07 8.44E-04  5.79E-04 1 -391.52 99.53 3.84E-07 349 3156

M4 [1-3-4] BKK March dataset 1.133 12.607 3.551 1.133 0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 4.625 114.313 10.692 4.625 0.899 80.802 99.622 1.00E-03 13 120

BKK December dataset ~ 7.02E-07  9.54E-13  9.77E-07  8.12E-07  0.837 -200.51 95.975 5.88E-06 10 21
‘Wuhan dataset 1.90E-04 7545 86.862 1.90E-04 1 -431.479 99.273 2.12E-07 349 3156

MS5 [1-3-5] BKK March dataset 6.88 302.013 17.379 6.88 0.873 106.111 99.749 8.87E-04 0 188
BKK April dataset 0.75 3.542 1.882 0.75 0.997 -4.265 99.59 4.76E-04 13 120

BKK December dataset ~ 1.31E-06 ~ 3.53E-12  1.88E-06  1.49E-06 1 -191.358 96.952 8.16E-06 10 21
‘Wuhan dataset 0.005 8.51E-05 0.009 0.005 1 -259.529 99.689 1.27E-06 349 3156

M6 [1-4-5] BKK March dataset 1.26 12.79 3.576 1.26 0.994 27.066 99.673 4.02E-04 0 188
BKK April dataset 3917 83.208 9.122 3917 0.923 71.497 99.627 1.00E-03 13 120

BKK December dataset ~ 3.20E-06 ~ 2.10E-11  4.59E-06  3.20E-06 1 -178.851 97.028 1.28E-05 10 21
Wauhan dataset 0.002 9.38E-06 0.003 0.002 1 -312.468 99.683 7.31E-07 349 3156

M7 [2-3-4] BKK March dataset 1.133 12.607 3.551 1.133 0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 4.625 114.313 10.692 4.625 0.895 79.119 99.622 1.10E-03 13 120

BKK December dataset ~ 5.61E-07  4.70E-13  6.86E-07  5.61E-07 1 -205.457 95.859 4.93E-06 10 21
‘Wuhan dataset 4.60E-04  5.90E-07 7.68E-04  4.65E-04 1 -378.854 99.568 3.66E-07 349 3156

MS [2-3-5] BKK March dataset 6.88 302.013 17.379 6.88 0.873 106.111 99.749 8.87E-04 0 188
BKK April dataset 0.75 3.542 1.882 0.75 0.997 -4.265 99.59 4.76E-04 13 120

BKK December dataset ~ 4.32E-06  3.66E-05  6.05E-06  4.32E-06 1 -174.975 97.045 1.46E-05 10 21
Wauhan dataset 0.023 0.003 0.052 0.023 1 -176.618 99.698 3.01E-06 349 3156

M9 [2-4-5] BKK March dataset 6.693 171.317 13.089 6.693 0.928 91.937 99.38 7.70E-04 0 188
BKK April dataset 3.167 71.292 8.443 3.167 0.934 67.787 99.634 1.00E-03 13 120

BKK December dataset ~ 4.32E-06  3.66E-05  6.05E-06  4.32E-06 1 -174.975 97.045 1.46E-05 10 21
Wauhan dataset 0.004 3.31E-05 0.006 0.004 1 -282.229 99.384 1.00E-06 349 3156

MI10 [3-4-5] BKK March dataset 1.453 13.887 3.727 1.453 0.994 29.123 99.645 4.11E-04 0 188
BKK April dataset 3.069 39.382 6.276 3.069 0.964 53.544 99.546 8.70E-04 13 120

BKK December dataset ~ 3.04E-06  1.34E-11  3.66E-06  3.04E-06 1 -182.949 96.179 1.30E-05 10 21
‘Wuhan dataset 7.73E-04  8.33E-09 9.13E-05 7.22E-05 1 -481.099 98.951 1.26E-07 349 3156

M1 [1-2-3-4] BKK March dataset 6.88 302.0133 17.379 6.88 0.873 106.111 99.749 8.87E-04 0 188
BKK April dataset 0.857 4.048 2.012 0.857 0.996 -4.265 99.465 5.63E-04 13 120

BKK December dataset ~ 7.09E-06  6.37E-11  7.98E-06  7.01E-06 1 -172.032 93.724 1.92E-05 10 21
Wauhan dataset 2.58E-04  1.09E-07 3.30E-04 2.65E-04 1 -419.459 99.293 2.40E-07 349 3156

MI2 [1-2-3-5] BKK March dataset 1.133 12.607 3.551 1.133 0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 4.625 114.313 10.692 4.625 0.895 79.119 99.622 1.00E-03 13 120

BKK December dataset ~ 3.66E-06  3.42E-11  5.85E-06  4.60E-06 1 -176.389 95.858 1.65E-05 10 21
‘Wuhan dataset 290E-04 1.31E-07 3.62E-04 2.77E-04 1 -414.979 99.262 2.51E-07 349 3156

MI3 [1-3-4-5] BKK March dataset 1.133 12.607 3.551 1.133 0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 0.708 3.521 1.876 0.708 0.997 -4.407 99.593 4.76E-04 13 120

BKK December dataset ~ 5.46E-06  4.60E-11  6.78E-06  5.69E-06 1 -174.318 94.45 1.77E-05 10 21
‘Wuhan dataset 2.06E-04 9.47E-08 3.08E-04 2.21E-04 1 -422.751 99.551 3.32E-07 349 3156

M14 [2-3-4-5] BKK March dataset 1.133 12.607 3.551 1.133 0.995 26.705 99.677 4.01E-04 0 188
BKK April dataset 0.708 3.521 1.876 0.708 0.997 -4.407 99.593 4.76E-04 13 120

BKK December dataset ~ 1.12E-05  1.57E-10  1.25E-05  1.11E-05 1 -165.702 95.591 2.41E-05 10 21
Wauhan dataset 0.002 0 0.001 0.268 1 -476.948 99.409  3.72E-07 349 3156

MI5 [1-2-3-4-5] BKK March dataset 1.133 12.607 3.551 0.268  0.995 16.539 99.677  4.01E-04 0 188
BKK April dataset 0.36 2.062 1.436 0.28  0.998 -127.091 99.593  4.76E-04 13 120

BKK December dataset 0 0 0 1 0999 -155917 9.45E+01  3.73E-05 10 21

proposed ANFIS Sugeno-FIS + Grid partition algorithm has achieved the best accuracy for five out of eight metrics over
generalization capability to nonlinear and ill-mapping unions the four considered cities/locations, which is consistent with
of COVID-19 data set according to climate variations, and our targets.
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TABLE 9. Optimal parameters combination for the considered models during dataset verification.

Models Source of Data Set MAD MSE RMSE MAE R? AlCc  nn_g5(%) SI
Wauhan dataset 2.95E+02  9.01E+03 0.0012 8.70E+02 1 75.779 93.883 8.10E-03
M1 [1-2-3] BKK March dataset 225.686 1623 1274 1238 0.398 79.413 92.021 4.20E-02
BKK April dataset 240.03 1917 1381 13500 0.659  80.306 91.692 4.13E-01
BKK December dataset 1.12 2.5 1.581 0.7 1 3.285 98.438 5.00E-03
Wauhan dataset 294.698 90140  949.423 870.352 1 75779 93.882 0.0081
M2 [1-2-4] BKK March dataset 225.686 1622 40.274 123.8 0995 79.301 92.021 0.042
BKK April dataset 240.032 19170 138 1350 0.895  80.306 91.692 0.413
BKK December dataset 7.5 112.499 10.607 2.75E-06 1 9.857 75 0.074
Wauhan dataset 2.76E+02  7.55E+03 86.862 7.88E+02 1 74.711 94.557 8.00E-03
M3 [1-2-5] BKK March dataset 14.296 1304 36.111 112.889 0.893 50.364 89.321 1.25E-02
BKK April dataset 16 8077 89.875 0.75 0.997 47.489 90.651 1.05E-01
BKK December dataset 238.532 1886 43.428 0.821 1 42.334 91.734 7.41E-01
Wauhan dataset 2.76E+02  7.55E+03 86.862 7.88E+02 1 74.711 94.557 7.80E-03
M4 [1-3-4] BKK March dataset 15.222 1437 37.908 119.909 0.995 50.949 88.227 1.28E-02
BKK April dataset 20.389 7318 85.545 81.833 0.899  46.897 91.529 1.03E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.667 7545 86.86 787.667 1 74.711 94.557 7.80E-03
M5 [1-3-5] BKK March dataset 14.296 1304 36.111 112.889 0.893  50.363 89.321 1.25E-02
- BKK April dataset 16 8077 89.872 87 0.997 47.489 90.651 1.05E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.657 7545 86.861 78.767 1 74.711 94.557 7.80E-03
M6 [1-4-5] BKK March dataset 15.25 1437 37.908 11.867 0.995 50.949 88.24 1.30E-02
BKK April dataset 16 8078 89.878 87 0.923 47.49 90.649 1.05E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.667 7545 86.862 787.667 1 74711 94.557 8.00E-03
M7 [2-3-4] BKK March dataset 15.222 1438 37.921 1.133 3.551  50.949 88.227 1.30E-02
BKK April dataset 20.389 7318 85.545 8.183 0.899  46.897 91.529 1.03E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.666 7545 86.862 78.767 1 74711 94.557 8.00E-03
MS [2-3-5] BKK March dataset 14.296 13042 114.199 112.889 0.873  50.364 89.321 1.30E-02
BKK April dataset 16 8078 89.878 87 0.997 47.489 90.651 1.05E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.657 7545 86.862 78.767 1 74.711 94.557 8.00E-03
MO [2-4-5] BKK March dataset 15.222 118.667 119.909 118.667 0.928 35722 88.227 1.30E-02
BKK April dataset 16 8078 89.878 87 0.997 47.489 90.651 1.05E-01
BKK December dataset 7.5 112.5 10.607 7.5 1 9.857 75 6.50E-02
Wauhan dataset 275.665 7545 86.862 78.767 1 74.111 94.557 8.00E-03
MI10 [3-4-5] BKK March dataset 15.222 1437 37.908 118.667 0.994  50.949 88.227 1.30E-02
BKK April dataset 16 7957 89.202 87 0.964  47.399 90.79 1.05E-01
BKK December dataset 1.333 51.667 7.188 7 1 8.738 78.738 3.60E-02
Wauhan dataset 275.657 7545 86.862 78.767 1 74.711 94.557 8.00E-03
M1 [1-2-3-4] BKK March dataset 14.296 1304 36.111 6.88 0.873  50.364 89.321 1.30E-02
BKK April dataset 27.79 5712 75.578 69.889 0.996 47.843 94.243 1.40E-02
BKK December dataset 1.333 51.667 7.188 7 1 8.738 78.738 3.60E-02
Wauhan dataset 275.667 7545 86.862 78.767 1 74711 94.557 8.00E-03
MI12 [1-2-3-5] BKK March dataset 15.222 1437 37.908 118.667 0.995 50.949 88.227 1.30E-02
BKK April dataset 20.389 7318 85.545 81.833 0.889  46.897 91.529 1.03E-01
BKK December dataset 1.333 51.667 7.188 7 1 8.738 78.738 3.60E-02
Wauhan dataset 275.667 7545 86.862 78.767 1 74.711 94.557 8.00E-03
MI3 [1-3-4-5] BKK March dataset 15.222 1437 37.908 118.667 0.995 50.949 88.227 1.30E-02
BKK April dataset 16 8077 89.872 87 0.997 47.489 90.651 1.05E-01
BKK December dataset 1.333 51.667 7.188 7 1 8.738 78.738 3.60E-02
Wauhan dataset 275.667 7545 86.862 78.767 1 74.711 94.557 8.00E-03
M14 [2-3-4-5] BKK March dataset 15.222 1437 37.908 118.667 0.995 50.949 88.227 1.30E-02
BKK April dataset 16 8077 89.872 87 0.997 47.489 90.651 1.05E-01
BKK December dataset 1.333 51.667 7.188 7 1 8.738 78.738 3.60E-02
Wauhan dataset 13.814  2609.748 51.086 0.679 0999 74.127 95.883 0.00081
MIS [1-2-3-4-5] BKK March dataset 2412 25.269 5.027 0.279  0.993 41.591 92.021 0.042
BKK April dataset 1.044 4.65 2.156 0.224 0999 42.091 91.692 0.413
BKK December dataset 0.039 0.012 0.112 0.671  0.996 7919 94.528 0.0407
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FIGURE 9. Correlations Between Trends of Confirmed Cases of
COVID-19 with Climatic factors in Wuhan City.

C. PERFORMANCE COMPARISON OF DIFFERENT ANFIS
OPTIMIZATION ALGORITHMS

In this section, we present experimental results of our pro-
posed algorithm and give a comparison of the proposed model
with other states of the art algorithms quantitatively and
qualitatively. In Figures 8(a) Wuhan data set is validated
according to five ANFIS parameters estimation algorithms,
in Figure 8(b) Bangkok data set for the month of march
is validated according to five states of the art algorithms,
in Figure 8(c) Bangkok data set for April is validated accord-
ing to five states of the art algorithms, and in Figure 8(d)
Bangkok data set for the first ten days of December is
validated according to five state of the art algorithms,
better generalization results of GP can be observed.
In Figures 8(a)-(d), data set generalization of GP is more

55404

DAILY CONFIRMED CASES OF COVID-19
VERSUS WIND SPEED AT WUHAN FROM
JAN. TO FEB. 2020

3500
3000
2500
2000
1500

1000 || |
A RRARIRRALARRARRAARREN

12345678 9101112131415161718192021222324252627282930

Wind SpZed Em/h

Number of Confirmed cases
@

mm— \Vind Speed (Km/h) ~ =@=No. of Confirmed cases

(a) Fluctuations of daily confirmed cases of
COVID-19 according to wind speed

DAILY CONFIRMED CASES OF COVID-19
VERSUS REL. HUMIDITY AT WUHAN FROM

@
[ —_
2 JAN. TO FEB. 2020 S
b >
3 3500 1005
£ 3000 % =
& 2500 3
S

8 2000 0y
“5 1500 w5
&5 1000 o}
8 20 @
£ 500

ER 0

12345678 9101112131415161718192021222324252627282930

m— Rel. Humidity (%) ~ =®=No. of Confirmed cases

(b) Fluctuations of daily confirmed cases of
COVID-19 according to Relative Humidity

DAILY CONFIRMED CASES OF COVID-19
VERSUS AVG. TEMP. AT WUHAN FROM
JAN. TO FEB. 2020

Avg. Temperature (oC)

12345678 9101112131415161718192021222324252627282930

Number of Confirmed cases
151
8
8

o

mmmm Avg. Temp. (0C)  ==@=No. of Confirmed cases

(c) Fluctuations of daily confirmed cases of
COVID-19 according to Average Temperature

FIGURE 10. Correlations Between Trends of Confirmed Cases of
COVID-19 with Climatic factors in Wuhan City.

representative to the measured data when compared to
FCM, PSO, SC, and GA, with minimal overfitting, however,
GP remain superior for the considered data set. Furthermore,
SC and FCM are flexible during data set generalization to see
section D for details.

D. SENSITIVITY ANALYSIS

Sensitivity analysis points out the effect of each combined
input variables according to the model output variables. The
reason is to obtain climate parameters capable of changing
the model output variables (number of confirmed cases of
COVID-19), to an extent that spread of COVID-19 cluster
cases changes from its actual cluster. Figure 20 illustrates that
ANFIS with GP parameter estimation algorithm is demon-
strated as a superior technique, thus it is chosen for the
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FIGURE 11. Correlation Between Trends of Confirmed Cases of
COVID-19 with Climatic factors around Bangkok on March.

sensitivity analysis. For this, each input climate parameter
was included once per each combination, and the variations
in the number of confirmed cases were noted according to
the ANFIS-GP algorithm model. The parameter inputs com-
binations of three, four and five were taken to notice corre-
lational variability and its related influence on the number of
confirmed cases as depicted in Figure 6. However, the result-
ing predicted confirmed cases of COVID-19 were compared
to the reported cases from the DDC office. Figures 6 show
the model combinations and variation effect of various input
parameters of each input on the number of confirmed cases of
COVID-19, concerning five monitoring climate factors. It is
clear that the maximum temperature, minimum temperature
and the wind speed are the most effective parameters, and rel-
ative humidity and average temperature are the least effective
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FIGURE 12. Correlations Between Trends of Confirmed Cases of
COVID-19 with Climatic factors on April.

parameters in predicting the number of confirmed cases of
the COVID-19 virus.

In predicting the number of confirmed cases of COVID-19
according to five climate factors using the ANFIS-GP algo-
rithm, the influence of all stated parameters in equation (1)
is investigated. It is shown in Figure 7 that by removing
the Relative humidity (H,), and Wind speed (W) (model 1),
the prediction accuracy decreased compared to model 15,
so the AICc error is increased by (AICc = 1%, 38%, 39%).
This shows that relative humidity and wind speed have a
significant effect on the cluster of COVID-19 cases so that
the spreading rate is increasing, as a result, the number of
infected persons will be increased. In model 2, the absence
of the average temperature and wind speed of the cities in
consideration slightly reduced the accuracy of the model as
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COVID-19 with Climatic factors around Bangkok on December.

compared to model 1 but has serious deviations if compare
to model 15. In model 3, average temperature, and rela-
tive humidity are removed which slightly improves model
accuracy around 30% especially for the data sets around
March and April. However, in Bangkok, the model accuracy
decreased to over 30% due to relative humidity serious effect
on the virus spread. In model 4, we considered maximum
temperature, average temperature and relative humidity, this
shows that in Wuhan city wind speed and relative humidity
has the same influence on the virus spread, as lack of wind
speed did not change the model behaviour. Although in the
remaining cities during March, April and December absence
of wind speed improves the model accuracy by about 1%
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FIGURE 14. Correlations Between Trends of Confirmed Cases of
COVID-19 with Climatic factors in Phuket on March.

and 30% respectively, this indicates that wind speed at this
city around this period has an insignificant effect on the
virus spread, therefore the number of cases may not rise.
In models 6 to models 14 absence of one parameter may not
significantly improve or decrease the accuracy of the models
in Wuhan city, though the model suffers a partial complex
structure. Furthermore, in Table 8, it can be seen that mod-
els 6-14 when verified using Bangkok data sets for March,
April and December, absence of the minimum and average
temperature increase models error for about 1 —5%. This sig-
nifies that minimum temperature has a significant influence
on the virus spread, as this result, even at about 22 — 29°C,
the COVID-19 virus can survive. In model 7, when the mini-
mum temperature variable is introduced, increased the model
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COVID-19 with Climatic factors in Phuket on April.

accuracy to about 2%, as resulted, it is predicted the number
of confirmed cases of COVID-19 in figures of 120 cases
at 29°C and 7 cases at 27°C. The absence of Maximum
temperature boosted the model’s error for about 5% and
absolute deviations by 5% due to its significant influence
on the rising number of COVID-19 cases. It shows that the
COVID-19 virus can survive at maximum temperatures of
about 38°C as the number of confirmed cases on those days
increased to 188 cases from the preceding day of 89 at about
37°C. In model 15, when all the five input parameters were
included, model performance was qualitatively and quantita-
tively improved. These results are given in Tables 8 and 9.
Furthermore, the five parameters’ model combination is best
as each parameter displayed influence in terms of accuracy,
flexibility, and generalization, Figure 20 displays.
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E. CORRELATIONS BETWEEN TRENDS OF CONFIRMED
CASES OF COVID-19 WITH CLIMATIC FACTORS

In this section, we give the trend behaviour of the consid-
ered input parameters with respect to the output parameters.
Figures 9-19 pictorially shows the actual relationship
between the number of confirmed cases of COVID-19 and
climatic factors (parameters) in other Thailand cities that
are not inclusively considered in our analysis. We consider
uniform climates between Bangkok, Samut Prakan and Non-
thaburi, as the three cities lie in the same climates zone. This
also happens due to the unavailability of weather information.
Parameters fluctuations exist among the relationship with
respect to output values, as can be viewed from the waveform
spikes of the data trends. A negative relationship exists due to
strict measures enforced by the two countries to avoid human
morbidity, however rising cold climates remain a vector to
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FIGURE 17. Correlations Between Trends of Confirmed Cases of
COVID-19 with Climatic factors in Yala on March.

spread the virus at most of the localities, as it positively raises
the number of confirmed cases.

V. DISCUSSION

In this section, ablation studies were conducted to justify our
estimation algorithm selection, hybrid optimization method,
data sets selection and tunable parameter options in the grid
partitioning algorithm. For each input parameter combina-
tion, fifteen different model sets were established. Different
input parameters were verified for each ANFIS-GP algo-
rithm and optimized parameters with good MAD, MSE,
RMSE, MAE, R?, AICc, NSE, and SI were demonstrated.
Tables 8 and 9 presents the ablation study performance, it is
observed that M15 indicates model 15 with (349, 3156),
(0, 188), (13, 120), and (10, 21) as the optimal parameters
for control parameter to determine the shape of the MFs
(c o) and standard deviation of differences, respectively.
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In 15 models sets, we evaluated five different input combina-
tions (maximum temperature, minimum temperature, average
temperature, relative humidity, and wind speed) as shown
by Figure 6 for the four respective locations. The verifi-
cation results of the best ANFIS-GP models are demon-
strated for the Model 15 combination. However, remaining
ANFIS-GP models one to fourteen give different predictions
for different data sets combinations. According to the average
performance of the models, models comprised of input com-
binations from either one of the temperatures, and the input
combinations 4-5 perform better than the other models. The
input combinations of model 1 seem to be slightly worse
than the input combinations of models 2-15. It is clear that
the ANFIS-GP models give the worst results for model 1,
and 2 data set combinations. The reason behind this may
be the fact that in model 1 wind speed and humidity were
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absence, wind speed is responsible for the spread of pol-
lutants and contaminants in the air such as the COVID-19
virus. COVID-19 virus remains active in the air for many
hours, it is a clear indication that the virus spread has a
serious impact on wind conditions. Also, humidity variation
affects the survival of epidemic viruses and some models with
average performances were due to the absence of using two
temperature parameters combination as indicated in Table 9.
The best ANFIS-GP model was obtained for the M15 with
five input combinations. Tables 6 and 7 present calibration
and verification results of the data set using four different
states of the art methods for ANFIS parameter estimation.
We set different parameter values as indicated in Table 5.
To investigate the benefit of using clustering algorithms to
estimate ANFIS parameters, we performed calibration and
verification with multiple input combinations of Subtractive
clustering and Fuzzy C-means. We also observed the benefits
of tuning ANFIS using data set clustering as it achieved
good performance compared to conventional ANFIS. It is
clear that FCM minimizes output function before calculating
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new fuzzy clusters and a minimum of two clusters serve
each single data point, this enhances prediction accuracy.
However, it comprises a large number of parameters that
burden the network training. Likewise in SC, each data point
serves as a member of the cluster centre, which make it
possible to establish an equal number of fuzzy rules, thus
improve accurate predictions as indicated in Tables 6 and 7.
However, this method suffers a gambling problem while
selecting suitable values for the radius to estimate clusters’
number. Furthermore, ANFIS parameters were also estimated
using nature-inspired based optimization algorithms. Here we
tuned the parameters using GA, and PSO and observed that
adopting PSO with a large number of swarming particles
improve the model accuracy thereby immune to local min-
imum problems. GA search space of potential solutions to
trap the best to fit the problem. Both of these two approaches
are computationally costly. The performance of the men-
tioned algorithms is demonstrated in Tables 6-7, and Figure 7.
Figure 7 displays qualitative prediction results for the best
different input combinations of ANFIS-parameter estima-
tions. We note that using GP partition algorithm exponentially
increases fuzzy rules, combining axis parallel partition with
gradient descent hybrid optimization algorithm successfully
handles ANFIS internal parameters well. A large number
of generated rules and parameters up to 125 improved the
prediction accuracy for our small data set, see Table 5 for
details. Our proposed algorithm outperforms four states of the
art methods. ANFIS-GP models generally perform better than
the ANFIS-FCM, ANFIS-SC, ANFIS-PSO and ANFIS-GA
models in predicting the number of confirmed cases of
COVID-19 according to climate factors. Figure 8 shows the
plots of evaluation results of the best GP, FCM, SC, GA and
PSO models for the two countries. According to the average
performance of the models in Table 6-7, the ANFIS-GP
models have similar accuracy with SC and FCM for some
input combinations.

Comparison of Tables 6-7 clearly shows that ANFIS-GP,
ANFIS-SC and ANFIS-FCM models are successful in Thai-
land Cities than in the Wuhan Cities.

The error plot shows that the calibration error settles at
about the 51st epoch point. However, the plot in Figure 20
shows that the smallest value of the verification data error
occurs at the 6th epoch. After this point, it increases slightly
even as ANFIS continues to minimize the error against the
calibration data to the 24th epoch, where it drops to the
27th epoch and continues to move smoothly until it reaches
the 66th epoch and rises rapidly to the maximum error
of 2763 error value, then drops to 68th epoch to 300th
epoch. Therefore settled at specified error tolerance, the plot
also indicates the ability of the model to generalize the test
data.

ANFIS model remains a good predicting tool for non-
linear and complex data, however, optimization techniques
to tune FIS parameters make it a robust tool in predicting
complex relationship among epidemic diseases according to
climatic factors. It is demonstrated that the algorithm needs
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to be tuned according to the environment or parameters of
deployment. This is in conformance with our proposition
and suggestion in [13]. The result shows acceptance of the
generalization capability of grid partition in FIS procedures.
Low wind speed, humidity and temperature increase the
number of cases at most of the cities, but only low turn out is
perceived in some instances and we believe it happens due
to lockdown restrictions. Our findings are in conformance
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with the previous works. However, we believe this method
is faster and accurate since no handcraft features were used,
and the accuracy of our evaluations is better than the previous
works. Existing work [27], achieved an overall classification
accuracy of 95.7% and 80% for the trained and tested data,
respectively, in contrast, our proposed method achieved an
overall accuracy of 99% and 96% for calibration and verifi-
cation, respectively.
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VI. CONCLUSION

The number of cases of COVID-19 asymptomatic and symp-
tomatic patient is on the rise due to the environmental cli-
mate’s effects, as result authorities are struggling to find
suitable ways to handle their situations since climatic factors
are a natural phenomenon very difficult to handle by a human.
Al techniques are robust to predict the climatic effect on
epidemic diseases. Our obtained results show that relative
humidity, average wind speed and average daily temperature
affect the number of confirmed cases of COVID-19. Low
relative humidity and wind speed around study areas nega-
tively impacted the epidemic spread while at some timestamp
shows a positive relationship, and the high value of average
daily temperature negatively impacted the confirmed cases.
These findings demonstrated that relationships between cli-
mate conditions and epidemic diseases are catastrophically
biased (normalcy bias).

This model can serve as proactive measures for authori-
ties to know when too tight or slack down restriction poli-
cies. Future research will incorporate the authorities’ policies
and look for more data to design a real-time Al model for
Thailand.
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