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ABSTRACT There is a growing demand for explainability in complex artificial intelligence solutions to
support critical applications’ decision-making processes. Barriers to explainable processes include black-box
classifiers, such as deep learning, and noisy datasets. Affect recognition involving neural networks attempts
to map complex human emotions onto Arousal and Valence scales based on physiological signal measure-
ments. Datasets collected for this purpose are inherently noisy and may contain outliers and imbalanced
classes, hindering accurate classification. In our approach, these issues are addressed using Fuzzy ART (FA)
for clustering data samples into more condensed memory templates, introducing stochastic resonant noise
to amplify signal-to-noise ratio, and SMOTE sampling to generate synthetic minority samples. A genetic
algorithm is developed for FA optimization and ensemble model selection. Clusters obtained from the
resulting ensembles are then used to train an ensemble of boosted decision trees for classification and to
visualize the decision-making processes. Individual features such as heart rate variability and EEG band
power, as well as feature interactions between pairs of features, may contain critical information as human
affect indicators. Contributions of individual features and feature interactions toward describing human
affect are quantified and interpreted using Shapley additive explanation values. Three established affect
recognition datasets were considered for mapping physiological features onto a binary classification of
Low/High Arousal and Positive/Negative Valence. Our framework was able to achieve good generalization
for both classification tasks as well as provide detailed insights into the contributions of physiological
features towards describing Arousal and Valence affects.

INDEX TERMS Affective computing, decision support systems, genetic algorithms, hybrid intelligent
systems, knowledge-based systems, pattern clustering, regression analysis.

I. INTRODUCTION

A. MOTIVATION

With increasingly complex algorithms being used in every-
day applications, it is difficult for humans, even expert
users, to keep track of machine reasoning. Artificial intelli-
gence (Al) in particular has achieved superhuman capabilities
in some highly complex domains such as strategy games
[1], medical diagnosis [2], and character recognition [3].
As similar systems are used in critical domains that would
influence human lives and well-being, there is a need for
humans to be able to understand machine reasoning on
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how such decisions are achieved [4]. Machine-generated
and human-interpretable explanations that are generated
alongside decisions would help to gain users’ trust [5] and
support post-hoc debugging and correction when the sys-
tem produces a harmful decision. There is a growing need
for understandable explanations from black-box methods
such as convolutional networks and effective deep learning
algorithms in complex domains. Therefore, explainability
requirements would have to be balanced against a model’s
performance [6], [7].

B. PROBLEM STATEMENT
In domains where knowledge is based on inexact data, gener-
ating definitive and well-defined explanations for decisions
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is a problematic proposition [8]. For example, physiologi-
cal signals are commonly used for affect recognition due
to higher data granularity and are less affected by cultural
norms [9]. Several corpora of physiological signals were
recorded by volunteers who were shown emotional stimuli
to provoke specific affective states, for example, DEAP [10],
DREAMER [11], and AMIGOS [12]. The datasets were
made available for researchers to conduct affect recognition
experiments, typically by performing signal processing and
analysis followed by classification using neural networks.

A common challenge in emotion recognition research is
trying to model the affect ground truth that has to date been
done by simplifying human emotions using dimensionality
descriptors such as Arousal and Valence (AroVal) scales in
Russell’s circumplex model [13]. Several factors have to be
considered when selecting an emotion model to classify or
quantify emotions during data collection. A simple model
such as the circumplex reduces the complexity of emotion
modeling into AroVal metrics. At the same time, emotional
granularity is low, resulting in highly similar but distinct
emotions being grouped in the same cluster [14]. On the
other hand, using more specific emotion descriptors may
encounter significant inter-individual differences, and spe-
cific emotion is more challenging to induce under laboratory
conditions [15].

Other challenges include dealing with inter-person phys-
iological differences when capturing sensory information
and the lack of a universal methodology for processing the
recorded signals to extract relevant features [16]. Trying and
testing every known feature extraction runs the risk of high
dimensionality. The combination of factors means that the
datasets may not fully represent the participants’ affective
information, resulting in less-than-perfect affect recognition
rates.

In addition, datasets gathered under laboratory conditions
often have a limited number of data points due to time and
resource constraints. A phenomenon known as class imbal-
ance may occur when a dataset has an uneven distribution
of labeled samples; i.e., samples belonging to the minority
class are observed significantly less than majority samples.
Classifiers trained with an imbalanced dataset may produce
poor generalization performance with regards to the minority
group.

Dataset pre-processing includes identifying salient and
outlier data samples and reducing the dataset’s dimension-
ality for faster processing. Clustering creates a topology
that places highly similar objects closer to each other while
dissimilar objects are placed further apart. Data redun-
dancy is reduced by using a single representative for multi-
ple highly similar samples. Self-organizing neural networks
such as ARTs have inherent clustering capability. Instead of
pre-defining a set number of clusters, self-organized clus-
ters were allowed to form as a byproduct of the network’s
hyper-parameter settings. Depending on the hyper-parameter
settings, however, the resulting topology of clusters may
vary. The vigilance parameter in ART-based networks, for
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example, controls the clusters’ quantity and granularity.
Hyper-parameter tuning is usually necessary to achieve opti-
mal clustering and varies between datasets.

C. CONTRIBUTION

This study proposes a holistic framework for generating
explainable and usable information from physiological sig-
nals in the context of recognizing human affect. The frame-
work includes pre-processing techniques to improve the
dataset’s quality before training a decision tree (DT) ensem-
ble model for generating explanations. Using Shapley addi-
tive explanation values, individual contributions of samples
and features can be observed to fine-tune the classification
model by excluding poor-quality samples and features.

This work is organized as follows: the state-of-the-art
approaches and fundamentals for explainable affect recog-
nition are summarized in Section 2, Section 3 proposes
a new methodology for explainable affect recognition,
Section 4 outlines the conducted experiments and the results
for different affect recognition model settings, and finally,
Section 5 concludes our research.

Il. EXPLAINABLE AFFECT RECOGNITION

Studies of affect or emotional states typically involve record-
ing and statistical analysis of physiological signals. Anno-
tations of affective states provide ground truth information,
allowing researchers to locate specific affect indicators from
features extracted from the signals. Datasets such as DEAP,
DREAMER, and AMIGOS were obtained by recording phys-
iological signals of volunteers who were shown multimedia
stimuli to provoke affective responses. Annotations were then
provided post-hoc by the volunteers using the AroVal scales.
Affect recognition studies use a variety of approaches to
correlate the physiological signals to the annotated affect
information.

There have been several frameworks for affect recogni-
tion in the literature. Most studies focused on developing
novel feature computation methods [17]-[19] or deep learn-
ing models for feature generation [20]-[22]. Convolutional
methods are popular as there is no need for prior signal
processing to generate highly relevant features. However,
these are black-box methods, and hamper the generation of an
explainable relationship between the measured physiological
signals and affect. Common pre-processing methods were
used including baseline normalization and feature selection
using statistical methods [10]-[12], or signal filtering [23].

There are a few studies implementing explainability tech-
niques for affect recognition. Most studies stopped at train-
ing a regression model such as DT to provide a visualized
example [24], while little to no post-hoc analysis of the model
was provided. Lin et al. [25] trained multiple convolutional
models, each dedicated to a single physiological modality.
Explainable information was then provided by observing
each model’s predictive output to determine which physi-
ological modality is still important. This method, however,
does not provide a detailed explanation of exactly which
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feature is essential. The development of efficient computa-
tion of Shapley additive explanation (SHAP) values [26] has
introduced a powerful tool for generating useful explanations.
Yang et al. [27] used SHAP to provide an extensive anal-
ysis of the relationship between EEG features to different
annotation techniques for affect recognition. Shapley values
can also be used in place of feature selection metrics [28]
to determine the importance of individual features and data
samples. So far, few studies compare cross-dataset findings
using high-level explanations. Sarkar ef al. [29] utilized
a convolutional network-based method for self-supervised
ECG learning for emotion recognition from multiple datasets
but did not elaborate on the interactions between the fea-
tures and affect. Yang et al. [27] focused on the AMIGOS
dataset.

Before the classification step, the signals require sig-
nificant pre-processing for dimensionality reduction and to
extract information-dense features for computation. One
issue in affect recognition is that a common affective stim-
ulus or descriptor may induce different subjective emotional
experiences across individuals [30]. In addition to using
self-annotation to mitigate this effect from the subjective
annotation perspective, self-organizing mapping (SOM) of
the extracted physiological features can be useful for group-
ing similar affective responses and reduce inter-subject vari-
ance [31]. SOMs have been used as a pre-processing method
for exploratory analysis of physiological signals in prepara-
tion for affect recognition in numerous studies [32]-[34].

Certain neural network models possess self-organizing
qualities as a side-effect of the learning process. Adaptive
Resonance Theory (ART)-based neuro-fuzzy networks [35]
are particularly useful for abstract classification from noisy
physiological data [36], [37], or for use as a clustering tech-
nique [38]. FAs utilize fuzzy logic for enhanced general-
ization but is statistically inconsistent due to training order
dependency. Methods proposed for optimizing the perfor-
mance of FAs typically include tuning the hyper-parameters
such as vigilance and learning rate and determining the given
dataset’s optimum training order [39]-[41].

Physiological signals are inherently noisy, whether due
to inter-subject variances and data collection methodol-
ogy or for categorizing abstract concepts with inconsis-
tent annotations. Feature extraction and selection may not
represent fully the target domain (i.e., affect classes). The
signal-to-noise ratio may be increased using the stochas-
tic resonance phenomenon [42]. This technique has been
used to enhance physiological signals for affect recognition
[43]-[45]. Simulations with various clustering algorithms
obtained a significant improvement in convergence speed
when an amplitude-tuned noise signal was added to the
clustered signal [46]. Tuning the noise signal is required to
maximize signal gain as resonant noise varies across different
datasets.

For self-annotation methods, class imbalance may occur
when the annotations are unevenly distributed across the
entire scale. For the DEAP and DREAMER datasets, class
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imbalance occurred when AroVal scores were divided into
Low and High classes by setting the threshold at the cen-
ter of the scale. The synthetic minority oversampling tech-
nique (SMOTE) [47] addresses this problem by generating
new data points from minority classes, and has been used
in applications with sparse [48] and noisy [49] samples
and multimodal physiological signals for affect classification
[50]-[52]. In some cases [50], [51], models trained with
SMOTE-generated data did not perform well due to the
so-called ““cold start”” problem. When the minority samples’
population was low and the data dimensionality was high,
adding synthetic samples to the dataset had a detrimental
effect on model accuracy [53].

Tuning the hyper-parameters of computational techniques
is often required to obtain better results than obtained
by common or default settings. When a large number of
hyper-parameters is involved along with an uncertain or com-
plex fitness evaluation, the solution space may be highly
complex and it may be difficult to determine the optimum
combination(s) of settings with a cursory glance. Genetic
algorithms (GAs) are effective due to their population-based
approach to examine multiple points in solution space simul-
taneously and a mutation operator to allow the algorithm to
move forward from local optima. GAs have been previously
used for FA optimization [39]-[41], improving the perfor-
mance of SMOTE [54], [55] and stochastic resonance [56],
[57], and for ensemble model selection [41], [58].

From the review of literature, implementing a framework
for generating explainable information for affect recognition
comes up with several challenges. Initially, feature extrac-
tion and pre-processing is a necessary step to reduce data
dimensionality for faster computation. Inter-subject vari-
ances, unreliable self-annotation, signal noise, and class
imbalance may negatively affect any classifier’s ability to
map the extracted features to the affect labels. And lastly,
explainable information was typically generated by training a
regression model with little-to-no post-hoc analysis to relate
affect to the measured physiological data.

lll. METHODOLOGY

Given an affect recognition dataset, data augmentation was
conducted using three techniques: stochastic resonant noise
was added to the extracted features to increase the signal-to-
noise ratio, SMOTE was performed to reduce class imbal-
ance, and self-organized clustering was then conducted by
training a FA classifier using the augmented dataset. The
FA was then tested with unmodified held-out data samples
and was evaluated based on the testing accuracy and the
complexity of the self-organized clusters.

An optimum combination of hyper-parameters for stochas-
tic resonance, SMOTE, and FA was required to generate a
good cluster, i.e., a cluster having the least complex topology
while yielding the best cross-validation testing performance.
GAs were used for population-based multi-objective opti-
mization. FA classifiers can be arranged in parallel in a clas-
sifier ensemble to outperform any single classifier. A second
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FIGURE 1. The model consists of several modules. Emotion recognition datasets were clustered using genetic-optimized ensembles of
Fuzzy ART classifiers. Hyper-rectangles extracted from the selected FAs were used for training an interpretable XGBoost decision tree
model. SHAP values were computed from the DT, and feature selection was conducted on the basis of those values before retraining the
DT with the reduced dataset. The final XGBoost DT was used for classifying testing data. Explainable information can be generated by
visualizing the tree model, the SHAP feature interactions and the SHAP feature scores.

GA was applied for selecting a subset of FAs to achieve
minimal topological complexity with the best ensemble gen-
eralization performance.

The best-performing ensemble is considered as having
learned the dynamics of the affect recognition dataset in the
form of a more compact representation, the hyper-rectangles
encoded in the component FA models in the ensemble.
Hyper-rectangles are n-dimensional shapes where n repre-
sents the number of features or attributes in the dataset.
Each shape embodies a unique learned category or template.
Grouping similar data samples under one hyper-rectangle
reduce redundancies and lessen the impact of noisy signals.
Outliers are identified from hyper-rectangles that are formed
from a minimal number of data samples.

The hyper-rectangles can then be extracted and assembled
into a pseudo-dataset, optimized to eliminate redundancies,
noise, and class imbalance in the previous steps. Explain-
able information was generated using the pseudo-dataset
to train an extreme gradient boosted (XGBoost) DT model
[59]. Shapley additive explanation (SHAP) values [26] were
then used for evaluating the XGBoost model, generating
SHAP scores for individual samples and features in the
pseudo-dataset. Significant features were considered as hav-
ing higher-than-average SHAP scores, indicating a high
contribution to the classification. Subsequently, feature selec-
tion was performed in terms of high SHAP scores. The
feature-selected pseudo-dataset was then used to train a final
XGBoost model.

This section details the individual techniques used in the
framework:

1) Stochastic resonance for signal-to-noise amplification.

2) Synthetic minority oversampling to reduce the imbal-

ance between minority and majority classes.

3) Fuzzy ART for self-organizing clustering.

4) Genetic algorithms for tuning the hyper-parameters of

the previous techniques and selecting multiple models
for a classifier ensemble.

61516

A. STOCHASTIC RESONANCE

Physiological signals are often noisy due to involuntary mus-
cle movement or inexact electrode placement. When using
signal filtering techniques such as band-pass, it is necessary
to know the signal’s approximate frequency range to be
amplified while filtering all other signals. Another approach
leverages the stochastic resonance phenomenon whereby the
signal-to-noise ratio can be improved using additive white
Gaussian noise (AWGN). The common frequencies in the
noisy signal and the added white noise signal resonate to
produce an amplified signal, which can then be isolated from
the other noisy signals that were not boosted to the same
degree.

Osoba et al. [46] demonstrated the benefits of addi-
tive noise in a variety of clustering applications, includ-
ing unsupervised competitive learning (UCL). Assuming a
UCL algorithm using a two-layer neural network topol-
ogy, d-dimensional input patterns x making up the first
layer and J competing neurons in the second layer. Sim-
ple distance matching is used to approximate competitive
neuron dynamics in a winner-take-all connective topology,
similar to ART-based networks. UCL node learning is per-
formed by shifting the winning node’s vector to become
more similar to an incoming pattern. During simulations,
an AWGN signal n ~ N(0, ,(¢)) was added to the
pattern vector x, producing the augmented training sam-
ple y = x + n. A scaled identity matrix was used for
the noise covariance matrix X (¢), with a standard devia-
tion 0 > 0 controlling the noise signal amplitude during
the learning process. The variance decreases following a
schedule:

2o (1) = (t20)l (1

Simulations for different datasets showed that the
optimum convergence time was achieved for different
values of o [46].
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B. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE
Class imbalance in a dataset occurs if each unique class
label is not equally represented, i.e., under-represented class
labels belong to minority classes and over-represented class
labels belong to majority classes. The predictive accuracy of
machine learning algorithms is significantly affected by data
imbalance, which can be addressed using data resampling
methods. Simple oversampling replicates minority samples
with replacement until they are equal to the total number of
samples in the majority classes, which, however, does not
significantly improve minority class recognition [60].

Another oversampling approach known as SMOTE [47]
creates synthetic examples of minority classes instead of
direct duplicates. Synthetic samples are generated as fol-
lows: one assumes a target minority sample and k nearest
neighbour minority samples selected for consideration, each
with feature length d. For each feature, the lower and upper
bounds are identified, and a random point is selected between
them. When repeated for the entire feature vector, the newly-
generated synthetic sample would effectively be located in
the region between the nearest neighbours’ extremes. This
approach ensures that the decision region of the minority
samples becomes wider, thus, more general.

Degrees of SMOTE were determined using the two param-
eters oversampling rate and number of nearest neighbors. The
oversampling rate determines how many synthetic samples
will be generated. For instance, setting a rate of 200% would
produce two synthetic samples for each minority sample.
A low value may not fully compensate imbalance in highly
imbalanced datasets, while a high value leads to the “cold-
start” problem. This problem occurs if the population of the
minority samples is low while the dimensionality of samples
is high. Generating many synthetic samples, in this case,
would negatively affect model accuracy [53]. The number of
nearest neighbours determines how many minority samples
will be used as references for generating synthetic minority
samples. A low neighbourhood value produces highly redun-
dant or duplicated synthetic samples, while a high neighbour-
hood value produces samples that are less representative of
the actual samples. Therefore, careful tuning of both param-
eters was required to achieve optimum model performance.

C. FUZZY ART CLUSTERING

With a dataset with an arbitrarily large number of obser-
vations, cluster analysis serves as a pre-processing step to
achieve two goals: identifying which observations are highly
similar and dissimilar to each other and suitable dimension-
ality reduction. Clustering methods can reduce a broad set
of observations into smaller representative samples to enable
faster and easier computation. In this study, Fuzzy ART was
selected as the clustering method for several advantages,
including its self-organizing and self-supervised incremental
training capability, which allows ART networks to overcome
the stability-plasticity dilemma.
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FA networks are regulated by the use of three parameters
determined before the training process.

1) The choice parameter « is used for selecting candidate
weight vectors based on their similarity to the input
vector to be trained.

2) The learning rate § represents the momentum where
the winning weight vector is adjusted in response to
the input. Fast learning is implemented by setting it
to a value close to 1, meaning the weights are highly
dynamic. However, this may result in significant catas-
trophic forgetting as older knowledge would be over-
written by newer information.

3) The vigilance threshold p sets the minimum match-
ing value to determine whether to create a new
hyper-rectangle in response to the input or to activate
and update a pre-existing one. Setting a high threshold
encourages the creation of more granular rectangles.

Given an M-dimensional input vector x;, complement cod-
ing was performed by rescaling x to [0, 1] and augmenting
the input with its complement:

x; =[x, 1 —x] 2

Fuzzy membership values were then computed between x;
and existing rectangles wj:

/
- [x; A wjl
=

3

a + |[wj

where the choice parameter o € [0.0, 1.0]. The fuzzy AND
operator A was given as:

(p A Q) = min(Pm, Qm) )
while the norm was defined as
Pl = Zp_pi )

If there were no pre-existing hyper-rectangles (i.e., at the
start of the training), then the next step was skipped, and
the input was immediately added as a new hyper-rectangle.
Hypothesis testing was then conducted in sequential order,
starting from the hyper-rectangle j with the highest member-
ship value Tj:

/
Bl , ©)
|xi|
where p € (0.0, 1.0] was the vigilance threshold. If Equa-
tion 6 was satisfied, the input vector was found to match with
the hyper-rectangle j and learning was performed:

Wi = (1= Bywi + BG Awf') ™)

with 8 € (0.0, 1.0] as learning rate.

Otherwise, if the hypothesis testing failed, the process was
repeated for the next best matching hyper-rectangle until all
hyper-rectangles were tested or no suitable matches were
found. If no match was found, xi’ was then added to the layer
as a new hyper-rectangle.
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While the FA was used primarily for unsupervised learn-
ing, each hyper-rectangle’s categorical information is fur-
ther needed. Thus, instead of using a mapping module for
classification a la ARTMAP, an associative matrix was used
to store and map the association between hyper-rectangles
and their respective labels. This method has been used in
similar self-organizing networks to map associations between
learned categories and their respective class labels while
not interfering with the unsupervised learning process [61].
Whenever a hyper-rectangle j was activated in response to
an input with a label /, the corresponding entry in the matrix
H(j, ) was incremented by a value equal to the fuzzy mem-
bership value:

AHG, 1) =T; ®)

Unlike ARTMAPs, labels were not taken into account
before learning to preserve the FA’s self-organizing quality.
In applications with high inter-subject variability, the super-
vised learning approach may produce many hyper-rectangles,
creating an overfitting problem. In contrast, the unsupervised
mapping approach mitigates the effect of abnormal subjective
affect annotations in favour of hyper-rectangle similarity.

When the hyper-rectangle j was activated in response to the
input, the label with the strongest association was selected as
the predicted label:

label = argmax H (j, [) ©)]
leL
Validating the effectiveness of the trained network was
performed using hold-out validation sets. Each sample in the
dataset was assigned to one fold. The samples in one fold
were designated as the hold-out, while the samples in all other
folds were used for training an FA network. The process was
repeated using a different fold as hold-out and training a new
FA network each time. Validation accuracy was then averaged
to obtain a generalization score.

D. HYPER-PARAMETER OPTIMIZATION USING GENETIC
ALGORITHMS
The incremental learning nature of the FA networks makes
them susceptible to ordering effects. Several approaches
reported either averaging classifiers with multiple arbitrary
training sequences [62] or used an optimization technique
such as GA to find the best sequence [40]. In addition,
hyper-parameter tuning is necessary to ensure that the net-
work can cluster the training data with minimal information
loss.

Several hyper-parameters were subject to optimization as
follows:

1) Sample importance score. Assuming a dataset with
N samples, sample importance was represented by a
string of values {si,..., sy}, where Er[l\]:lsn = 1.
The sequence in which samples were presented during
training was determined by ordering the sample impor-
tance scores in descending order. Training order affects
performance of FAs [40], [63].
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2) Sample subset selection. Represented by a single
floating point in the (0.0,1.0] range representing the
fraction of dataset samples to be selected for training
and testing. When combined with the sample impor-
tance score, samples were selected for training from the
most important to the least important. A subset value of
less than 1.0 will exclude the least important samples
and improve training time. Subset selection does not
affect the samples selected for hold-out testing.

3) Fuzzy ART hyper-parameters. The FA was initial-
ized for a given choice value, learning rate, and vig-
ilance threshold, represented by floating points in the
range (0.0,1.0].

4) Perturbation. A parameter in the range [0.0,1.0] con-
trols the stochastic noise’s maximum amplitude to be
introduced. A white noise signal was generated using
a Gaussian function and was added to samples before
training. Additive noise was neither accumulated nor
carried over when the same data sample was used for
training in other cross-validation sets or phenotypes.
Noise was further not added to samples designated for
hold-out testing.

5) SMOTE parameters. Two parameters govern the
behaviour of SMOTE for generating synthetic samples.
The oversampling ratio determines how many synthetic
samples will be generated for each minority sample
and is set to an integer in the [1,5] range. The near-
est neighbour parameter determines how many nearest
neighbouring minority samples are used as references
for generating synthetic samples and is set to an integer
in the [1,10] range. The hyper-parameter ranges were
selected based on the findings of Elreedy et al. [53].

The combination of hyper-parameters results in a
highly complex solution space with potentially multiple
Pareto-optimal solutions. Two target objectives were defined:
to achieve the maximum testing generalization performance
with the least complex clustering topology. Genetic algo-
rithms were used for hyper-parameter tuning as an extension
from our previous work [63].

Genetic algorithms is a population-based method for
hyper-parameter optimization. A candidate solution or phe-
notype represents a possible configuration for initializing a
FA classifier’s parameters and conducting training with a
specific sequence of data samples. The phenotype fitness was
evaluated using a fitness function such as the trained FA’s
hold-out classification accuracy. From an initial population
of randomized phenotypes, a GA incrementally traverses
the solution space by discarding low-fitness phenotypes and
using biologically-inspired genetic operators to generate new
phenotypes by combining genetic traits from the remaining
high-fitness survivors. Repeating the process over multiple
generations would evolve the population towards optimal
solutions.

The string of values within a single phenotype deter-
mines an FA model’s initialization and for preparing the data
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samples for training and testing. When initializing the GA,
a population of randomly-generated phenotypes was gener-
ated. Fitness testing was conducted for each phenotype as
follows:

1) The sequence of data samples was reordered following
the sample importance scores in descending order to
ensure that important samples were presented much
earlier to the FA.

2) Samples were split into training and testing following
the K-fold cross-validation scheme.

3) When performing training for each fold, the sample
subset selection parameter chose a fraction of data sam-
ples with the highest importance scores for training.

4) Selected training samples were augmented by artifi-
cially generated samples using SMOTE [47] to reduce
class imbalance. Newly generated training samples
were concatenated below the originally selected train-
ing samples to minimize their impact on the order-
ing effect. Altogether, the number of augmented and
unaugmented training samples in the dataset was
denoted as D.

5) The training samples were augmented with a white
Gaussian noise signal with maximum amplitude with
respect to the perturbation parameter.

6) A new FA model was initialized using the vigilance,
choice, and learning rate hyper-parameters defined in
the phenotype. The training was conducted using the
augmented training dataset and then tested using the
hold-out samples.

7) Fitness was determined by an index score combining a
performance metric and a small penalty score propor-
tional to the sum of all hyper-rectangles in the FA:

fit, = F1 — Agg (10)

where F'1 is the testing fitness from the hold-out sam-
ples, ¢ is the number of hyper-rectangles in the FA,
and A, sets the importance of the penalty function,
ideally set to a sufficiently small value so that a small
difference in the number of hyper-rectangles will not
overly penalize the fitness score.

8) Steps (3) to (7) were repeated for K cross-validation
folds. The overall phenotype fitness was then averaged
across all folds.

GA traverses the solution space using genetic operators
selection, reproduction, and mutation. Selection determines
which phenotype with high fitness can propagate to the
next generation while low-fitness phenotypes are discarded.
A new phenotype is created for each discarded phenotype
through genetic reproduction, essentially averaging two ran-
domly selected parent phenotypes’ genetic values. The next
iteration of the population thus consists of high-fitness phe-
notypes and their newly generated offspring. The gener-
ation counter is then incremented, and the offspring are
fitness-tested to be compared against older phenotypes.
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Genetic convergence occurs when newly generated pheno-
types are highly similar to pre-existing phenotypes, typically
due to combining two highly similar parents. If unchecked,
convergence would result in the entire population consisting
of exact clones of one another. Early convergence is unde-
sirable as the GA may unduly focus on the local maxima
while ignoring the rest of the solution space. Premature
convergence is mitigated by introducing a genetic mutation
parameter, defined as the probability of a gene to be mutated.
In this case, genetic mutation was introduced by adjusting the
value of a parameter by adding a small positive or negative
number.

The GA was said to have converged onto an optimum point
after fulfilling one or more stopping criteria or until an arbi-
trarily large number of generations have passed. Therefore,
the phenotype with the highest fitness score was considered
the fittest hyper-parameters to train the FA.

The consistency and efficiency of the GA to reach the
global optimum depends on several parameters.

1) Population size maintains a set number of phenotypes
at any point in time. A low value restricts the initial
search space while a high value increases computation
time.

2) Genetic selection determines the proportion of pheno-
types to be carried over from one generation to the next.
A low value may prematurely discard potentially opti-
mum solutions, while a high value negatively impacts
the GA’s ability to traverse the search space.

3) Genetic mutation introduces a small probability of
changing a parameter value within a phenotype. A low
value negatively impacts the GA’s ability to escape
a local optimum point, while a high value negatively
affects the GA’s ability to converge to the optimal
solution.

Adaptive control of the selection and mutation parameters
was implemented for efficient searching [64]. The genetic
selection was set to a low value, and genetic mutation was
set to a high value to widen the solution space at early stages.
As the GA converges, the genetic selection was increased to
retain more optimal solutions, and the genetic mutation was
decreased for smaller incremental steps in the solution space.

The optimization process may produce highly overfitted
solutions, i.e., classifiers that generalize well only in a narrow
scope. Combining multiple classifiers in an ensemble model
may produce more robust predictive ability [39], [65].

E. ENSEMBLE MODEL SELECTION USING GENETIC
ALGORITHMS

A classifier ensemble is a paradigm where multiple classifiers
are cooperatively used for solving a problem. Decision-level
fusion methods take the predictive outputs from multiple
classifiers to be combined to select the best predictive out-
put, typically using some kind of decision-fusion or voting
scheme. After optimizing a classifier population, a second
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GA was employed to find the optimum combination of FAs
to achieve maximum generalization.

Model selection was conducted using a simple binary phe-
notype of dimension equal to the number of FAs K, where
0 or 1 indicated a classifier’s membership in the ensemble.
Decision fusion was performed using probabilistic plurality
voting [63]. The ensemble fitness function was designed to
maximize ensemble generalization with the least number of
hyper-rectangles across all constituent FAs:

>K k,.C,
fit=F1 —xh% (11)

where F1 is the testing fitness of the combined ensemble
predictive output, k, is the membership of the n” classifier,
C,, is the number of hyper-rectangles in the n" classifier, N is
the sample size of the dataset introduced as a normalization
factor, and Aj, sets the weight of the penalty function of the
ensemble size in relation to the fitness score. Ideally, A is set
to a sufficiently small value so that adding an extra member to
the ensemble with a minor overall improvement to the fitness
score can be avoided.

A GA was then used in a similar manner as in the previous
section: a randomized population of phenotypes was initial-
ized, whereby each phenotype represented the membership
of an ensemble of classifiers. Phenotype fitness was judged
based on ensemble generalization and size. The optimum
solution would ideally consist of an ensemble with the min-
imum number of hyper-rectangles from FAs to maximize
ensemble accuracy. While each FA consists of a condensed
representation of the same dataset, the ordering effect and
different parameter settings may produce sufficiently distinct
hyper-rectangles.

F. FEATURE INTERPRETATION USING XGBoost AND SHAP
DT models data in a flowchart-like structure where each suc-
cessive node marks a feature threshold splitting the decision
path. An input vector to be classified can be represented by a
continuous path through the DT starting from the root node
and ending at a leaf node representing an outcome class label.
XGBoost is a highly efficient and scalable DT methodology
encompassing an ensemble of DT models and has been favor-
ably benchmarked against deep learning techniques in several
applications [66].

Given a dataset with data sample x; and target class y;,
the XGBoost ensemble of trees performs classification as
follows:

Ji=SK_ fix), fieF (12)

where K represents the number of decision tree models in
the ensemble, f; is an independent tree structure from the
space of all possible regression trees F. The set of trees in
the ensemble was determined by optimizing the objective
function:

obj = T 1(vi, i) + Zf_, Q) (13)
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where [ is a loss function to quantify the dissimilarity between
the model outcome y; and the target class y;, and € is the
penalty weight for the complexity of the model f;. During the
training process, XGBoost uses an efficient greedy algorithm
to evaluate all features to find the best possible split. From the
completed ensemble of trees, the feature’s importance can be
estimated from the frequency of splits using that feature. This
method is inconsistent, however, and the importance score of
a feature may not fully reflect its impact on the model [26].

The TreeExplainer [66] provides a consistent explanation
method for DT with the advantage of efficient computa-
tion of local explanations using Shapley additive explana-
tion (SHAP) values. A global overview of feature impor-
tance towards classification is observed from combining the
local explanations across the whole dataset. By focusing on
features with significant SHAP values, feature selection and
interaction analysis can be conducted on a narrower set of
data to further refine the classification model.

IV. EMOTION RECOGNITION BENCHMARK EXPERIMENT
Three affect recognition datasets were used as benchmarks in
this study: DEAP, DREAMER, and AMIGOS. The datasets
incorporate volunteers’ physiological signals in response
to emotional multimedia stimulus chosen to evoke a spe-
cific affective state. The recorded signals’ affective ground
truth was obtained by asking the volunteers to self-assess
their affective state after each stimulus was shown. Affect
recognition was conducted using neural networks to classify
the extracted physiological features and the corresponding
ground truth affective scores. Table 1 highlights the main
differences between the datasets.

The respective methodologies used for collecting the data
of each dataset were mostly similar: affective stimuli were
selected from a larger group of stimuli that were previously
scored on the AroVal scales by volunteers. Extreme stimuli
of the AroVal scales were then hand-selected to maximize
affective response from participants. Four groups of stimuli
were assembled from the four quadrants consisting of Low
or High Arousal combinations with Negative or Positive
Valence. To define the terminologies: Arousal represents the
intensity of the affect, while Valence is the intrinsic quality of
the affect (i.e., pleasant or unpleasant emotions).

Stimuli were then presented to participants one at a time
while devices measured their physiological signals simul-
taneously. After viewing each stimulus, participants were
instructed to score their affect for several scales including
Arousal, Valence, Liking (individual preference for the stim-
uli), and Dominance (influence exerted by the stimuli over
the individual).

Electroencephalogram (EEG) was recorded from specific
electrode positions following standard conventions. Cardiac
activity was recorded using blood volume pulse (BVP) in
DEAP and electrocardiogram (ECG) electrodes in other
datasets. Other modalities include galvanic skin response
(GSR), electrooculogram (EOGQG), electro-myogram (EMG),
respiration (Rsp), and skin temperature (Tmp). As the
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TABLE 1. Summary of the emotion recognition datasets used in the experiment section.

DEAP DREAMER AMIGOS
Participants 32 23 40
Stimulus 40 one-min. music videos. 18 one-min. music videos. 16 short (<4 min.) fmd 4 long (>14
min.) movie clips.
Physiological EEG, BVP, EMG/EOG, GSR, Rsp, EEG, ECG EEG, ECG, GSR
channels Tmp
Baseline features extracted from 5 Baseline features extractefi from_ final 4 Stimulus features normalized to [-1,
Feature . - seconds of control recording. Stimulus . .
L seconds prior to experiment, and .. . +1] by feature, recording session, and
normalization . features were divided by baseline .
subtracted from stimulus features. £ subject.
eatures.
Affect Arousal, Valence, Dominance, Liking Arousal, Valence, Dominance on [1,5] Arousal, Valence, Dominance, Liking,
self-scoring on [1,9] scale. scale. Familiarity on [1,9] scale.
Binary label Median of population scores for each
5.0 3.0
threshold scale.
Training and Leave-one-participant-out Ten-fold cross-validation using stimuli Leave-one-participant-out
testing cross-validation grouped into folds cross-validation

datasets provided the actual physiological signal recordings
from the experiments, feature extraction was performed man-
ually following the instructions provided by the respective
authors of each dataset. Likewise, feature normalization was
performed differently for each dataset, as shown in Table 1.

Two types of affect recognition experiments were formu-
lated: classifying Arousal as Low or High and classifying
Valence as Negative or Positive. Participant scores were dis-
cretized into two class labels for the Arousal and Valence
metrics, respectively, using score thresholds shown in Table 1.
DEAP and DREAMER datasets set the threshold to the
center of the scale regardless of the population distribution,
while AMIGOS used population-based statistical scores as
the threshold. Training and testing were conducted using
the cross-validation strategies following the methodology
outlined by respective authors. DEAP and AMIGOS used
subject-dependent cross-validation while DREAMER used
stimuli-dependent cross-validation.

Each dataset was first used as inputs to the GA for FA
optimization. A second GA was then developed for ensemble
model selection. Ensembles with the highest fitness scores
were selected, and hyper-rectangles were extracted from their
constituent FAs for training an XGBoost classifier. SHAP
values for each feature were computed after converting the
ensemble of DT into a TreeExplainer model. Significant
features were identified by summing up the absolute SHAP
values and selecting features with above-average values. The
reduced feature set was then used for training the GAEFA-
XGB.

While there have been newer ART models since the intro-
duction of Fuzzy ART, preliminary benchmark tests with
Bayesian ART (BA) [67] models showed that FAs achieved
superior performance. A comparison of the generalization
performance of both models will be given in the results
section. Similar to FAs, hyper-parameter optimization for
BAs was performed using GA [68], [69].

Feature extraction, FA, and GA were run using MATLAB,
while XGBoost and SHAP were implemented using Python.
Population size was set to 50 for both GAs, the A penalty
weight was set to 0.1 for both fitness functions at Equa-
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TABLE 2. Fl1-scores for binary Arousal and Valence recognition for
genetic-optimized individual (GAFA) and ensembles of FAs (GAEFA) and
for individual and ensembles of BAs (GABA, GAEBA).

Dataset Exp. Aro Val
DEAP GAFA | 0.560 | 0.591

GAEFA | 0.615 | 0.620
GABA | 0.557 | 0.559

GAEBA | 0.568 | 0.583

DREAMER GAFA | 0.607 | 0.571
GAEFA | 0.644 | 0.608

GABA | 0.569 | 0.569

GAEBA | 0.600 | 0.610

AMIGOS GAFA | 0.603 | 0.559

GAEFA | 0.659 | 0.636
GABA | 0.572 | 0.554
GAEBA | 0.583 | 0.598

tions 10 and 11. The GA’s progression was tracked by observ-
ing the phenotypes’ fitness scores at each generation. The GA
was stopped when the population fitness does not improve
over several consecutive generations.

V. RESULTS AND DISCUSSION

This section reports the performance metrics computed from
the methodologies used in this study. Metrics of GAFA,
GAEFA, and GAEFA-XGB, before and after feature selec-
tion, are benchmarked against contemporary studies using
the same feature sets and cross-validation methodology used
by the datasets’ respective authors. Lastly, significant feature
interactions are highlighted for consideration.

A. CLUSTERING ANALYSIS

The F1-score metric was used for evaluating the fitness of
the classifier models, in part so that the findings of this
study can be compared to other studies using the same affect
recognition datasets. Table 2 reports the best Fl-scores of
individuals and ensembles of FAs and BAs after genetic
optimization, using the cross-validation strategies outlined
in Table 1. FA ensembles outperformed BA ensembles in five
of the six classification tasks, suggesting that FA models are
more suitable for clustering the affective datasets.
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FIGURE 2. Cluster metrics for benchmark datasets, measured using
Normalized Mutual Information (NMI), Adjusted Rand Index (ARI),
Silhouette coefficient (Silh), and Dunn index.

The hyper-volume clusters obtained from the FA and
BA ensembles were assessed using four metrics that have
been used previously for evaluating self-organizing networks
[70], [71]. Dunn index [72] and silhouette coefficient [73]
were used for internal cluster evaluation, measuring intra-
and inter-cluster similarities. Normalized Mutual Information
(NMI) [74], and Adjusted Rand Index (ARI) [75] were used
for external evaluation, measuring how well the clusters could
classify held-out data points and benchmarked against ground
truth.

Fig. 2 shows the cluster metrics for the best-performing
FA and BA ensembles after GA optimization. For the DEAP
dataset, BA clusters were shown to outperform FA clus-
ters for all metrics except the Dunn index. In contrast
with the silhouette coefficients that show that BA clusters
were well-separated compared to FA clusters, the Dunn
indices appear to show that FA clusters were otherwise more
dense than BA clusters. When clustering Valence for the
DREAMER dataset, BA outperformed FA in all metrics
except silhouette, indicating some overlap among the BA
clusters, while FA clusters displayed significantly less over-
lap. For Arousal classification, BA and FA roughly had an
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FIGURE 3. Distribution of training data samples (top) and the
FA-clustered exemplars (center) and BA-clustered exemplars (bottom) for
the DREAMER dataset, visualized using TSNE.

equal performance for the external metrics (NMI and ARI).
BA clusters were superior to FA clusters for internal metrics
(silhouette and Dunn), suggesting that both clusters displayed
the same classification ability, although BA clusters were
significantly denser and separated. When clustering Valence
for the AMIGOS dataset, FA and BA clusters were approx-
imately equal except for the Dunn index indicating that FA
clusters may be denser than BA. For Arousal clusters, FA sig-
nificantly outperformed BA for external metrics. At the same
time, BA was better for internal metrics, suggesting that the
FA clusters were better at classifying but were topologically
distributed. In contrast, BA clusters were less accurate when
used for classification but were denser and well-separated.
Fig. 3 demonstrates how an optimized FA was able to
condense the DREAMER dataset into a much smaller and
distinctive set of exemplars, visualized using TSNE [76]. The
top diagram shows the distribution of the data samples for
the binary Arousal classification task. The distribution of the
hyper-rectangles of the best-performing GAEFA is shown
in the center diagram, displaying significant dimensionality
reduction and distinct separation between the two class labels.
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classification.

The bottom diagram shows the distribution of clusters of
the best-performing GAEBA, indicating significantly higher
dimensionality reduction. However, the separation between
classes was not as distinct and delineated as compared to FAs.
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TABLE 3. Performance comparison of GAEFA and GAEFA-XGB before and

after feature selection.

Dataset Exp. Aro Val
DEAP [10] | 0.616 | 0.647
[77] | 0.541 0.512
GAEFA | 0.615 | 0.620
GAEFA-XGB | 0.630 | 0.750
GAEFA-XGB w/ feat. sel. | 0.654 | 0.774
DREAMER [11] 0.575 0.521
GAEFA | 0.644 | 0.608
GAEFA-XGB | 0.820 | 0.725
GAEFA-XGB w/ feat. sel. | 0.833 0.807
AMIGOS [12] | 0.564 | 0.560
[78] | 0.644 | 0.671
GAEFA | 0.659 | 0.636
GAEFA-XGB | 0.730 | 0.671
GAEFA-XGB w/ feat. sel. | 0.749 | 0.680
TABLE 4. Impact of feature selection on predictions.
Dataset Exp. | Impact Confidence
DEAP GAEFA-XGB Aro. 0.118 0.235
GAEFA-XGB Val. | 0.066 0.176
DREAMER | GAEFA-XGB Aro. | 0.095 0.320
GAEFA-XGB Val. | 0.263 0.353
AMIGOS GAEFA-XGB Aro. 0.171 0.123
GAEFA-XGB Val. | 0.470 0.400

B. FEATURE SELECTION

Table 4 shows the outcome of computing the impact of
excluding low-SHAP features on the predictive ability and
confidence of the models. The Impact Score is a measure of
how the predictions of the model changes in response to a
subset of critical factors being excluded, ranging from 0 (no
impact) to 1 (maximum effect), and is computed as a function
of the decisions before and after feature selection:

1
I=-L0; #5) (14)

The A Confidence metric measures the shift in confidence
of the predictions after a subset of features was excluded.
A negative score indicates that excluding the features has a
detrimental effect on testing performance, while a positive
value shows an improvement:

1
I=-
n

L0 ==y) V(T — ) (15)
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FIGURE 7. Significant feature dependencies for DEAP Valence
classification.

In general, feature selection has a positive impact on model
generalization. Large Impact Scores such as in the Valence
classification of DREAMER and AMIGOS datasets indicate
a significant negative effect of irrelevant features towards
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classification. Small Impact Scores such as in the Valence
classification of DEAP dataset show that the removed fea-
tures have less impact on classification. The positive A
Confidence metrics indicated an overall improvement in
generalization.

SHAP values were calculated from GAEFA-XGB, rep-
resenting the overall impact of each feature over the entire
model. Features with above-average SHAP values were then
selected for retraining. Significant feature interactions were
selected for analysis. Fl-scores of GAEFA-XGB before
and after feature selection are reported in Table 3, bench-
marked against contemporary studies using the same datasets,
features, and cross-validation strategies. Results show an
improvement in generalization after each methodology was
applied.

For Arousal classification of the DEAP dataset, 28.8% of
features were found to have above-average SHAP values,
totaling 73.0% of the combined SHAP values. EEG fea-
tures make up 36.5% of the most significant features, while
peripheral features constitute 63.5%, with BVP making up
39.7% followed by EMG/EOG (14.0%), Respiration (6.3%)
and GSR (3.5%). For Valence classification, 26.3% of fea-
tures were significant, totaling 78.2% of the combined SHAP
values. EEG makes up 59.7% of the significant SHAP values,
followed by EMG/EOG (18.4%), GSR (11.2%), with Rsp,
BVP, and Tmp features making up 10.7% combined.

For Arousal classification of the AMIGOS dataset, 22.3%
of features have above-average SHAP, totaling 82.6% of the
combined SHAP values. EEG features make up 61.9% of the
significant SHAP values, followed by ECG (33%) and GSR
(5.1%). For the Valence classification, 31.9% features were
considered significant, totaling 72.3% of the combined SHAP
values. 66.9% of the significant features were EEG, followed
by ECG (26.7%) and GSR (6.4%).

For the DREAMER dataset, EEG features were not as
prominent as compared to the other datasets. In the Arousal
classification task, ECG features make up 77.3% of the
combined SHAP scores of significant features, while EEG
makes up 22.7%. In total, 28.1% of features were significant,
representing 74.9% of the total SHAP values. For Valence
classification, ECG features make up the majority, consisting
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FIGURE 9. Significant feature dependencies for DREAMER Arousal
classification.

of 63.9% of the combined SHAP values for significant fea-
tures and the remaining 36.1% for EEG features. Only 18.8%
of the features have above-average SHAP, totaling 88.6% of
all SHAP values.

Each dataset’s significant features were selected for
retraining the GAEFA-XGB, with the results being presented
in the next section.
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1) DEAP EXPLANATIONS

Fig. 4 shows the SHAP summary plots for the High Arousal
class for the DEAP dataset. From the SHAP values, High
Arousal was characterized by a mixture of medium-to-high
feature values from a multitude of channels, including the
gamma-band power from the electrodes P3, Fz, Cp2, and Oz,
eye-blink rate, and the standard deviation of heart rate and
heart rate variability.

Fig. 5 shows the most significant feature dependencies.
Normalized gamma-band power at 0.3 or higher showed good
contribution towards Arousal classification, likewise with
above-average VEOG eye-blink rate. Significant SHAP was
observed for normalized gamma-band power 0.3 or higher
at the P3 and Fz electrodes intersected with medium-to-high
standard deviation of heart rate from the top and bottom sub-
figures amplitude. From the center subfigure, above-average
eye-blink rate was indicative of High Arousal. Simultane-
ously, the gamma-band power distribution at the Oz electrode
was not concentrated at any specific regions.

Fig. 6 shows the SHAP summary plots for the positive
Valence class for the DEAP dataset. Significant contributions
included EEG beta-band power from FC6, Cz, and CP5 and
EMG features mainly from the zygomaticus muscle, such as
blink rate, amplitude variability, and energy.

The feature dependency plots in Fig. 7 showed some
interesting trends. From the top subfigure, medium-to-high
beta-band power at the FC6 electrode was indicative of Pos-
itive Valence. In addition, low values of complement-coded
eye-blink rate measured from the zygomaticus muscle con-
tributed more towards Positive Valence compared to medium-
to-high values of the same. Likewise, high SHAP was
observed in the center subfigure for low c_zEMG_rate_blink
combined with medium-to-high values beta-band power at
the P3 electrode. The bottom subfigure instead displayed
the regular measurements of zEMG_rate_blink, where high
SHAP was observed for high eye-blink rate.

2) DREAMER EXPLANATIONS

Fig. 8 shows the SHAP summary plots for Arousal clas-
sification of the DREAMER dataset. Significant features
consisted mainly of ECG features, including amplitude
and waveform features (ecgRampl_min), and HRV spectral
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power features (c_ecgHrv_specRange3, ecgHrv_totalPower,
c_ecgHRV_LF).

Fig. 9 shows the three most significant feature interactions
for Arousal classification of the DREAMER dataset. The top
subfigure shows the interaction between the minimum ampli-
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tude of the ECG R-waveform and the complement-coded
EEG beta-band power at the P8 electrode. High SHAP
for High Arousal affect was observed for clusters with
high ecgRampl_min and medium-to-high c_P8_beta. The
center subfigure shows the interaction between the ECG
T-waveform’s maximum amplitude and the amplitude range
for the ECG Q-waveform. High SHAP was observed for the
intersection between average-to-high values for both features.
The bottom subfigure shows the interaction between the
signal power of the HRV signal and the complement-coded
minimum amplitude of the ECG P-waveform. High SHAP
occurred for high values of hrv_totalPower and extremely
high values of c_ecgP_min.

From Fig. 10, Valence classification for the DREAMER
dataset showed few features with significantly large con-
tributions for classifying Positive Valence, mainly from
c_ecgT_min and O2_alpha. Significant features consisted
mainly of complement-coded ECG features and a few EEG
band power features.

Fig. 11 shows the three most significant feature inter-
actions for Valence classification of the DREAMER
dataset. The top subfigure shows the interactions between
the complement-coded minimum amplitude of the ECG
T-waveform and the ECG S-and-T-waveform median ampli-
tude. High SHAP values were observed mainly for low-
to-medium values of c_ecgT_min and mostly low values
and some high values of ecgST_-median. The center sub-
figure shows the interaction between the EEG alpha-band
power at the O2 electrode and the complement-coded min-
imum amplitude of the ECG T-waveform. The clusters’
positioning showed that Positive Valence was characterized
by extremely high values of both O2_alpha and c_ecgT_min.
The bottom subfigure shows the interaction between the
complement-coded features for both HRV total band power
and the EEG alpha-band power at the Fc6 electrode, where
significant contribution towards Valence classification was
observed for high values of both features.

3) AMIGOS EXPLANATIONS
Fig. 12 shows the SHAP summary plots for Arousal clas-
sification of the AMIGOS dataset. Significant contributions
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were observed mainly from complement-coded features, par-
ticularly from EEG gamma-band and slow-alpha-band power,
and from EEG band power asymmetry between the left and
right brain hemispheres (F7_F8, AF3_AF4, O1_02). Low
values of the complement-coded ECG band power between
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the frequencies 5.7Hz and 5.8Hz and the kurtosis measure of
the HRV signal were both indicators of High Arousal.

Fig. 13 shows the three most significant feature interac-
tions for Arousal classification. The top subfigure shows that
a significant contributor comes from the complement-coded
EEG slow-alpha-band power from the P8 electrode with
high normalized value (x-axis, > 0.7), in conjunction with
primarily medium-to-high values of the complement-coded
ECG band power between 5.8Hz to 5.9Hz. The center sub-
figure showed a similar pattern with c_f3_slowAlpha (> 0.7)
and c_ecgBand_3.6_3.7. From the bottom subfigure, how-
ever, the low complement-coded asymmetry between EEG
band power at F7 and F8 (x-axis < 0.8) was a contributor
towards Arousal classification.

Fig. 14 shows the SHAP summary plots for Valence clas-
sification of the AMIGOS dataset. Individual contributions
from features were relatively low (< 0.3), mainly center-
ing around EEG band power in the frontal regions of the
brain (AF and F electrode positions) and asymmetry between
the left and right hemispheres (T7_T8, Fc5_Fc6, F7_F8).
The complement-coded mean heart rate amplitude showed
the largest SHAP contribution towards Valence classification.

Fig. 15 shows the three most significant feature interac-
tions for Valence classification. In the top subfigure, the EEG
gamma-band power at the AF4 position showed a clear delin-
eation, where values above 0.4 were significant contribu-
tions for Valence classification in conjunction with the EEG
alpha-band power at the T8 position. Similarly, for the center
subfigure, the EEG beta-band power asymmetry between
T7 and T8 electrodes showed a clear contribution to Valence
classification for normalized values 0.25 or higher, intersect-
ing with the ECG band power between 3.6Hz and 3.7Hz.
In the bottom subfigure, EEG theta-band power at AF3 dis-
played a slightly lower distinction. Values above 0.45 showed
good contribution towards Valence classification, in conjunc-
tion with the complement-coded EEG beta-band power at O2.

The results from the three datasets showed some com-
monalities. Significant contributors for Arousal classifi-
cation in the DEAP dataset consisted mostly of EEG
gamma-band power from electrode positions in a distributed
area and variability of the heart rate features. Arousal
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FIGURE 14. SHAP summary plots for Valence classes (left) and Positive Valence class (right) for AMIGOS dataset.

classification for the AMIGOS dataset also displayed signif-
icant contributions from EEG gamma and slow-alpha-band
power features and EEG band power asymmetry. However,
the DREAMER dataset showed fewer significant EEG con-
tributors, the majority being ECG waveform and band power
features.

For the Valence classification, the main contributors were
typically EEG beta-band power features, eye-blink-related
features, and some GSR and EMG signal energy from the
DEAP dataset. For the AMIGOS dataset, EEG played a larger
role with significant contributions from the frontal electrode
positions’ band power and from the EEG band power asym-
metry between the left and right hemispheres. However, in the
DREAMER dataset, SHAP contributions were low (< 0.2),
where only one ECG and one EEG feature yielded high
SHAP values.

4) DECISION TREES

Smaller subsets of the samples were generated by selecting
features with higher-than-average SHAP scores, which were
then used for training XGBoost models. The figures below
represent a small sample of the generated XGBoost decision
trees. Due to space constraints, not all DT's can be shown here.
DTs were visualized using the dtreeviz package in Python.
Nodes were represented using scatter plots to visualize the
distribution of feature values vs class labels, each dot rep-
resenting a single data sample. Vertical lines on the plots
indicate the split of the feature values to create a decision
boundary. Horizontal lines represent the average target value
at either side of the feature split value. Leaf nodes at the right-
most column or bottom row of the figures indicate the aver-
age target prediction values and the number of samples that
arrived at that point. Leaf nodes with target scores closer to
0 represent either Low Arousal or Negative Valence classes,
while target scores closer to 1 represent either High Arousal
or Positive Valence classes. Leaf nodes with average target
values close to 0.5 represent an ambiguous decision. The
n-score quantifies the number of data samples represented by
the decision branches leading up to that node. A low number
relative to the number of data samples indicates overfitting
and outlier decisions, while a high number shows good gen-
eralization.
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Fig. 16 shows one of the DTs for Arousal classifi-
cation of DEAP. The branching nodes consisted of the
complement-coded respiration band power between 1.92Hz
and 2.16Hz, EEG gamma-band power at the Oz electrode
position, and the standard deviation of heart rate variability.
Of the four leaf nodes, two nodes were approximated as Low
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FIGURE 16. One XGBoost DT for Arousal classification of DEAP, after feature selection.

Arousal by having average target scores of 0.125 and 0.352.
The first node was defined as having low feature values for
the respiration and EEG features, and the second node having
high respiration band power and HRV standard deviation. The
leaf node with the target score of 0.852 was considered High
Arousal, characterized as having low respiration feature value
and high EEG band power. The leaf node with the target score
of 0.507 was considered ambiguous, neither tending towards
Low nor High Arousal.

The DTs provide a good visualization of the decision
branches leading toward the predicted affect classes. The
quality of the predictions is provided using leaf purity and
class distribution metrics. Reliable and consistent predictions
(i.e., leaf node scores close to 0 or 1 and high n-scores) are
considered good candidates to define affect rule antecedents.
Taking the second leaf node in Fig. 16 as an example: the
distribution of labels is relatively concentrated towards one
class label and applies to approximately 29% of the samples
across all leaf nodes. Therefore, a good affect rule can be
crafted from the decision branches leading up to it. While
the individual trees presented here are relatively shallow,
the XGBoosted ensembles as a whole showed good accuracy
in predicting the affect classes as reported in Table 3.

VI. CONCLUSION

A methodology was proposed to provide an explainable
affect recognition model. Noisy datasets were clustered
into more representative exemplars using a combination
of signal-to-noise amplification, synthetic minority sam-
ple generation, and Fuzzy ART clustering. The cluster-
ing process was optimized using genetic algorithms for
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hyper-parameter tuning. The clustered samples were used
for training an ensemble of boosted decision trees and sub-
sequently analyzed using SHAP scores. Physiological fea-
tures with above-average scores were considered important
for affect classification and were extracted to enhance the
affect predictive ability of the decision tree ensemble. The
performance of the final ensemble was on par with state of the
art methods for classifying affect using the same datasets. The
impact of features and their interactions with each other were
easily visualized using a combination of SHAP scores and
decision trees, providing interpretable and useful information
on the physiological features relative to human affect.
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