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ABSTRACT In the field of image enhancement, using deep learning methods to enhance low-light images
is currently mainstream. However, the methods often have complex network structures of a large number
of parameters, and their training often uses paired data-sets, which are difficult to obtain in actual practice.
To solve these problems, this paper proposes a simple generative adversarial network and Retinex model,
dubbed RetinexGAN, that is completely trained using unpaired data-sets. It contains a decomposition
network and two discriminator networks. To reduce the parameters of the network, only two convolution
layers are used in the decomposition network. We show more challenging testing data where some parts
of the image are underexposed and others are normal light. Both quantitative and visual results show that
RetinexGAN is largely superior to state-of-the-art methods.

INDEX TERMS Low-light image enhancement, generative adversarial networks, two-layer convolutional
networks.

I. INTRODUCTION
When shooting an image, the quality of the image will be
greatly reduced by factors such as insufficient light, photogra-
phy equipment performance and photographing skills, which
will lead to low visibility, low contrast and noise. Human
visual perception is challenged not only by these problems
but also by the accuracy of some computer vision algorithms.
To improve image quality, there are currently many hardware
devices and software technologies that are dedicated to mak-
ing the details hidden in low-light images clearly presented.
Thesemethods have broader application prospects. For exam-
ple, in photography, low-light image enhancement technol-
ogy can help users shoot high-quality and more attractive
images in low-light environments; for workers working in
low-light environments, low-light enhancement technology
can make their working environment clearer on the mon-
itoring equipment to ensure their safety; and in artificial
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intelligence, especially in the field of computer vision, it can
obviously improve target detection and recognition accuracy.

Early low-light enhancement methods were mainly based
on a histogram or Retinex theory. The method based on his-
togram equalization only considers pixel-by-pixel mapping,
and ignores that pixels will be affected by surrounding pixels.
The Retinex method first predicts an illumination map and
performs image reconstruction through this illuminationmap.
However, this method is a complex mathematical problem.
It is difficult to predict an illumination map under extremely
dark conditions with unavoidable noise.

Recent research mainly adopts the deep learning method
to learn color, contrast, brightness and saturation to produce
more expressive results. It mainly relies on synthetic or cap-
tured damaged/clean image pairs for training. However, these
methods still have limitations:

(1) The synthesized paired data-sets are often not real-
istic enough, and it is difficult to produce good results
when the trained model is applied to real low-light images.
Paired images are extremely difficult to obtain in reality,
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FIGURE 1. Some representative results in RetinexGAN, which can not
only enhance the low-light areas in the image but also maintain the
normal-light areas.

and the generalization ability of their trained models is often
poor.

(2) A good result requires a complex neural network, which
will produce a large number of model parameters during the
training process. However, in some mobile devices, to ensure
a high device storage performance, a smaller model file is
often required.

In this paper, we propose a new learning-based low-light
enhancement method. The network we use is simple in struc-
ture, fast in training. And it is trained on unpaired data-sets.
FIGURE 1 shows the results of using our method to enhance
a low-light image. Our contributions include the following:

(1) The decomposition network only needs two convo-
lution layers to decompose the eigenimage. The low-light
image is decomposed into a reflection map and an illumina-
tion map.

(2) Unpaired images are used in the network for low-light
enhancement. This training strategy eliminates the depen-
dence on paired training data so that the model has better gen-
eralization and can use more types of images from different
fields for training.

(3) The network structure is simple, and the lightweight
one-way GAN network model greatly reduces the training
complexity and training time, which can be trained with no
more than 100 epochs. In our work, the size of the trained
model is 15KB-150KB. In addition, we can still adjust the
parameters to achieve different enhancement results in tests.
Therefore, for different data-sets, we do not need to retrain
the model which can be applied to mobile devices with small
memory and flexible applications.

FIGURE 2 proves the effectiveness of the two-layer
convolution. Generated Gaussian noise is inputted into the
VGG-19 pretrained model to extract features. As shown in
FIGURE 2, the first to fifth rows use one-layer, two-layer,
three-layer, four-layer, and seventeen-layer convolutions. The
first to sixth columns are 5 to 30 iterations. Only the first two
convolution layers retain color information.

FIGURE 2. Features extracted by different convolutional layers.

II. RELATED WORK
Research on image enhancement has a long history.
Wang et al. [1] compared the low-light image enhancement
methods in recent decades and divided them into seven cat-
egories. According to the research hotspots in recent years,
we introduce four methods: histogram equalization, Retinex,
methods based on deep learning, andmethods based onGAN.

A. TRADITIONAL METHODS
In the past few decades, many scholars have endeavored to
use histogram equalization and methods based on Retinex.
The histogram equalizationmethods attempt tomap the entire
histogram into a simple mathematical distribution. The dif-
ference between different histogram equalization methods
is the use of different additional priorities and constraints.
There are some newer methods, such as DOTHE (domi-
nant orientation-based texture histogram equalization) [2],
EDSHE (entropy-based dynamic subhistogram equaliza-
tion) [3] and UMHE (unsharp masking with histogram equal-
ization) [4]. These methods mainly enhance the contrast of
the image but insufficiently enhance the illumination, which
leads to under/over enhancement or color loss.

Methods based on the Retinex theory assume that the
image is composed of reflection maps and illumination
maps. Some typical methods, such as MSR (multi-scale
Retinex) [5] and SSR (single-scale Retinex) [6] use illumina-
tion maps for low-light image enhancement. AMSR(adaptive
multiscale Retinex) [7] is proposed as a weighting strat-
egy based on SSR. NPE (naturalness preserved enhance-
ment) [8] balances the enhancement level and the naturalness
of an image to avoid excessive enhancement. Fu et al. [9]
proposes a model named SRIE (simultaneous reflectance
and illumination estimation), which can accurately maintain
the estimated reflection coefficient and suppress noise to a
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FIGURE 3. Network structure. x is the low-light image. xmax/min/mean is the minimum, maximum, and mean value of the RGB channels in x . xR is a
reflection map. x I is an illumination map. y is a normal image. y3

max is the maximum value of the RGB channels in y . ⊗ denotes pixel-by-pixel
multiplication. ⊕ denotes pixel-by-pixel addition. The decomposition network uses two convolution layers. The first convolution layer has 6 input
channels and 64 output channels. The second convolution layer has 64 input channels and 6 output channels.

certain extent. LIME (low-light image enhancement) [10],
a structure-aware smoothing model, is designed to estimate
the illumination map, and uses the reflection map as the final
enhancement result. BIMEF (bio-inspired multi-exposure
fusion) [11] proposes a double exposure fusion algorithm,
and Ying et al. [12] uses the camera response model for
further enhancement. Wang et al. [13] proposes an adaptive
low-light image enhancement method. They converts the
image into HSV space and then estimated the illumination
map of the image. The method based on the Retinex theory
can effectively enhance low-light images. However, the key
of these Retinex-basedmethods is to estimate the illumination
map. Mathematically, estimating the illumination map is an
ill-posed problem. Moreover, the parameters of this method
are handcrafted, relying on careful parameter adjustment.

B. METHODS BASED ON DEEP LEARNING
With the maturity of deep learning technology, it has been
increasingly applied to the field of image enhancement,
which has led to new developments in low-light image
enhancement algorithms. LLNet (low-light net) [14] is the
first network to apply deep learning to image enhance-
ment in a true sense. It enhances and denoises low-light
images by learning a sparse adaptive encoder. HDRNet
(high definition resolution net) [15] predicts the coefficients
of the local affine model in the bilateral space to obtain
low-light image enhancement. LLCNN (low-light convolu-
tional neural network) [16], [17] relys on some traditional
methods during training and is not an end-to-end solution.
MSRNet (multiscale Retinex net) [18] uses different Gaus-
sian convolution kernels to learn dark to bright mapping
directly. The MBLLEN (multibranch low-light enhancement
network) [19] uses a multibranch low-light enhancement

network structure to extract features of different levels,
enhance them through multiple subnetworks, and generate
output images throughmultibranch fusion. RetinexNet [20] is
the first method to combine Retinex theory with CNN, which
achieves the purpose of low-illumination map enhancement
by estimating and adjusting the illumination map. Similarly,
KinD (kin-dling the darkness) [21] also applies Retinex the-
ory to estimate the illumination map by adding a restoration
network for noise removal and then enhance the low-light
image. Wang et al. [22] introduces intermediate lighting
in their network (DeepUPE) and correlats the input with
the expected enhancement result, which enhanced the net-
work’s ability to learn complex photographic adjustments
from paired data-sets modified by experts. Ren et al. [23]
proposes a deep hybrid network to improve image detail and
edge and uses perceptual and adversarial losses to improve
image quality. Zhang et al. [24] is inspired by the theory
of information entropy and the retinal model and proposes
a Retinex model based on maximum entropy, which uses
a simple network to separate illumination and reflection to
achieve self-supervised learning. Huang et al. [25] uses the
attentionmechanism to predict the illuminationmap, and uses
the Retinex model to estimate the initial enhanced image.
This method uses the image after histogram equalization as
the reference image so that the enhanced image has chromatic
aberration. However, most of the above methods use paired
data-sets for training. Guo et al. [26] proposes a lightweight
deep network named DCE-Net (deep curve estimation net),
which is used to estimate pixels and depict high order curves
to adjust the dynamic range of a given image. The attraction
of DCE-Net is that it does not require any paired or unpaired
data during training but achieves better enhancement results.
However, generated image is whitish.
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C. METHOD BASED ON GAN
Currently, GANs have achieved excellent results in image-
to-image conversion work [27], [28]. In the low-light image
enhancement field, Chen et al. [29] regards the image
enhancement problem as an image-to-image conversion
problem, and proposes a two-way GAN network that uses
unpaired images enhance low-light images. Different from
two-way GAN, EnlightenGAN [30] proposes a lightweight
one-way GAN. It uses a UNet with self-feature reten-
tion loss and a self-regular attention mechanism and two
global-local discriminators to achieve unsupervised low-light
image enhancement. Yang et al. [31] proposes the DRBN
(deep recursive band network) method, which uses paired
low-light/normal-light images to restore and enhance the
linear band representation of normal-light images and then
uses other unpaired data driven by perceptual quality-driven
adversarial learning. A linear transformation can be learned
to reconstruct a given band to obtain an improved band
representation. However, some areas of the image enhanced
by this method will become blurred. Moreover, after testing,
its enhancement results on real-world data-sets [32] are not
ideal.

However, many current GAN network structures are more
complicated. The GAN network has disadvantages such as
troublesome tuning and poor stability. A more complex net-
work structure will inevitably increase the difficulty of net-
work training. Our goal is to find a simpler network to achieve
the purpose of low-light image enhancement. Unlike Enlight-
enGAN, our method only uses two convolution layers to
decompose the eigenimage. Faster training will be achieved
and more pleasing images will be produced.

III. APPROACH
A. RETINEX WITH CORRECTION COEFFICIENT
In the original Retinex theory, an image S is regarded as
the product of illumination map I and reflection map R. The
formula is:

Sinput = I ∗ R, (1)

where Sinput is the input low-light image, ∗ represents pixel-
by-pixel multiplication, the reflection map R is a constant
determined by the nature of the object, and the illumina-
tion map I is affected by the external light source, which
can be removed by removing the light influence or lighting
component I is corrected to achieve the purpose of image
enhancement.

Most current methods use the estimated reflectionmapR as
an enhanced (good exposure) image [10]. However, we found
in experiments that using only the reflection map will cause
the loss of image details, color, and excessive enhancement.
To solve this problem, we made the following improvements
to the original Retinex formula:

Soutput = β ∗ (1− I ) ∗ R+ α ∗ Sinput , (2)

this formula is used in testing instead of training. It is simpli-
fied yet effective. The result is shown in FIGURE 4, where

FIGURE 4. Using input , R and (1− I) as the parameters of FORMULA 2,
we can get the enhanced image as shown in the fifth line of the figure.

I and R are the illumination map and the reflection map,
respectively. They are estimated using the decomposition net-
work (the specific structure is introduced in the next section).
We normalize I and R to [0, 1] and use (1− I ) to suppress the
lighter areas and lighten the darker areas. Sinput is the original
low-light image, and Soutput is the enhanced image. β and α
are the image brightness correction coefficients. The value
range of β is [1, 8]. As the value increases, the brightness
of the low-light area increases. The value range of α is [1, 3].
As the value increases, the overall part of the image increases.

It is important to point out that Retinex theory assumes that
1) the visual appearance can be decomposed by reflection
maps and illumination maps, 2) reflectivity is the intrinsic
property of the object, and 3) the illumination map can be
varied(depending on actual conditions). Therefore, unlike the
illumination map and reflection map of methods [21], [22],
our reflection map is closer to the normal image, and our
illumination map is closer to the grayscale image of the
normal image. This situation is more similar to [20].

B. NETWORK STRUCTURE
FIGURE 3 shows our network structure. The left area is used
for training. The right area is used for testing.

1) DECOMPOSITION NETWORK
Zeiler and Fergus [33] visualized the features extracted by the
convolutional layers. Layer1 and layer2 learn the underlying
features, such as edge, color, and brightness. Layer3 begins to
learn high-level texture features. Layer4 learns some distin-
guishing features, and layer5 learns features with key distinc-
tions. The features learned by the CNN are gradually captured
in a higher level, as shown in FIGURE 2. Based on this,
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FIGURE 5. Model structure of discriminator.

we design a decomposition network with a two-layer con-
volutional neural network. We only use layer1 and layer2 to
extract the color and brightness of the image without chang-
ing the texture and contour of the original image.

Lv and Lu [34] believes that the quality of information
in the illumination map is lower. To solve the problem
of less information in the illumination map, unlike other
single-channel illumination maps based on Retinex theory,
our illumination map uses 3 channels. We extract the mini-
mum, maximum, and mean values of the RGB channels from
the low-light image before training, and concatenate them to
maintain more image details in the illumination map.

2) DISCRIMINATOR NETWORK
After experimenting, we found that the use of ordinary
discriminators may overenhance the brighter areas or under-
enhance the darker areas in the image. To ensure that our net-
work can adaptively enhance different regions in the image,
we adopt the discriminator structure of PatchGAN, namely,
the Markov discriminator. The discriminator structure is
shown in FIGURE 5.
Currently, the Markov discriminator is used in GAN net-

works such as pix2pix [28] and CycleGAN [27]. It has a
certain high resolution and high detail retention for super high
resolution and clear pictures in style transfer. The discrimi-
nator maps the input to an N ∗ N patch (matrix) X , which
is actually the feature map output by the convolutional layer.
The value of Xij represents the probability that each patch is a
true sample, and the average value of Xij is the final output of
the discriminator. Each output in the output matrix represents
a receptive field in the original image, corresponding to a
patch of the original image.

We use two PatchGAN discriminators as the illumination
map discriminator and the reflection map discriminator. The
two discriminators have the same structure, but the param-
eters are different. They are used to judge the authenticity
of the generated illumination map and reflection map. This
not only ensures that the content (semantics) similarity is

maintained between the generated image and the original
image but also ensures that the illumination map and reflec-
tion map of the low-light image can learn the brightness
information of the normal-light images.

C. LOSS FUNCTION
The loss function of the network in this paper is only com-
posed of adversarial loss. The adversarial loss is used to make
xI ∼ Preal-patches, which means that the distribution of the
low illumination map is approximate to that of the normal
image. Additionally, we need to make xR ∼ Preal-patches,
which means that the distribution of the reflection map is
close to that of the normal image.

For the local discriminator, sixteen patches are randomly
cut from the output image and the real image. Here, we use
the original least square GAN (LSGAN) [35] as the antag-
onistic loss. LSGAN, as its name suggests, uses the objec-
tive function as a mean square error. The discriminator no
longer maximizes the cost function of the original GAN but
to minimizes it. The objective is to learn both the forward
mapping GI :

{
xI

}
→ y3max and GR

:
{
xR

}
→ y. In this

paper, we code the generated samples and the real samples as
0 and 1. Using square error as the objective function, the goal
of the illumination map discriminator is as follows:

minL
(
DI

)
=

1
2
ExI∼Pfake-patches

[(
DI

(
xI

)
− 0

)2]
+

1
2
Ey3max∼Preal-patches

[(
DI

(
y3max

)
− 1

)2]
,

(3)

minL
(
GI

)
=

1
2
ExI∼Pfake-patches

[(
DI

(
xI

)
− 1

)2]
. (4)

Similarly, the goal of the reflection map discriminator is:

minL
(
DR

)
=

1
2
ExR∼Pfake-patches

[(
DR

(
xR

)
− 0

)2]
+

1
2
Ey∼Preal-patches

[(
DR(y)− 1

)2]
, (5)
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FIGURE 6. Low-light image as input. The third and fifth columns are parts of the enlarged image. (a) input, (b) SRIE [9], (c) LIME [10],
(d) RetinexNet [20], (e) SIEN [24], (f) EnlightenGAN [30], (g) DCE-Net [26], (h) DRBN [31], (i) ours, β = 6.2, α = 1.3. Please zoom in to see the details.

minL
(
GR

)
=

1
2
ExR∼Pfake-patches

[(
DI

(
xR

)
− 1

)2]
. (6) where xI is generated illumination map and xR is generated

reflectionmap, respectively. y3max is the maximumRGB value
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FIGURE 7. Normally illuminated image as input. (i) are input images. (a) SRIE [9], (b) LIME [10], (c) RetinexNet [20], (d) SIEN [24],
(e) EnlightenGAN [30], (f) DCE-Net [26], (g) DRBN [31], (h) ours, β = 3, α = 1.1. Please zoom in to see the details.

of the normal illumination map cascaded into three channels.
DI and DR are the discriminators of illumination map and
reflection map.

The total loss function of our decomposition network is as
follows:

L = L
(
GI

)
+ L

(
GR

)
. (7)

VOLUME 9, 2021 56545



T. Ma et al.: RetinexGAN:Unsupervised Low-Light Enhancement With Two-Layer Convolutional Decomposition Networks

FIGURE 8. Results obtained with different β and α. Please zoom in to see the details.

L
(
GI

)
and L

(
GR

)
are the adversarial losses of illumina-

tion and reflection.

IV. EXPERIMENT
A. DATASET AND EXPERIMENTAL DETAILS
We use unpaired low/normal-light images for training, and
the data-set is provided by EnlightenGAN [30]. These images
are converted to PNG format and adjusted to 600*400 pixels.
We select 900 low-light images and 900 normal-light images
from this data-set as the training set. To expand the data-set,
the images are randomly cropped to 400*400 and flipped
during training. For the testing set, we compare previous
works (LIME [10], LOL [20], SRIE [9], DeepUPE [22],
DICM [36], and EnlightenGAN [30]) using standard images.

Our batch size is set to 1. We use the Adam optimizer. The
learning rate of the decomposition network is set to 1e-4.
The learning rate of the two discriminator networks is set
to 4e-4. The network needs to train 100 epochs on a single
Nvidia 1080Ti GPU, and it takes no more than 1 hour.

One of the shortcomings of GANs is that the training is
unstable. Since the network structure we used is a variant of

the GAN network, this problem is inevitable in our network
training. After many repeated experiments, we found that
the model achieves better results when iterating for approx-
imately 50 epochs. We suggest that readers should save the
model at intervals during the training process and check
the generated reflection map when replicating the code in
this paper. When the color, brightness, and texture of the
reflection map meet your expectations, the model parameters
are optimal at this time. Of course, readers can also refer to
other articles that optimize GAN stability [37]–[39] to make
training more stable.

B. EXPERIMENTAL COMPARISON
1) COMPARISON WITH TYPICAL EXPERIMENTS
We compare our method with the following state-of-the-art
low-light image enhancement methods: SRIE [9], LIME [10],
RetinexNet [20], SIEN [24], EnlightenGAN [30], DCE-
Net [26], DRBN [31]. To ensure fairness in comparison,
we use the source code and pretrainedmodels provided by the
authors of these methods and use the parameter settings rec-
ommended by the authors. That data-set in FIGURE 6 is from
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TABLE 1. Quantitative comparison with other low-light enhancement
methods. NIQE ie expected smaller values. PSNR and SSIM are expected
higher values.

TABLE 2. Pretrained model size and runtime comparisions (in second).

DeepUPE [22]. We can see in the FIGURE 6 that SRIE [9]
enhances the input image while its brightness enhancement
effect is limited compared to other methods. LIME [10]
overenhances image areas with light sources or areas with
higher pixel values, resulting in loss of surrounding details.
After using RetinexNet [20] for enhancement, the texture of
the image is very unnatural. SIEN [24] overenhances and dis-
torts the color. In EnlightenGAN [30], although the attention
map is used in its work to eliminate image artifacts, there are
still some artifacts in some test images, and the generated
effect is yellowish. DCE-Net [26] is whitish. DRBN [31]
loses some details of the image.

We also carried out a quantitative comparison. Unpaired
images (from DeepUPE [22]) and paired images (Enlighten-
GAN [30]) are used for testing. For paired images, we use
PSNR and SSIM to evaluate image quality. For unpaired
images, we use NIQE to evaluate image quality. The average
values are shown in TABLE 1.
We tested the running speed of each method. As shown

in TABLE 2, our method is the fastest. For the tradi-
tional method, we use a CPU (Intel Core i7-7700HQ
CPU) for testing. Due to the limitations of the hard-
ware environment, we also use a CPU to test RetinexNet
and SIEN. The other methods are tested on an Nvidia
GTX1050 Ti GPU.

The current methods were proposed to enhance low-light
images, but they fail to maintain enhancement performance
when we input images with normal light. As shown in
FIGURE 7, (i) are the input normal-light images, and (a)-
(h) are the enhanced results outputted by different meth-
ods. Obviously, we have a better performance than other
approaches, e.g., the enhanced images in line (h) are closer
to the images in line (i) than other lines.

FIGURE 9. The influence of β and α on NIQE, PSNR and SSIM.

2) ABLATION STUDY
Different people may like images with different brightness.
However, most current methods based on deep learning can
only obtain one kind of brightness image after the operation
of low-light image enhancement. By simply adjusting the
β and α, we can meet the requirements of most people for
low-light image enhancement.

In the test, the different β and α values in FORMULA 2
will affect the test results. FIGURE 8 shows the different
brightness enhancement effects caused by different β and
α in the test. β is used to adjust the enhancement of dark
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FIGURE 10. Face detection results before and after low-light image
enhancement. Note that there is almost no brightness in the fourth
low-light image. Please zoom in to see the details. β = 8, α = 1.3.

areas in the image. As β increases, dark areas in the image
are illuminated. This value can guarantee the texture of the
image. However, if the β value is too large, it will cause
the image details to be lost. α is used to control the overall
enhancement of the image. As α increases, the overall bright-
ness of the image will increase. This value can guarantee the
details of the image. However, if the α value is too large,
part of the image (especially at the light source) will be
overexposed. In addition, we tested the effect of β and α on
image quality. As shown in FIGURE 9, as the value of β
increases, the value of NIQE will decrease, but the values of
PSNR and SSIM will also decrease. When α is 2 and β is 1,
PSNR and SSIM achieve optimal values. However, in reality,
images with good visual effects may not have large PSNR
and SSIM values [40].

C. REAL-WORLD IMAGE ENHANCEMENT
To verify the generalization of the model, the FD-LOL (face
detection in low-light conditions) [32] data-set is used in the
test. This data-set has real low-light images taken at night,
and is used for face detection in low-light scenes. We used
DSFD (dual shot face detector) [41] method to detect the
face of the original low-light image and the image enhanced
by RetinexGAN. FIGURE 10 shows before image enhance-
ment, face detection missed detections and false detections.

After image enhancement, face detection accuracy is signifi-
cantly improved.

V. CONCLUSION
In this paper, we propose a deep learningmodel based on gen-
erative adversarial networks and Retinex to enhance low-light
images with unpaired data-sets. It uses a decomposition
network with only two convolution layers to decompose a
low-light image into an illumination map and a reflection
map. Then, Retinex with correction coefficients is used to
reconstruct the illumination map and the reflection map into
normal images. Our experiments proved the superiority of
this method. In future work, we will focus on adaptive and
real-time low light image enhancement, and apply this model
to multi-agent systems [42], cyberphysical systems [43], and
automated manufacturing systems [44].
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