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ABSTRACT Warpage of electronic packages is the result of mismatch in the coefficient of thermal
expansion (CTE) between the silicon die (CTE = 2.6ppm/◦C) and the substrate (CTE = 15-25 ppm/◦C).
In ultra-thin packages, the reduced thicknesses can result in even higher package warpage due to the reduced
flexural rigidity. Current approaches to minimize warpage include selecting constituent materials in the
substrate with lower CTE as well as carrying out copper balancing of metal layers which are equidistant
but on opposite sides of the core. In this work, we aim to optimize the metal density of the substrate layers
by using an inverse design framework using Particle Swarm Optimization (PSO) with carefully selected
constraints to minimize the rework required on the electrical tracing artwork. Results show that the inverse
design framework is able to arrive at a 20% reduced warpage by changing local metal densities by just up
to 5%. This is a significant reduction in warpage that is achievable by incorporating minor changes to the
electrical artwork of the substrate. In future, this methodology can be applied to not only minimize warpage
on ultra-thin packages but also enable even thinner ultra-thin package designs to be realized.

INDEX TERMS Bayes method, finite element analysis, global optimization, Markov Chain Monte Carlo
(MCMC), material characterization, particle swarm optimization (PSO), substrate, warpage.

I. INTRODUCTION
As packages and silicon dies grow to allow for greater
functionality and performance while decreasing in thickness
to accommodate the dimensions of the final product they
go into, we are fast approaching the limits of the design
rules. In order to break free from these constraints, new
design methodologies are presently required. Concepts such
as inverse design and optimization are key to unlocking
better electronic designs in the near future, especially for
AI-enabled edge computing applications as well as for 3D
integrated circuits requiring heterogeneous integration.

In this work, we have built an inverse design framework
which combines data-driven approaches such as Markov
Chain Monte Carlo (MCMC), neural networks and global
optimization algorithms with physics-based approaches such
as finite element analysis and measurements from Digital
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Image Correlation (DIC) to realize a more optimum design
in terms of the overall warpage of the package. Once this
framework is established, we use the existing and target
warpage profiles and current metal densities as inputs to
the optimization routine to determine the locations on the
substrate where the metal density should change and by
how much in order to approach the target warpage profile.
Three case studies with the optimization were carried out
with different constraints such that the objective of reducing
the current warpage profile by 20% can be achieved, in a
manner that can be easily translated to the electrical design
of the substrate. In the first case study, the optimization
had no constraints. In the second one, the change in metal
density at every location was constrained to change within
±5% of the original design and in the third one, a decrease
in metal density of up to 30% was used to constrain the
optimization.

This study is organized as follows. In Section II,
we describe and summarize the warpage-associated
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challenges that plague all ultra-thin packages. Section III
describes the overall model framework along with each of
the three phases that ultimately makes up the inverse design
framework. In Section IV, we discuss the results obtained
from the optimization and run three case studies to determine
how the metal design of the substrate should be tweaked for
a lower package warpage. Finally, in Section V, we conclude
our study along with some discussions on the scope for future
work.

II. THE WARPAGE PROBLEM
Warpage of packages is the result of the large coefficient
of thermal expansion (CTE) mismatch between the sili-
con die (CTE = 2.6ppm/◦C) and the organic substrate
(CTE= 15-25 ppm/◦C). In thin packages, the warpage prob-
lem is further exacerbated by the reduced thickness. This
phenomenon can be explained by the mechanics of simple
plate warpagewhere flexural rigidity is inversely proportional
to the cube of the sample / layer thickness.

The conventional approach to tackling this warpage prob-
lem is two-pronged. First, the constituent materials of the
substrate are carefully selected for low CTE. Substrate sup-
pliers are continually developing new low CTE materials
for the core and Ajinomoto Build-up Film (ABF). Second,
copper balancing is carried out on the design where the
difference in percentage of copper a certain distance away
from both sides of the mid-plane is minimized. However,
even perfectly copper balanced printed circuit boards have
been found to warp due to different trace directions in the
different layers [1]. Once the materials are selected, warpage
simulations using finite element analysis (FEA) are carried
out to predict the warpage of the part [2]. The accuracy of
these simulations, however, are limited by the accuracy of the
material properties used for the substrate.

Modelling the electronic substrate can be challenging for
several reasons. First, the electronic substrate is a composite
material, consisting of alternating layers of metal lines and
ABF built up on both sides of the central core. Second,
the metal density of the metal layers is non-uniform and with
different morphology across the substrate.

This modelling challenge has been addressed to varying
degrees of success by two main approaches. The first is
a micromechanics approach [3]–[7] that uses the volume
fraction of copper in each layer to derive the lumped mate-
rial properties of the region. When this technique is used,
the substrate is assumed to be homogenous withmetal density
accounted for using the Reuss, Voigt or other formulations
[3]–[7]. Valdevit et al. have proposed a methodology to
account for the different metal features in the various layers
of the substrate using this micromechanics approach, with
different analytical formulations applied based on the mor-
phology of the copper pattern on the different layers [4].

The second approach is to use trace import simulations
where trace geometry is incorporated into the model geome-
try [5]–[12]. Several authors have demonstrated methodolo-
gies which can successfully incorporate the effect of these

spatially varying material properties in their simulations,
provided the electrical artwork is available to be imported
into the simulations [5]–[12]. The volume of work on this
topic demonstrates that modelling and optimizing substrate
warpage is an important topic in electronic packaging.

In our earlier work, we have shown that accurate inferences
about substrate subsection CTEs can be made by incorporat-
ing an FEA model with MCMC. The FEA model is used to
simulate warpage and this warpage profile is then compared
to the experimentally obtained one to determine the error
between the two profiles. An MCMC analysis is then used
to sample the parameter space to select suitable values for
the CTE to be used in the FEA simulations such that error
is minimized [13], [14]. This analysis can be made more
efficient by using an ANN as a surrogate model for FEA,
resulting in analysis time speed up of up to three orders of
magnitude with a good accuracy of R2 > 0.95 [15].

We later came upwith a surrogatemodel for warpage based
on the underlying metal densities and CTEs and incorporated
PSO into this framework so that inverse design can be carried
out, where a desired profile is provided to the PSO and
the algorithm determines the optimized metal densities that
would result in the desired warpage profile [16], [17]. This
was demonstrated with 3×3 substrate subsections. A similar
frameworkwas also used to learn the stress-strain relationship
of materials such as adhesives in the package [18].

In this work, we carry out a global sensitivity analysis
to show that in-plane CTE of the substrate has the great-
est sensitivity to warpage. We further demonstrate that the
proposed framework can be extended to infer the underlying
metal densities with the substrate divided into 4×4 substrate
subsections. We show comparisons of the PSO performance
on 3×3, 4×4 and 5×5 substrate subsections which indicate
4 × 4 is optimum for low error and fast run time. Finally,
we study the effect of adding constraints to the PSO search
space so that changes in the metal density can be incorporated
in an efficient manner accounting for realistic possible min-
imal design changes to the trace patterns without perturbing
the fundamental design of the stack too much. Without these
constraints, the PSO would return solutions that cannot be
implemented.

III. OVERALL MODEL FRAMEWORK
The objective of this work is to optimize the metal densities
in the substrate of an ultra-thin package such that the warpage
of the package may be reduced. Addressing this optimization
using conventional approaches such as finite element analy-
sis (FEA) alone or by conducting a series of design of exper-
iments (DOE) would be tedious and expensive. In this work,
we propose an AI-assisted modelling framework to achieve
this optimization. For computational efficiency, the optimiza-
tion is run on a surrogate model for warpage which takes
into account the metal density at different subsections of the
substrate and predicts the resulting warpage profile.

The proposed framework consists of three main phases
as shown above in Figure 1. In Phase A, we assemble the

64044 VOLUME 9, 2021



C. Selvanayagam et al.: Inverse Design for Low Warpage Ultra-Thin Packages Using Constrained PSO

FIGURE 1. Flow chart showing overall model framework and how the
data flows between the different phases. The boxes shaded in grey
represent the specific computational tools / methods used in the
framework.

dataset that is required to build a surrogatemodel for warpage.
This dataset consists of the metal density of each layer at
each substrate subsection and the corresponding CTE of that
subsection. The metal densities are determined by running
image analysis on the electrical artwork of each layer of the
substrate. The image analysis code works on the basis of
counting pixels. The CTE, on the other hand is determined by
carrying out a Markov Chain Monte Carlo (MCMC) analysis
using the experimental warpage profile from Digital Image
Correlation (DIC) and a warpage model from FEA or Artifi-
cial Neural Network (ANN).

In Phase B, the datasets assembled in Phase A are used
to develop a two-step surrogate model for warpage. We do
this using a Gaussian Process Regression (GPR) to tie the
substrate metal densities to the CTE and then tie the CTE
in turn to the warpage using an ANN. Finally, in Phase C,
we used the Particle Swarm Optimization (PSO) routine to
determine the optimum metal density in the substrate for the
target warpage profile.

A. PHASE A: ASSEMBLING THE DATASET
Before we can create the surrogate model in Phase B, we first
need to gather and augment the training dataset for the surro-
gate model. Specifically, we require the coefficient of thermal
expansion (CTE), that has been identified as the material
property with the greatest sensitivity to warpage of the part,
and its correlation to the corresponding metal layer densities
at each substrate subsection.

1) CTE OF SUBSTRATE SUBSECTIONS
The CTE of each substrate subsection was determined
using the data-driven approach of Markov Chain Monte
Carlo (MCMC) with the physics-driven approach of FEA.
The MCMC is a subset of Bayesian inference [19], [20].
Bayesian inference allow us to update our belief about an
event (or its probability) based on new data. With MCMC,
the Monte Carlo property results in the algorithm randomly
sampling the parameter space to determine a new posterior
(probability of the event given the data). The Markov Chain
property means only the current and new values for poste-
rior are compared to determine whether the new parameter
is accepted and added to the chain (sequence) of accepted
parameters. Finally, the probability density function of the
parameters in the chain determine the most probable value
for the parameter capturing the spread / uncertainty in its
estimation too. This approach of MCMC driven directly by
FEA has been previously described in detail and shown to be
effective in predicting the CTE of the substrate subsections
accurately [13], [14], though it can be time-consuming. For
instance, 1000 iterations of an MCMC analysis driven by
FEA simulations to infer four parameters takes about 6 hours
to complete. As the number of parameters to infer increases,
so does the number of MCMC iterations for successful con-
vergence and hence analysis time.

We have also previously demonstrated that using an ANN
as a surrogate model for FEA results in a speed up of up
to three orders of magnitude with a very good accuracy of
R2 > 0.95 [15]. As opposed to surrogate models such as
linear and quadratic approximations and the response surface
method, ANNs can accommodate a large number of inputs
and outputs without significant impact on error, provided the
training dataset is large enough [21], [22]. The MCMC/FEA
approachwasmademore computationally efficient by replac-
ing the FEA model with an ANN that has been trained on the
FEA inputs and outputs [16]–[18].

FIGURE 2. Details of FEA model (a) 3D model (b) substrate divided into
16 subsections with unique CTEs (c) four lines along which the warpage
profile is probed (d) sample result of warpage profile along the four lines
concatenated together to represent the overall warpage pattern.
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The MCMC/ANN approach is used here. The 3D FEA
quarter model consisting of the die, substrate and stiffener,
as shown in Fig. 2(a). Substrate area is less than 1600mm2

with die size less than 200mm2. Total thickness of the pack-
age is less than 1.5mm. In order to represent the varyingmetal
densities across the substrate (which would result in varying
CTEs across the substrate), we divide the substrate into dif-
ferent subsections. For example, in Fig. 2(b), we divide the
substrate into a 4 × 4 array. A unique CTE is then assigned
to each of the resulting 16 segments. The substrate warpage
profile along the four lines (Fig. 2(c)) is then extracted from
the results of the FEA simulation and plotted separately as
shown in Fig. 2(d). All materials are assumed to be linear
elastic with temperature-dependent properties assigned to the
first-level interconnect layer. The loading condition was a
single step temperature ramp down from 150◦C to room
temperature.

The training dataset for the ANN is generated by running
this FEA simulation for 100 runs, each time with a different
set of 16 CTEs as inputs and generating the corresponding
warpage profiles. Once trained, the ANN is coupled with the
MCMC and the warpage profile from Digital Image Correla-
tion (DIC) to infer the most probable CTE for each segment.
The entire MCMC analysis is automated and carried out
in Matlab R©using the MCMC toolbox developed by Marko
Laine [23]. As the number of MCMC iterations is in the order
of a few thousands, using the surrogate model instead of FEA
will result in a significant speed up of the simulation flow by
three orders of magnitude. Our results (in the future sections)
show that there is indeed very good correlation in the warpage
profile comparing that based on the CTE inferred by the
MCMC and the experimental measurements of warpage.

2) METAL DENSITY FOR SUBSTRATE SUBSECTIONS
An image analysis by pixel counting on each layer of the
electrical artwork of the substrate was carried out using
Matlab R© to determine the metal density. The image of the
entire layer is converted to a greyscale image, it is cropped
equally according to the number of subsections and then the
metal density of each subsection is calculated as the number
of grey pixels in the subsection over the total number of pixels
in the subsection.

3) AUGMENTING THE DATASET
Running this analysis once with a substrate divided into
4× 4 segments would result in a dataset consisting of 16 dat-
apoints. This is far too few datapoints to train the surrogate
model. To increase the size of the training dataset, we run this
entire analysis 12 times, each time with the substrate divided
into a different number of segments. There is a limit to the
number of subsections that theMCMC can accurately accom-
modate. Through experimenting with the code, we have
found that 25 CTEs can still be inferred accurately for the
analysis we are conducting. With more substrate subsections,
a larger number of FEA runs is required to train the ANN. The
substrate subsections considered and the corresponding FEA

TABLE 1. List of substrate subsections used.

runs to train the ANN are detailed in Table 1. In this manner,
the training dataset for the surrogate model was enhanced
from a mere 16 all the way up to 232.

B. PHASE B: SURROGATE MODEL FOR WARPAGE
In Phase B, we build a surrogate model for warpage using
a sequence of GPR and an ANN, which when given the
metal density of the substrate subsection across the different
layers, calculates the final resulting warpage profiles across
the substrate. A similar surrogate model for warpage was
used in our previous work for optimization studies with rea-
sonably good results [16], [17]. The key improvement over
our previous work is that we have extended this model to
4× 4 subsections, instead of 3× 3 used previously to enhance
the spatial resolution of the analysis.

1) GAUSSIAN PROCESS REGRESSION (GPR)
The Gaussian Process Regression (GPR) was selected as
the surrogate model to link the metal densities on the eight
layers of the substrate to the CTE. We selected the GPR
over the ANN here based on the prediction error as the error
metric was significantly larger for the ANN. As the sample
size is still relatively small, a k-fold cross-validation training
methodology was adopted with k = 10. In our previous work,
a k-value larger than 10 was used, resulting in the GPR
model overfitting the training dataset. While this resulted
in low errors for the training dataset, the errors were large
for the test dataset though. With a k-value of 10, there are
several points that are not predicted accurately but the overall
GPR performance is still significantly better than the ANN
as shown in Figure 3. We used an eight-parameter vector
describing the metal density on each of the eight layers of
the substrate and the corresponding CTE, both of which were
determined in Phase A.

2) ARTIFICIAL NEURAL NETWORK (ANN)
For the prediction of the warpage profile given the CTE,
we used an ANN as the surrogate model because this has
already been established in Phase A and has good accuracy.

64046 VOLUME 9, 2021



C. Selvanayagam et al.: Inverse Design for Low Warpage Ultra-Thin Packages Using Constrained PSO

FIGURE 3. Scatter plot showing CTE obtained from MCMC and that from
GPR and ANN surrogate models. CTE from GPR correlates to MCMC
output significantly better than the ANN.

These two models combined together represent the overall
surrogate model for warpage. The GPR converts the input
vector of 128 elements (4 × 4 × 8 layers = 128) into a CTE
vector of 16 elements (4 × 4 = 16 substrate subsections).
The ANN then uses the 16-element CTE vector to compute
the warpage profile along the 4 lines.

C. PHASE C: CONSTRAINED GLOBAL OPTIMIZATION
Finally, in Phase C, we optimize the metal density by running
the global optimization algorithm (Particle Swarm Optimiza-
tion) on the surrogatemodel for warpage fromPhase B. Aswe
provide the target warpage profile to the algorithm for the
optimization, this approach can also be thought of as enabling
inverse design of the substrate. The inverse design approach
starts with the desired outcome and through the use of AI
and optimization algorithms, thematerial properties or design
parameters that enable us to approach the desired outcomes as
closely as possible are determined. Similarly here, we specify
the final desired target warpage profile and the output from
the algorithm are the metal density over the substrate that will
result in that warpage. Again, for this analysis, Matlab R© and
the Global Optimization toolbox in it was used [24].

IV. RESULTS AND DISCUSSION
A. GLOBAL SENSITIVITY STUDY
We first carried out a global sensitivity analysis to determine
which materials and material properties in the substrate have
the largest contribution to the warpage of the part.We focused
on the substrate and stiffener adhesive as these materials are
easily tunable for reduced warpage whereas die and stiffener
materials are fixed. Thematerial properties considered for the
substrate include the Young’s Modulus (E), in plane and out
of plane CTE (CTEx−y, CTEz), yield stress (σy) and tangent
modulus (Et ). For the adhesive, as it is an isotropic material,

the samematerial properties were considered but with a single
value for CTE.

FIGURE 4. Plot showing results of sensitivity analysis to study which
parameters have the largest impact on substrate warpage plotted on
logarithmic scale. In-plane CTE (CTEx−y ) has the greatest sensitivity.

The first order sensitivity coefficients indicate the contri-
bution of each individual parameter towards the total model
variance. This is shown in Figure 4 on a logarithmic scale in
order to be able to visualize the significantly smaller contri-
butions of some of the parameters. In-plane CTE dominates
warpage behavior. This is followed by the substrate modulus,
with a first order sensitivity coefficient which is two orders
of magnitude lower. As the in-plane CTE is the most sensi-
tive parameter, that is the only parameter considered in this
framework.

B. MARKOV CHAIN MONTE CARLO (MCMC)
The MCMC analysis was carried out 12 times with the sub-
strate divided into different subsections as shown in Table 1.
The CTEs obtained from this analysis are shown graphically
in Figure 5. This figure shows how the size and shape of
each substrate subsection changes when divided differently.
The difference in size and shape adds depth to the dataset
for training the surrogate model in Phase B as the metal
layer density and morphology in these regions would be
significantly different. We observe from Figure 5 that a larger
number of subsections result in a finer resolution CTE output.
The CTE between adjacent substrate subsections can be quite
different and this is attributed to the wide variations in under-
lying metal densities.

Figure 6 shows the displacement plots obtained from the
ANN (surrogate model for CTE to warpage) using the CTEs
inferred by theMCMC for each of the 12 substrate subsection
patterns. Though there is larger error at the start and the end
points of the four lines, in general the inferred CTEs result
in displacement plots that look very similar to that obtained
experimentally. This indicates that the MCMC is providing
reasonable inference of CTE in all cases even when trying to
fit a larger number of variables.
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FIGURE 5. Graphical representation of CTE inferred from MCMC analysis
with the substrate divided into different subsections. Depending on the
underlying metal densities, even adjacent substrate subsections can
exhibit very different CTEs. Different subsections were used to augment
the training dataset used to train the surrogate model in Phase B.

FIGURE 6. Displacement plots obtained from ANN using CTE values from
MCMC. In general, the displacement plot correlate well to the
experimental one, indicating that the CTEs from MCMC are accurate.

C. PARTICLE SWARM OPTIMIZATION (PSO)
Particle swarm optimization [25] was first introduced
in 1995with applications to optimizing continuous non-linear
functions and training neural networks. Since then, the opti-
mization algorithm has gained popularity due to its ability
to converge faster compared to genetic algorithms. Here,
the objective is to determine the optimize metal density
such that the error between the warpage profile from mea-
surements and that from the surrogate model is minimized.
In each instance the swarm size was varied from 100 to
200 particles to determine the optimum swarm size for

reduced error. Default values for self-adjustment weight and
social-adjustment weight of 1.49 were accepted in all cases.
The analysis terminates when the relative change in the objec-
tive value over the last 20 iterations is less than 1× 10−6.
The PSO was first carried out using the baseline experi-

mental warpage profile to check whether similar CTEs and
metal densities to the substrate used in the experiments would
be obtained. This analysis was carried out using the sub-
strate with subsections 3 × 3, 4 × 4 and 5 × 5. Larger
number of substrate subsections would increase the reso-
lution of the metal density optimization at the expense of
analysis time. Subsequently, this framework was used to
study what changes to the metal densities are required for a
20% reduced warpage profile. We also considered three case
studies here where constraints were introduced to the PSO
search space such that recommended changes to the metal
density would be easier and more practical to implement
from an electrical-mechanical co-design point of view. These
include limiting the percentage change in metal density to
within ±5% at each substrate subsection and implementing
a ‘‘decrease only’’ rule to the PSO as it is easier to remove
metal from the design than to add to it.

FIGURE 7. Displacement plots obtained from PSO for models using
substrate subsections 3 × 3, 4 × 4 and 5 × 5 compared to the
experimental profile. The model with 3 × 3 subsections has a higher
deviation than the other two models.

1) PSO USING BASELINE WARPAGE PROFILE FROM
EXPERIMENTS
Results from the PSO analysis which were carried out using
the substrate with subsections 3 × 3, 4 × 4 and 5 × 5 are
shown in Figures 7 to 10. Figure 7 shows the final displace-
ment profile obtained from the PSO for the analysis using
substrate subsections 3× 3, 4× 4 and 5× 5 compared to the
original warpage profile from experiment that we are trying to
replicate. There is a slightly higher deviation observed with
3 × 3 substrate subsections compared to 4 × 4 and 5 × 5.
This deviation is quantified in terms of the sum squared error
between the PSO output and the experimental warpage profile
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FIGURE 8. Plot of sum square errors and PSO run time for models with
substrate subsections 3 × 3, 4 × 4 and 5 × 5 compared to the experimental
profile. Lowest sum squared error is with 4 × 4 substrate subsections.

FIGURE 9. Graphical representation of the difference between the
intermediate CTE from PSO and that inferred by MCMC. As the number of
substrate subsections increase, so does the maximum CTE difference.

on Figure 8. Also plotted on Figure 8 is the time taken for
the PSO analysis. The analysis with 4 × 4 subsections is
the middle ground for low sum squared error and reasonable
simulation time. The reduced SS from the cases with 4 × 4
and 5× 5 substrate subsections shows that the greater spatial
resolution improves the accuracy of the analysis. There is a
slight increase in SS with 5 × 5 substrate subsections as the
PSO has a much larger number of variables to optimize.

The difference between the intermediate CTE values
obtained from the PSO and that inferred from the MCMC
is shown in Figure 9. As the number of subsections
increase, the deviation in CTE between the PSO and
MCMC also increases. The maximum CTE difference in a
3 × 3 substrate subsection is 2.9 ppm/◦C. This increases
to 7.3 and 9.7ppm/◦C with 4 × 4 and 5 × 5 substrate

FIGURE 10. Scatter plot of the metal density of each substrate subsection
obtained from image analysis and PSO. Larger scatter outside the ±10%
error bands is observed as the number of substrate subsections increases.
The proportion of datapoints falling outside the ±10% range with 3 × 3,
4 × 4 and 5 × 5 substrate subsections is 28%, 31% and 40% respectively.

subsections respectively. A similar trend is observed
in Figure 10 where we plot the metal density obtained from
image analysis against that obtained from PSO. With more
substrate subsections, there are a larger proportion of points
falling outside the ±10% range. With 3× 3, 4× 4 and 5× 5
substrate subsections, the proportion of datapoints falling
outside the ±10% range is 28%, 31% and 40% respectively.
In making these comparisons, we are assuming that there is
only one unique solution to the metal density and CTE which
results in the experimental warpage profile which is probably
not true. Still, we can confidently claim that the increased
errors with 5 × 5 points is due to the increased complexity
associated with more variables. In order to reconcile the
reduced spatial resolution with a fewer substrate subsections,
and the larger error associated with optimizing over larger
search spaces with a larger number of substrate subsections,
the rest of the optimizations carried out in this section will
focus on substrate subsections of 4× 4.

2) CASE STUDY 1: DESIGNING FOR 20% REDUCED
WARPAGE WITHOUT CONSTRAINTS
In this section, we used the framework to determine the metal
density map that would result in a reduction of warpage by
20% without imposing any constraints at all. To test out
the effectiveness and validity and limits of the optimization
framework, we started with an experimental warpage profile
that has been reduced by 20% and used the PSO to search
for the appropriate metal density map that would result in
this warpage. The change in CTE and metal density maps are
shown in Figures 11 and 12. In this initial model, the PSO
search space was purposely left unconstrained. Analysis
reveals that the resulting CTE map requires changes at some
subsections by up to 8 ppm/◦C. The resulting metal density
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map calls for large changes in metal density from a decrease
of 40% to an increase of 45% at certain locations of certain
layers of the substrate which is not feasible to implement
without disrupting the basic electrical design artwork.

FIGURE 11. Graphical representation of the CTE change recommended by
PSO for a 20% reduced warpage compared to the experimentally
obtained one.

FIGURE 12. Graphical representation of the metal density changes
needed based on inferences from PSO using the original warpage profile
and PSO considering the 20% reduced warpage with no other imposed
constraints.

3) CASE STUDY 2: DESIGNING FOR 20% REDUCED
WARPAGE WITH METAL DENSITY CHANGE CONSTRAINED
TO WITHIN ±5%
Next, we implemented a constrained PSO where the upper
and lower bounds of the search space is constrained to within
±5% of the original metal density. Again, the CTE and metal
density change maps are shown in Figures 13 and 14. As a
result of the applied constraints, the change in CTE and metal
density required to achieve the 20% reduction in warpage is

FIGURE 13. Graphical representation of CTE change between PSO using
the original warpage profile and the PSO using the 20% reduced one with
metal density changes constrained to ±5%.

FIGURE 14. Graphical representation of metal density change between
PSO using the original warpage profile and the PSO considering 20%
reduced warpage with metal density changes constrained to ±5%.

significantly reduced. The maximum change in CTE required
is about 4 ppm/◦C and the maximum change in metal density
requires at any location is 5%, as required by the applied
constraint. While in Figure 12, some layers in the substrate
(Layer 2, 7 and 8) are exempted from large changes in metal
density; in Figure 14, all the layers and subsections undergo
a seemingly random distribution of increases and decreases
in metal density, indicating that the optimization is severely
constrained. Naturally, these additional constraints applied to
the search space result in a displacement profile that deviates
from the design profile.

As shown in Figure 15, while a PSO with no con-
straints can arrive at the design profile quite accurately
(SS = 2.3 × 10−3), the PSO with constraints deviates at
certain sections, resulting in an SS of 6.9× 10−3. Thesemetal
density changes with the constraints will still be useful as
the final warpage of the part is determined as the difference
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FIGURE 15. Displacement plots obtained from PSO with no constraints
and with metal density change constrained to ±5% compared to the
design profile.

between the maximum and minimum of the displacement
profile. For the PSO with constraints, this warpage quantity
still meets the requirement of a 20% reduction, even if the
displacement profile does not exactly match the 20% reduced
profile. More importantly, these changes will be easier to
incorporate into the metal density design with minimal dis-
ruption to electrical performance.

FIGURE 16. Graphical representation of CTE change between PSO using
the original warpage profile and the PSO using the 20% reduced one with
metal density changes constrained to decrease by up to 30%.

4) CASE STUDY 3: DESIGNING FOR 20% REDUCED
WARPAGE WITH METAL DENSITY CHANGE CONSTRAINED
TO DECREASE BY 30%
Tweaking substrate design is easier to accomplish if the local
metal density is decreased as this can be accomplished by
removing metal by simply adding features like degassing
holes. Increasing the metal density might not always be easily
accomplished as adding these features can interfere with the
electrical design and associated cross talk compromising on

FIGURE 17. Graphical representation of metal density change between
PSO using the original warpage profile and the PSO using the 20%
reduced one with metal density changes constrained to decrease by up
to 30%.

FIGURE 18. Displacement plots obtained from PSO with no constraints
applied and with two different constraints applied to the metal density
change (±5% and decrease up to 30%) compared to the design profile.
Note that the zero displacement reference point corresponds to the
center of the substrate.

the electrical signal integrity and reliability. In this section,
we run the optimization with the constraint that the metal
density at each region can only decrease by up to 30%.

The corresponding results are shown in Figures 16 to 18.
Figures 16 and 17 show the CTE and metal density maps
respectively. The maximum CTE change is about 6 ppm/◦C
and the maximum decrease in metal density required is about
30%. Figure 17 shows that the optimization is severely lim-
ited by the ‘decrease only’ constraint as many locations on
the substrate subsections are at zero change in metal density.
Figure 18 shows the displacement plot for all three case stud-
ies on one plot - with no constraints applied, with a constraint
of metal density change of ±5% and with a constraint of
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TABLE 2. Summary of case study results.

metal density decrease of up to 30%. Table 2 summarizes
the minimum and maximum CTE change as well as the SS
between the PSO and the desired warpage profile. Akin to
the observed trends in the previous section with the imposed
constraint of ±5% change, the PSO with up to 30% decrease
also results in a higher SS of 6.3 × 10−3 between the PSO
and the desired warpage profile. It is also interesting to note
that large local changes in CTE (as observed in Case Studies
1 and 3) do not necessarily result in a lower SS, indicating
that CTEs of all locations contribute to the warpage profile
and not only the subsections where large changes occur.

V. CONCLUSION AND RECOMMENDATIONS
In this work, we have developed an inverse design frame-
work to design low warpage substrates by making changes to
the underlying metal density distribution across the multiple
layers of the substrate. We do this by using physics-driven
approaches like FEA and data-driven approaches likeMCMC
and global optimization with carefully selected constraints.
Results from implementing this framework indicate that a sig-
nificant reduction in warpage of an ultra-thin package of 20%
can be achieved through various tweaks to the local metal
densities. We have demonstrated that a wide range of con-
straints such as a mere ±5% change or up to a 30% decrease
in local metal densities can easily and effectively enable this
reduction in warpage. These changes in the substrate metal
design are small enough to be incorporated during the sub-
strate design stage, without requiring a complete redesign of
the substrate. We could not have arrived at this outcome using
FEA simulations alone due to the sheer volume of simulations
and analysis time that would have been required.

One drawback of this approach using MCMC is that the
solution is not unique and there could be many substrate
subsection CTE combinations that result in the same warpage
profile. In future, this drawback will be addressed by includ-
ing an additional module into the framework to determine
the substrate subsection CTE using FEA instead of MCMC.
We will also continue to further verify these results using
trace import simulations and build samples to measure the

actual warpage improvements. The framework presented in
this paper is modular and can be paired with any suitable
surrogate model or optimization algorithm. The choice of sur-
rogate model and optimization algorithm is problem-specific,
with different models and algorithms working more accu-
rately and efficiently for different datasets. Other options
for the surrogate model include random forest and support
vector machine.While we have focused on PSO here, we also
plan to explore other optimization algorithms such as cross
entropy and genetic algorithm to evaluate how they perform
in comparison to the PSO that is used here. Finally, we will
implement tensor train decomposition to analyze the warpage
patterns across the entire surface of the substrate instead of
just along the four diagonal lines. In other words, we will aim
to solve the inverse design problem in two dimensions rather
than just one.
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