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ABSTRACT Targeting at the slow convergence and the local optimum problems of particle swarm
optimization (PSO), a large-scale bi-level particle swarm optimization algorithm is proposed in this paper,
which enlarges the particle swarm scale and enhances the initial population diversity on the basis of multi-
particle swarms. On the other hand, this algorithm also improves the running efficiency of the particle swarms
by the structural advantages of bi-level particle swarms, for which, the upper-level particle swarm provides
decision-making information while the lower level working particle swarms run at the same time, enhancing
the operation efficiency of particle swarms. The two levels of particle swarms collaborate and work well with
each other. In order to prevent population precocity and slow convergence in the later stage, an accelerated
factor based on increasing exponential function is applied at the same time to control the coupling among
particle swarms. And the simulation results show that the large-scale bi-level particle swarm optimization
algorithm is featured in better superiority and stability.

INDEX TERMS Bi-level particle swarm, swarm intelligence, particle swarm optimization, large-scale
particle swarm.

I. INTRODUCTION
Particle Swarm Optimization (PSO) is an evolutionary com-
puting technique [1], [2], which is derived from the study on
birds predation behavior. Similar to the genetic algorithm,
PSO is also an iteration-based optimization tool. It firstly
initializes a set of random solutions in the system, takes
each individual as the particle having no weight or vol-
ume in n-dimension space, and then searches the optimum
value by iteration, so that the particles in the solution space
could follow the optimum particle to search. Due to its
advantages of rapid searching speed, good initial conver-
gence, and easy realization, the PSO algorithm has been
widely used in many fields [3]–[11]. However, it also has
disadvantages, especially when solving complicated prob-
lems, such as bad diversity performance in later stage,
reduced evolution speed, and unsatisfactory optimization
accuracy, etc. Though PSO has little parameters to be
adjusted, improper setting of parameters could make the
algorithm trapped in problems like ‘‘precocity’’ and local
optimum, etc.
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To solve these problems, many scholars have conducted
researches in various aspects. Some tried to improve the
algorithm by parameter setting, for which, the inertia
weight [12]–[15] and the accelerated factor [16], [17] were
mainly adjusted. That’s because the inertial weight setting
affects both the global and the local search capabilities of the
algorithm. The appropriate inertial weight should be selected
to balance the search capability and algorithm accuracy. On
the other hand, the setting of learning factor determines the
influences of individual historical optimal value and group
historical optimal value on particle moving trajectory. Too
large learning factor may make the particles jump out of the
optimal area. But too small learning factor may cause particle
oscillation in areas far away from the target. In addition, some
other scholars tried to improve the optimization performance
of the algorithm by changing population topology struc-
ture [18] because the change of topology structure can avoid
population diversity loss and prevent the algorithm from
being trapped in local optimum problem. However, there have
no topology structure that is suitable for all benchmark func-
tions. The selection of topology structure is actually related
to specific problem model. Besides, the way to form mixed
PSO [19] by combining with genetic algorithm [20]–[22], ant
colony algorithm [23]–[25], or other optimization algorithms,
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can make up the PSO defects to some certain extent. But
all these algorithm improvement are based on single-swarm,
which though improve the algorithm performance to certain
extent, still have their problems like precocity convergence
and low solution accuracy. With the in-depth study on algo-
rithm, some scholars started to studymulti-swarms in order to
improve the algorithm. Luo Dexiang divided a single particle
swarm into three particle swarms, and made comparison on
the optimal values obtained by the independent operation of
the three sub-swarms in order to get the global optimum [26].
Although this algorithm prevent the local optimum problem
to a certain extent, it sacrifices the accuracy. In literature
[27], Lovbjerg et al. divided the population into multiple
sub-populations. And in this paper, the optimal particles of
the sub-populations was applied to replace the population
optimal particles in the basic PSO algorithm speed update
formula, which reduces the local optimum risk of algorithm.
However, the only interaction among sub-populations is the
parental reproduction among different sub-populations, and
the information exchange between sub-populations is insuf-
ficient. Liu et al. [28] used the K-means clustering algorithm
to divide the population into several sub-populations and
strengthen the information exchange between particles by
periodically reconstructing the sub-populations. In order to
avoid local optimum, some scholars proposed a particle
swarm optimizer with two differential mutation [29], and
some others introduced the crossover operator to improve the
performance of the bl-level particle swarm optimization [30].
Although this algorithm prevents the local optimum problem
to some certain extent, it prolongs the running time of the
algorithm.

Targeting at the above problems, we propose a new large-
scale bi-level particle swarm optimization algorithm, which
can better balance the global search and local search ability of
the algorithm and maintain good calculation accuracy while
reducing the running time; in the bi-level particle swarm opti-
mization structure, the learning factor strategy of exponential
function distribution is proposed to guide the lower-level
working particle swarm optimization, the upper-level particle
swarm is used to optimize the evolution direction while the
lower-level particle swarm is used to increase population
diversity, and the upper and lower levels operate in coordi-
nation and work together; the scale of the particle swarm is
enlarged and the lower level particle swarm operates in paral-
lel, which improves the population diversity of the population
in the initial stage, improves the accuracy of the algorithm and
reduces the running time. Finally, we verify the effectiveness
of the algorithm through comparative experiments.

The rest part of this paper is composed in structure as
below: in Chapter 2, we briefly review the relative methods
of basic particle swarm optimization (BPSO); in Chapter 3,
we introduce the method proposed in this paper in detail;
and in Chapter 4, we introduce our experiment in detail
and the final experimental results; and finally, we provide a
summary of our research work and a prospect for future work
in Chapter 5.

II. THE BASIC PARTICLE SWARM OPTIMIZATION
ALGORITHM THEORY
As for the basic particle swarm optimization it firstly initial-
izes n random particles as a particle swarm
X = (X1,X2, . . . ,Xn), and each particle refers to one
potential optimal solution, d refers the dimensions which
equals the number of unknowns of to-be-solved problems.
Suppose that the position of No.i particle in d-dimension
search space is expressed as: X i = [xi1, xi2, . . . , xid ]T , and
the velocity is expressed as V i = [vi1, vi2, . . . , vid ]T , all
particles have a corresponding fitness value that is determined
by the optimized function, and the fitness value is used to
judge the particle performance. During each iteration, each
particle should be recorded for two positions: one is P i =
[Pi1,Pi2, . . . ,Pid ]T , which is the best position that Particle Xi
has searched, and the other isG = [G1,G2, . . . ,Gd ]T , which
is the best position that the particle swarm has searched. Each
particle adjusts its updated position by tracking these two
positions. And the PSO achieves optimum searching by such
population circulated iteration. For the update formula, please
formula (1) and (2).

Vid (k + 1) = ωVid (k)+ c1r1 (Pid (k)− Xid (k))

+ c2r2 (Gd (k)− Xid (k)) (1)

Xid (k + 1) = Xid (k)+ Vid (k + 1) (2)

In formula (1) and (2), ω is the inertia weight, which
significantly affects the search capability of the algorithm.
Larger ω is good for the global search while the smaller one
is good for the local search; k refers to the current iteration
times; c1 and c2 refer to the accelerated factors, which are
used to adjust the step length of the particle moving towards
the individual best position and the global best position. But
too large or too small accelerated factors may make the
particles far away from the optimum or result in particle
oscillation. r1 and r2 are the random numbers distributed
between [0,1]. The pre-determined maximum iteration times
or the optimization result satisfying the accuracy requirement
should be the condition for iteration termination of the basic
particle swarm optimization. The global extreme value G at
the time when the algorithm terminates is the final optimum.
In order to improve the search efficiency and prevent particles
from getting out of the search space, particle velocity at
each dimension is restricted between [−Vmax,Vmax]. And
commonly, Vmax will not exceed the width of the particle.
In the same way, the particle position at each dimension
is also restricted between [−Xmax,Xmax]. If there’s particle
leaving the solution space, this range would be applied to re-
update particle information.

The BPSO is not sensitive to environment changes, and can
be easily affected by P i or G, so that it is difficult to converge
to the global optimum. Especially in the complex multi-
modal functions in high-dimensional space, these functions
have many local optimums, which can easily attract particle
swarms, making the algorithm fall into the local optimum and
precocity convergence. Experiments indicate that the ways to
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change the inertia weight ω or accelerated factors c1 and c2
have no significant effects in improving the efficiency and
stability of the algorithm.

III. LARGE-SCALE BI-LEVEL PARTICLE SWARM
OPTIMIZATION ALGORITHM
A. BI-LEVEL MULTI-PARTICLE SWARM
Most optimization made to particle swarms previously were
targeted at current swarm evolution. However, PSO for single
swarm particles could fall into local optimum easily, and
has disadvantages of low search efficiency and bad stabil-
ity performance in later stage. Compared to the PSO for
single swarm of particles, multi-particle swarm optimization
algorithm is featured in a significant structural advantage:
when a specific particle swarm falls into local optimum, other
particle swarms can provide it with their particle information
to help it get rid of local optimum. Information exchange
among multiple particle swarms can greatly improve the
search efficiency of particle swarms in later stage. On the
other hand, it is generally believed that the larger the pop-
ulation size, the higher accuracy and the better stability of the
PSO. In order to get the complicated problem solved faster,
the particle swarm size can be enlarged to broaden the search
range of the particle swarm and enhance the exploration
capability of the population.

To balance the exploration and development capabilities of
particle swarms, a large-scale bi-level PSO was proposed in
this paper, which makes the particle swarms play a greater
role with large scale, and overcome the local optimum and
slow convergence of single-level particle swarm by intro-
ducing bi-level particle swarm structure. For the algorithm
structural diagram, please see Figure 1 below.

FIGURE 1. Schematic diagram of large-scale bi-level particle swarm
structure.

In Figure 1, the large-scale bi-level PSO algorithm is
divided into upper and lower levels. The lower level particles,
which contain rich information, are divided into small sub-
populations. Formula (3) shows the velocity information of
No.i particle in No.j sub-population of the lower level. For-
mula (4) shows the current position of No.i particle in No.j
sub-population of the lower level. And Formula (5) shows the
individual extreme value of No.j sub-population of the lower
level.

V jid =
[
Vji1,Vji2, . . . ,VjiD

]T (3)

X jid =
[
Xji1,Xji2, . . . ,XjiD

]T (4)

P jid =
[
Pji1,Pji2, . . . ,PjiD

]T (5)

Each lower-level working particle swarm can find an opti-
mal solution of sub-population, which affects the movement
of particles in the swarm to a certain extent. The lower-
level particle swarm provides optimal particle information,
and uses the mean value of the optimal particle information
to seek the global optimum. And the upper-level decision-
making particle swarm Ps collects the optimal information
of the lower-level working particle swarm P j (j is the label
of the lower-level particle swarm), and processes the opti-
mal information to generate decision information and feed
it back to each lower-level working particle swarm. In for-
mula (6), the population with size of N can be divided
into m sub-populations. The size of sub-population P j:∣∣Pj∣∣ = floor (N/m), where floor is rounded down, and
j = 1, 2, . . . ,m. In formula (7), Xxs is used as the decision-
making information of the upper-level particle swarm to
guide the evolution direction of the lower-level particle
swarms, conduct the lower-level working particle swarms to
explore the area that may possibly contain the optimum, and
make the lower-level particles fly toward the optimal position.
When a certain particle swarm in the lower-level falls into the
local optimum, the upper decision-making particle swarm can
help it get rid of the local optimum.

P̄ =
P1g + P2g + . . .+ Pmg

m
(6)

Xxs = P̄ − X jid (7)

In the early stage of the iteration, the lower-level work-
ing particle swarms are distributed and scattered randomly.
In order to enhance the exploration capability of the algo-
rithm in the early stage, the guidance of the upper-level
decision-making particle swarm to the lower-level working
particle swarms should be loosely coupled. In the later stage
when the lower-level particle swarms tend to the optimal
solution and the lower-level working particle swarms have
richer information, the way to strengthen the guidance effects
of the upper-level decision-making particle swarms on the
lower-level working particle swarms can better improve the
exploration and development capabilities of the algorithm.
In this case, it is proper to adopt the exponential distribution
learning factor strategy.

R = xα, x =
i
s
(α ≥ 1) (8)

vk+1jid = ω
vkjid+c1r1

(
Pkjid − X

k
jid

)
+ Rc3Xxs (9)

X k+1jid = X kjid + V
k+1
jid (10)

The numerical value of a in formula (8) needs to be set
according to the specific processing cases. Combining formu-
las (7) and (8), the iterative formulas evolve from formulas (1)
and (2) to formulas (9) and (10).

B. ANALYSIS ON PARAMETERS OF POPULATION SIZE
As for the BPSO, the population size N is an important
parameter, representing the number of particles in the particle
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swarm and playing a significant role in algorithm conver-
gence speed, accuracy and stability. Generally, the number
of particles in the research process is determined by the
complexity of the problem. In this paper, N = 50, 200,
400, 800 were selected to analyze its effect on the algorithm
performance. Figure 2 indicates the curve of fitness value
changes with the increase of iteration times when N is taken
with different numerical values.

In the experiment, the number of iterations was set as 500,
and the population size N was changed. Then, 30 times of
evolutionary operations were conducted on the testing func-
tions respectively. Then, the effects of N on algorithm perfor-
mance are as shown in Figure 2. It can be seen from Figure 2
that, with the increase of population size, the PSO evolution-
ary operation shows better effects: the greater the particle
population size, the higher accuracy the search. But for small
number of particles, the exploration on particle swarm seems
inadequate. Especially for complicated and high-dimension
problems, large scale population always shows more signifi-
cant advantages.

But when the number of particle swarms reached 200,
400, and 800, though the mean optimal fitness value of the
particle swarm was improved compared to cases with N
below 100, the improvement effect was not so significant
with the increase of particle number, and the optimal fitness
values varied little. And in single particle swarm, the great
the population size, the faster the convergence velocity at
the initial stage of iteration. Moreover, during the aforesaid
convergence process, it lost diversity easily and failed to well
maintain the global convergence capability of the algorithm.
With the enlargement of population size, the computation
overhead increased exponentially, and the running time also
increased. The PSO for single particle swarm showed no
obvious advantages in evolutionary operation, and brought
no more gains to the algorithm. However, these problems
could be well solved in bi-level particle swarm optimization
algorithm because it can exert its advantages of large scale
population and structure to achieve balance of PSO between
accuracy and stability improvement, and running time
reduction.

C. PARALLEL RUNNING OF MULTI-PARTICLE SWARMS
For complex problem processing, the search space of multi-
particle swarm evolutionary calculation enlarges sharply.
And it usually costs a long time to operate on a single CPU
due to the low operation efficiency. In this case, the parallel
computation could be introduced among multiple particle
swarms to effectively resolve the overlong computation time
problem for large-scale computation by collaborating parallel
work of several CPUs.

The number of working particle swarms in lower-level
should be firstly determined, and then the number of sub-
threads in the primary thread should be set according to the
number of working particle swarms. After that, each thread
shall be assigned with specific tasks. There are two ways
of information exchanges: synchronous and asynchronous.

FIGURE 2. Schematic diagram of convergence process under different
population sizes. (a) Ackley function; (b) Rastrigin function; (c) Griewank
function; (d) Rosenbrock function.

Asynchronous information exchange refers to: when one
thread accomplishes update of individual optimal position
and velocity, it will provide the information to upper-level
decision-making particle swarm immediately for judging the
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flying direction next time. And the synchronous information
exchange refers to: particles of all threads accomplish update
of position and velocity first, and then evaluate and update
the global optimum individual position and velocity based on
these information in order to make judgment on the flying
direction next time. As for this paper, the parallel algorithm
was adopted, which is essentially the simulation to the bird
flock predatory behavior. It simulates the behavior that the
bird leader divides the bird flock into multiple groups. After
a time of search, each group informs the bird leader about
the best position they find. And the leader judges the optimal
position that is most likely to find food, and inform the
bird flock to forge ahead toward the direction. Therefore,
this algorithm adopts synchronous mode in parallel infor-
mation exchange: when particles of all threads accomplish
the updates, the upper-level decision-making particle swarm
collects the optimum particle information of the working
particle swarms of the lower-level, and then process infor-
mation to generate decision-making information, and inform
the particle swarms in lower-level. Therefore, besides the
effects of its own optimal position and optimal particle posi-
tion of lower-level working sub-populations, each particle of
the swarm is also affected by the overall decision-making
information of the whole group, thus to update the flying
position information next time.

During the evolutionary operation process, the multi-
particle swarm optimization algorithm divides the particle
swarm into several sub-particle swarms, which are evenly
distributed in the solution space to ensure the diversity of
particles. Each particle swarm only needs to accomplish its
own internal evolution. At the end of each iteration, particle
swarms conduct information communication, so that when
any sub-particle swarm falls into local optimum, other parti-
cle swarms will provide their position information to it. These
information provides direction for the swarm trapped in local
optimum, and helps it get rid of the local optimum problem.
Please see Figures 3-4.

Large-scale bi-level particle swarm optimization algorithm
can well solve the problem that the particle swarms fall into
local optimum, and help those sub-particle swarms trapped
in local optimum escape from the local optimum during the
iterative process. The lower-level working particle swarms
mainly have three types of status, first: all the lower-level
working particle swarms tend to the global optimum. And
at this time the upper-level decision-making particle swarm
can provide better guidance by integrating the status of each
lower-level working particle swarm; the second type: some
lower-level working particle swarms fall into local optimum
while the rest part tends to the global optimum, then the
upper-level decision-making particle swarm will guide the
lower-level working particle swarm through comprehensive
information, directing the particle swarms trapped in the local
optimum to the global optimum and helping them escape
from local optimum; the third type: all lower-level working
particle swarms tend to local optimum: suppose that the prob-
ability of lower-level working particle swarms falling into the

FIGURE 3. Schematic diagram of falling into local optimum. (a) Initial
status of lower-level working particle swarms of bi-level PSO;(b) certain
lower-level working particle swarm of bi-level PSO falls into local
optimum.

local optimum is x%, then the probability of all lower-level
working particle swarms falling into the local optimumwould
be (x%)m( m refers to the number of working particle swarms
in the lower level). Compared with a single particle swarm,
the probability that all working particle swarms in a large-
scale bi-level particle swarms falling into a local optimum is
greatly reduced.

D. ALGORITHM STEPS
Step 1: Construct a bi-level particle swarm structure.

(1) Divide the global particle swarm into several lower-
level sub-swarms of working particles.

(1) Create an upper-level decision-making particle swarm
space.
Step 2: Initialize the lower-level working particle swarms,

and initialize parameters, particle velocity, position, and cal-
culate the fitness value and individual extreme value of the
particle.
Step 3: Extract the optimal particle information from each

lower-level working particle swarm, and provide to the upper-
level decision-making particle swarm.
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FIGURE 4. Schematic diagram of escaping from local optimum. (a)
Certain lower-level working particle swarm of bi-level PSO falls into local
optimum;(b) lower-level working particle swarm of bi-level PSO escape
from local optimum.

Step 4: The upper-level decision-making particle swarm
guides the evolutionary direction for the lower-level working
particle swarms.

(1) The upper-level decision-making particle swarm calcu-
lates the decision-making information.

(2) Provide the decision information to the lower-level
working particle swarms according to the learning factor dis-
tributed by the exponential function, and conduct the updates
of velocity and position.
Step 5: The lower-level working particle swarms run in

parallel and calculate the fitness values.
Step 6: Judge if the algorithm meets the termination con-

dition (the algorithm has reached the required times of itera-
tions), if it meets the requirements, go to step 7, otherwise go
to step 3.
Step 7:Output the global optimum, and the algorithm ends.

IV. SIMULATION ANALYSIS
A. PARAMETER SETTING
In this section, the large-scale bi-level particle swarm opti-
mizationmethod is evaluated from various aspects by an array
of experiments conducted in benchmark functions.

TABLE 1. The detailed settings.

In order to get an unbiased comparison of CPU times, all
the experiments were performed on a same PC, which was
configured with detailed settings as shown in Table 1.

Eleven different benchmark functions were used to evalu-
ate the large-scale bi-level particle swarm optimization algo-
rithm that we proposed. The test functions are divided into
two groups: the unimodal and the multi-modal. The unimodal
functions (F1-F5) are suitable for benchmarking the exploita-
tion of algorithms since they have one global optimum and
no local optima. On the contrary, the multi-modal functions
(F6-F11) have a massive number of local optima and are
helpful for examining the exploration and local optima avoid-
ance of algorithms. The expressions and properties of these
benchmarks are presented in Table 2 and Table 3 respectively.
Parameters of experiment test are as listed in Table 4.

B. COMPARISONS OF THE LARGE-SCALE BI-LEVEL
PARTICLE SWARM OPTIMIZATION ALGORITHMS WITH
OTHER METHODS
In terms of the benchmark problems, the performance of
the large-scale bi-level particle swarm optimization algo-
rithms was compared with six other optimization algo-
rithms. The methods included in the comparative study are
BPSO, adaptive particle swarm optimization(APSO) [31],
elephant herding optimization(EHO) [32], moth-flame opti-
mization algorithm (MFO) [33], monarch butterfly opti-
mization (MBO) [34] and earthworm optimization algorithm
(EWA) [35].

Tables 5 and 6 record the average and the best results
of 30 tests respectively. Table 5 shows that, on average,
the algorithm in this paper outperforms the effects of other
methods on seven of the eleven benchmarks (F1, F2, F6-F8,
F10 and F11) when searching for the minimum value of
the function. EHO and MFO are the second most effective
methods and show the best performance on eleven bench-
marks (F5, F9, and F3, F4, respectively). It can be seen
from Table 6 that, in five of the eleven benchmarks (F1,
F2, F7, F10, and F11), the algorithm in this paper is better
than other methods. EHO also shows better performance
than other algorithms in the five benchmarks (F4-F6, F8,
and F9), while the MFO ranking the third most efficient and
showing the best performing on the benchmarks F3 when
multiple runs are made. It can be seen that the algorithm
in this paper can greatly improve the performance of the
algorithm.

Furthermore, the optimizing processes of all algorithms are
given in Figure 5-15. The values shown in these figures are
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TABLE 2. Benchmark functions.

TABLE 3. Properties of benchmark functions, lb denotes lower bound, ub denotes upper bound, opt denotes optimum point.

the optimal function optima achieved from 30 runs. Here,
all the values are true function values without being
normalized.

Figure 5 shows the value of F1 function obtained by seven
methods. Value in the figure is the function value of the
spherical function of F1, also known as De Jong’s function
with global value of F1min = 0, so it is easy to solve. It is
known from FIGURE 5 that, the large-scale bi-level particle
swarm optimization algorithm has the fastest convergence
rate towards the global solution, which is better than all other
methods.

TABLE 4. Parameters setting for experiment.

Figure 6 reveals the function values for F2 Schwe-
fel 2.22 function. Viewing from Figure 6, although our
algorithm converges slowly in the early stage, it finally
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FIGURE 5. Performance comparison on the F1 sphere function.

FIGURE 6. Performance comparison on the F2 schwefel 2.22 function.

FIGURE 7. Performance comparison on the F3 schwefel 1.2 function.

shows the optimal performance in this unimodal benchmark
function.

Figure 7 reveals the function values for F3 Schwefel 1.2
function. As for the unimodal function in Figure 7, MFO
algorithm performs better than the other six algorithms, EHO

FIGURE 8. Performance comparison on the F4 schwefel 2.21 function.

FIGURE 9. Performance comparison on the F5 rosenbrock function.

FIGURE 10. Performance comparison on the F6 quartic with noise
function.

also shows a good convergence speed, and large-scale bi-level
particle swarm optimization algorithm ranks the third.

Figure 8 reveals the function values for F4 Schwefel 2.21
function. It can be known from Figure 8 that, both MFO and
EHO algorithms performwell in finding the global minimum,
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TABLE 5. Mean fitness function values.

TABLE 6. Best fitness function values.

FIGURE 11. Performance comparison on the F7 Rastrigin function.

while other algorithms perform poorly in this benchmark
function.

Figure 9 reveals the function values for F5 Rosenbrock
function, showing that, the EHO has the fastest convergence
speed and the best performance in this benchmark function.

Figure 10 illustrates the values achieved for the seven
methods when using F6. In the convergence graph of the
optimal value, the EHO algorithm shows extremely fast con-
vergence speed, and at the same time, the algorithm proposed
in this paper also performs well in this benchmark function,
providing good results and showing great advantages, but the
MFO algorithm shows the slowest convergence speed.

Figure 11 reveals the function value of the F7 Rastrigin
function, which is a complex multimodal function with a
unique global minimum of F7min = 0 and several local

FIGURE 12. Performance comparison on the F8 ackley function.

optimals. For solving F07, themethodmay converge to a local
value. Therefore, a method that can keep a larger diversity is
more likely to produce better values. The algorithm proposed
in this paper has the best performance. In addition, it can be
seen from the figure that the MFO algorithm may be trapped
in the local optimal value.

Figure 12 shows the values obtained by the seven methods
on F8 function, which is a multimodal function with a narrow
global minimum basin (F8min = 0) and many minor local
optima. Although the algorithm in this paper has a slow
convergence speed at the early stage, it performs well after
75 iterations, and the initial values of all the methods are
almost the same. In the end, the EHO algorithm surpasses the
other six methods, and EWA and MBO may fall into local
optima.
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TABLE 7. The standard deviation of different methods.

TABLE 8. Comparison on algorithm running time.

FIGURE 13. Performance comparison on the F9 griewank function.

Figure 13 displays the values for F9 function. The EHO
algorithm performs the best in this benchmark function.
As the iteration goes on, the convergence speed of the algo-
rithm in this paper gradually surpasses other algorithms and
finally ranks the third.

Figure 14 reveals the values for F10 Penalty #1 function.
It can be seen from FIGURE 14 that, the large-scale bi-level
particle swarm optimization algorithm converges faster in
global solution than other algorithms.

Figure 15 shows the values achieved on F11 function.
For this benchmark, the large-scale bi-level particle swarm
optimization algorithm overtakes all other approaches in the
optimization process, which is very similar to F10 in Fig-
ure 14.

As shown in Table 8, the running time of the algorithm in
this paper reduces greatly compared with those in the other

FIGURE 14. Performance comparison on the F10 penalty #1 function.

six algorithms, among which, the large-scale bi-level particle
swarm optimization algorithm is the most efficient one.

C. COMPARISONS WITH OTHER OPTIMIZATION
METHODS BY USING WILCOXON’S RANK-SUM TEST
Based on the final search results of 30 independent tri-
als on every function, we figure out and present the key
data in Table 9, which is the p-values of every func-
tion of the wilcoxon’s rank-sum test with the 5% level
of significance between the large-scale bi-level particle
swarm optimization algorithm and other optimization meth-
ods. Although the large-scale bi-level particle swarm opti-
mization algorithm provides no better results on the test
functions (F3, F4, F5 and F9) in Table 5, the p-values
in Table 9 show that the results of this algorithm are very
competitive.
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TABLE 9. P-values of the Wilcoxon rank-sum test over all runs (p >= 0.05 have been underlined).

FIGURE 15. Performance comparison on the F11 penalty #2 function.

D. ANALYSIS ON EXPERIMENTAL RESULTS
Compared with other algorithms, although the algorithm pro-
posed in this paper has a slow convergence speed in the early
stage, it can hardly fall into local optimum. The Mean fitness
function value and the best fitness function value of the algo-
rithm in this paper are significantly improved. The standard
deviation also reflects the good stability of the algorithm.
The structural advantage of the bi-level structure increases
the diversity of particle swarm. The lower-level working
particle swarms run in parallel, which greatly reduces the too-
long running time caused by the large-scale particle swarms.
Meanwhile, both the upper and lower levels coordinate to
achieve rational running, and the upper-level controls the
lower-level effectively by the exponentially distributed learn-
ing factor. The algorithm in this paper proves that the ways to
enlarge the size of the particle swarm and improve the struc-
ture of the particle swarm can effectively avoid the precocity
convergence problem and local optimum problem of the PSO
in later stage. To sum up, the large-scale bi-level particle
swarm optimization algorithm is featured in not only high
convergence accuracy, but also good optimization effects and
less running time.

V. CONCLUSION
A large-scale bi-level particle swarm optimization algorithm
is proposed in this paper targeting at PSO problems of bad

diversity in initial stage and local optimum in later stage.
It takes use of the large-scale bi-level particle swarm design
to improve the particle swarm diversity in initial stage and
reduce the possibility of being trapped in local optimum in
later stage, thereby improving the algorithm stability. Mean-
while, it also uses the exponentially distributed learning fac-
tor to control the particle swarm coupling, which improves
the computational efficiency of the algorithm. The parallel
operation of the lower-level particle swarms improves the
operating efficiency of the algorithm and reduces the too-
long running time problem caused by the complex structure.
The simulation experiments prove that the large-scale bi-level
particle swarm optimization algorithm is featured in not only
satisfactory optimization effects, but also improved stability.

REFERENCES
[1] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.

IEEE Int. Conf. Neural Netw., Piscataway, NJ, USA, Nov./Dec. 1995,
pp. 1942–1948.

[2] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., New York, NY,
USA, Oct. 1995, pp. 39–43.

[3] A. Khare and S. Rangnekar, ‘‘A review of particle swarm optimization and
its applications in solar photovoltaic system,’’ Appl. Soft Comput., vol. 13,
no. 5, pp. 2997–3006, May 2013, doi: 10.1016/j.asoc.2012.11.033.

[4] N. Geng, D. W. Gong, and Y. Zhang, ‘‘PSO-based robot path planning
for multisurvivor rescue in limited survival time,’’ Math. Problems Eng.,
vol. 2014, pp. 1–10, Sep. 2014, doi: 10.1155/2014/187370.

[5] X. Wang, G. Zhang, J. Zhao, H. Rong, F. Ipate, and R. Lefticaru, ‘‘A mod-
ified membrane-inspired algorithm based on particle swarm optimization
for mobile robot path planning,’’ Int. J. Comput. Commun. Control, vol. 10,
no. 5, p. 732, Jun. 2015, doi: 10.15837/ijccc.2015.5.2030.

[6] M. Duan, ‘‘Short-time prediction of traffic flow based on PSO optimized
SVM,’’ in Proc. Int. Conf. Intell. Transp., Big Data Smart City (ICITBS).
Xiamen, China: IEEE Computer Society, Jan. 2018, pp. 41–45, doi: 10.
1109/ICITBS.2018.00018.

[7] G. Li and W. Chou, ‘‘Path planning for mobile robot using self-adaptive
learning particle swarm optimization,’’ Sci. China Inf. Sci., vol. 61, no. 5,
pp. 263–280, May 2018, doi: 10.1007/s11432-016-9115-2.

[8] N. Himanshu and A. Burman, ‘‘Determination of critical failure surface
of slopes using particle swarm optimization technique considering seep-
age and seismic loading,’’ Geotechnical Geolog. Eng., vol. 37, no. 3,
pp. 1261–1281, Jun. 2019, doi: 10.1007/s10706-018-0683-8.

[9] U. K. Acharya and S. Kumar, ‘‘Particle swarm optimization exponential
constriction factor (PSO-ECF) based channel equalization,’’ in Proc. 6th
Int. Conf. Comput. Sustain. Global Develop. (INDIACom), New Delhi,
India, Mar. 2019, pp. 94–97.

[10] R. Yan, T. Wang, X. Jiang, Q. Zhong, X. Huang, L. Wang, and X. Yue,
‘‘Design of high-performance plasmonic nanosensors by particle swarm
optimization algorithm combined with machine learning,’’ Nanotechnol-
ogy, vol. 31, no. 37, Sep. 2020, Art. no. 375202, doi: 10.1088/1361-
6528/ab95b8.

56374 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.asoc.2012.11.033
http://dx.doi.org/10.1155/2014/187370
http://dx.doi.org/10.15837/ijccc.2015.5.2030
http://dx.doi.org/10.1109/ICITBS.2018.00018
http://dx.doi.org/10.1109/ICITBS.2018.00018
http://dx.doi.org/10.1007/s11432-016-9115-2
http://dx.doi.org/10.1007/s10706-018-0683-8
http://dx.doi.org/10.1088/1361-6528/ab95b8
http://dx.doi.org/10.1088/1361-6528/ab95b8


J.-J. Jiang et al.: Research on Large-Scale Bi-Level PSO Algorithm

[11] M. G. Carneiro, R. Cheng, L. Zhao, and Y. C. Jin, ‘‘Particle swarm opti-
mization for network-based data classification,’’ Neural Netw., vol. 110,
pp. 243–255, Feb. 2019.

[12] Y. Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in
Proc. IEEE Int. Conf. Evol. Comput. IEEE World Congr. Comput. Intell.,
Jun. 1998, pp. 69–73, doi: 10.1109/ICEC.1998.699146.

[13] K. Kentzoglanakis and M. Poole, ‘‘Particle swarm optimization with an
oscillating inertia weight,’’ in Proc. 11th Annu. Conf. Genet. Evol. Com-
put. (GECCO), Montreal, QC, Canada, 2009, pp. 1749–1750, doi: 10.
1145/1569901.1570140.

[14] W. Dong, L. Kang, andW. Zhang, ‘‘Opposition-based particle swarm opti-
mization with adaptive mutation strategy,’’ Soft Comput., vol. 21, no. 17,
pp. 5081–5090, Sep. 2017, doi: 10.1007/s00500-016-2102-5.

[15] H. Liu, X.-W. Zhang, and L.-P. Tu, ‘‘A modified particle swarm optimiza-
tion using adaptive strategy,’’ Expert Syst. Appl., vol. 152, Aug. 2020,
Art. no. 113353, doi: 10.1016/j.eswa.2020.113353.

[16] J. G. Jiang, M. Tian, X. Q. Wang, X. P. Long, and J. Li, ‘‘Adaptive particle
swarm optimization via disturbing acceleration coefficents,’’ J. Xidian
Univ., vol. 39, no. 4, pp. 74–80, Aug. 2012, doi: 10.3969/j.issn.1001-
2400.2012.04.014.

[17] C.-M. Yan, G.-Y. Lu, Y.-T. Liu, and X.-Y. Deng, ‘‘A modified PSO algo-
rithm with exponential decay weight,’’ in Proc. 13th Int. Conf. Natural
Comput., Fuzzy Syst. Knowl. Discovery (ICNC-FSKD), Guilin, China,
Jul. 2017, pp. 239–242, do: 10.1109/FSKD.2017.8393146.

[18] C. Z. Tao and J. M. Yang, ‘‘PSO algorithm based on network neighborhood
topology,’’ Comput. Eng., vol. 36, no. 19, pp. 18–20, Oct. 2010, doi: 10.
3724/SP.J.1238.2010.00585.

[19] X. Zhang, H. Nguyen, X.-N. Bui, Q.-H. Tran, D.-A. Nguyen, D. T. Bui, and
H. Moayedi, ‘‘Novel soft computing model for predicting blast-induced
ground vibration in open-pit mines based on particle swarm optimiza-
tion and XGBoost,’’ Natural Resour. Res., vol. 29, no. 2, pp. 711–721,
Apr. 2020, doi: 10.1007/s11053-019-09492-7.

[20] J. Robinson, S. Sinton, and Y. Rahmat-Samii, ‘‘Particle swarm, genetic
algorithm, and their hybrids: Optimization of a profiled corrugated horn
antenna,’’ in Proc. IEEE Antennas Propag. Soc. Int. Symp., San Antonio,
TX, USA, Feb. 2002, pp. 314–317, doi: 10.1109/APS.2002.1016311.

[21] S. C. Duong, H. Kinjo, E. Uezato, and T. Yamamoto, ‘‘Particle swarm
optimization with genetic recombination: A hybrid evolutionary algo-
rithm,’’ Artif. Life Robot., vol. 15, no. 4, pp. 444–449, Dec. 2010, doi: 10.
1007/s10015-010-0846-z.

[22] A. P. Engelbrecht, ‘‘Particle swarm optimization with crossover: A review
and empirical analysis,’’ Artif. Intell. Rev., vol. 45, no. 2, pp. 131–165,
Feb. 2016, doi: 10.1007/s10462-015-9445-7.

[23] X.-H. Chen, S.-W. Liu, J. Guan, and Q. Liu, ‘‘Study on QoS multicast
routing based on ACO-PSO algorithm,’’ in Proc. Int. Conf. Intell. Comput.
Technol. Autom. Washington, DC, USA: IEEE Computer Society, vol. 3,
May 2010, pp. 534–537, doi: 10.1109/ICICTA.2010.419.

[24] M. K. Patel, M. R. Kabat, and C. R. Tripathy, ‘‘A hybrid ACO/PSO based
algorithm for QoS multicast routing problem,’’ Ain Shams Eng. J., vol. 5,
no. 1, pp. 113–120, Mar. 2014, doi: 10.1016/j.asej.2013.07.005.

[25] D. Pal, P. Verma, D. Gautam, and P. Indait, ‘‘Improved optimization
technique using hybrid ACO-PSO,’’ in Proc. 2nd Int. Conf. Next Gener.
Comput. Technol. (NGCT), Dehradun, India, Oct. 2016, pp. 277–282,
doi: 10.1109/NGCT.2016.7877428.

[26] D. X. Luo, Y. Q. Zhou, H. J. Huang, and X. Q. Wei, ‘‘Multi colony particle
swarm optimization algorithm,’’ Comput. Eng. Appl., vol. 46, no. 19,
pp. 51–54, 2010, doi: 10.3778/j.issn.1002-8331.2010.19.014.

[27] M. Lovbjerg, T. K. Rasmussen, and T. Krink, ‘‘Hybrid particle swarm
optimiser with breeding and subpopulations,’’ in Proc. 3rd Genet. Evol.
Comput. Conf., 2001, pp. 469–476.

[28] Y. M. Liu, C. L. Sui, and Q. Z. Zhang, ‘‘Dynamic multi-swarm par-
ticle swarm optimizer based on K-means clustering and its applica-
tion,’’ Control Decis., vol. 26, no. 7, pp. 1019–1025, Jul. 2011, doi:
10.13195/j.cd.2011.07.61.liuym.011.

[29] Y. Chen, L. Li, H. Peng, J. Xiao, Y. Yang, and Y. Shi, ‘‘Particle swarm
optimizer with two differential mutation,’’ Appl. Soft Comput., vol. 61,
pp. 314–330, Dec. 2017, doi: 10.1016/j.asoc.2017.07.020.

[30] Y. Chen, L. Li, J. Xiao, Y. Yang, J. Liang, and T. Li, ‘‘Particle swarm
optimizer with crossover operation,’’ Eng. Appl. Artif. Intell., vol. 70,
pp. 159–169, Apr. 2018, doi: 10.1016/j.engappai.2018.01.009.

[31] J. H. Han, Z. R. Li, and Z. C. Wei, ‘‘Adaptive particle swarm optimiza-
tion algorithm and simulation,’’ J. Syst. Simul., vol. 10, pp. 2969–2971,
Oct. 2006, doi: 10.16182/j.cnki.joss.2006.10.070.

[32] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Dec. 2015,
pp. 1–5, doi: 10.1109/ISCBI.2015.8.

[33] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015,
doi: 10.1016/j.knosys.2015.07.006.

[34] G.-G. Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’
Neural Comput. Appl., vol. 31, no. 7, pp. 1995–2014, May 2015, doi: 10.
1007/S00521-015-1923-Y.

[35] G. G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Earthworm optimization
algorithm: A bio-inspired metaheuristic algorithm for global optimization
problems,’’ Int. J. Bio-Inspired Comput, vol. 12, no. 1, pp. 1–22, Jun. 2018,
doi: 10.1504/IJBIC.2018.093328.

JIA-JIA JIANG was born in Shandong, China,
in 1997. She received the B.S. degree from the
Shandong University of Science and Technol-
ogy, Taishan Institute of Science and Technology,
China, in 2019, where she is currently pursuing the
M.S. degree. Her research interests include artifi-
cial intelligence and evolutionary computation.

WEN-XUE WEI is currently an Associate Pro-
fessor with the College of Computer Science and
Engineering, Shandong University of Science and
Technology, China. He has published more than
30 articles and amonograph in important academic
journals. His research interests include computer
networking, information security, the Internet of
Things engineering, and digital mining.

WAN-LU SHAO was born in Shandong, China,
in 1995. She received the B.S. degree from the
Shandong University of Science and Technology,
China, in 2018, where she is currently pursuing the
M.S. degree. Her research interests include image
processing and deep learning.

YU-FENG LIANG was born in Shandong, China,
in 1993. He received the B.S. degree from the
Qingdao University of Science and Technology,
China, in 2017. He is currently pursuing the M.S.
degree with the Shandong University of Science
and Technology. His research interests include
artificial intelligence and deep learning.

YUAN-YUAN QU was born in Liaoning, China,
in 1997. She received the B.S. degree from the Jilin
Business and Technology College, China, in 2019.
She is currently pursuing the M.S. degree with the
Shandong University of Science and Technology.
Her research interests include image processing
and deep learning.

VOLUME 9, 2021 56375

http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1145/1569901.1570140
http://dx.doi.org/10.1145/1569901.1570140
http://dx.doi.org/10.1007/s00500-016-2102-5
http://dx.doi.org/10.1016/j.eswa.2020.113353
http://dx.doi.org/10.3969/j.issn.1001-2400.2012.04.014
http://dx.doi.org/10.3969/j.issn.1001-2400.2012.04.014
http://dx.doi.org/10.1109/FSKD.2017.8393146
http://dx.doi.org/10.3724/SP.J.1238.2010.00585
http://dx.doi.org/10.3724/SP.J.1238.2010.00585
http://dx.doi.org/10.1007/s11053-019-09492-7
http://dx.doi.org/10.1109/APS.2002.1016311
http://dx.doi.org/10.1007/s10015-010-0846-z
http://dx.doi.org/10.1007/s10015-010-0846-z
http://dx.doi.org/10.1007/s10462-015-9445-7
http://dx.doi.org/10.1109/ICICTA.2010.419
http://dx.doi.org/10.1016/j.asej.2013.07.005
http://dx.doi.org/10.1109/NGCT.2016.7877428
http://dx.doi.org/10.3778/j.issn.1002-8331.2010.19.014
http://dx.doi.org/10.13195/j.cd.2011.07.61.liuym.011
http://dx.doi.org/10.1016/j.asoc.2017.07.020
http://dx.doi.org/10.1016/j.engappai.2018.01.009
http://dx.doi.org/10.16182/j.cnki.joss.2006.10.070
http://dx.doi.org/10.1109/ISCBI.2015.8
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1007/S00521-015-1923-Y
http://dx.doi.org/10.1007/S00521-015-1923-Y
http://dx.doi.org/10.1504/IJBIC.2018.093328

