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ABSTRACT Functional connectivity related to familiarity has recently been investigated in the context of
various stimuli (e.g., words, faces, pictures, music, and video). However, the directed functional connectivity
patterns with different attention indexes as a response to familiar/unfamiliar stimuli remain unclear. In the
current study, we employed the Directed Transfer Function (DTF) to estimate the information flow between
brain areas. This method was reported to be practically robust to volume conduction. Furthermore, the hier-
archical clustering approach was utilized to group subjects based on the attention index, i.e., the alpha/theta
ratio of fronto-central (frontal to central and central to frontal) features. Three major findings were revealed
from this study. First, all subjects had different attention indexes when they watched familiar/unfamiliar
videos. Then, subjects were sorted into three groups: low index (LI), middle index (MI), and high index
(HI). Second, a competition between two states (familiar/unfamiliar) showed that the information flows
of familiar stimuli were greater than unfamiliar stimuli, which involved significant effects in the frontal,
temporal, and parietal areas. Third, comparison between groups (LI/MI/HI) demonstrated that the frontal
and central regions were the primary sources that distributed information flows to almost the whole brain,
particularly during familiar conditions. This result indicates that these two regions may play an important
role in attentional processing.

INDEX TERMS Attention index, Directed Transfer Function (DTF), Dunn Index, electroencephalograph
(EEG), familiarity, fronto-central, hierarchical clustering.

I. INTRODUCTION
According to previous studies, watching video affects the
human brain [1], [2]. For example, in an fMRI study,
Anderson et al. investigated the distribution of the cortical
network while watching standard video action sequences [2].
An EEG study observed that human emotion was elicited
by viewing various music video clips as well [3]. Moreover,
the brain’s responses to the video could also be applied in
the BCI (Brain–Computer Interface) and rehabilitation. For
instance, Moon et al. proposed interval electroencephalo-
graph (EEG) features with different band combinations to
detect a viewer’s attention being paid to video segments [4].
Mercado et al. developed a game of a BCI video for neuro-
feedback training for autism [5].
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Another central factor that affects audiovisual perception
is familiarity. Familiarity is defined as the state of knowing
something very well and is believed to have a critical role
in our daily lives because it affects decision making [6],
business [7], and social interaction [8]. It also contributes
significantly to human–computer interaction (HCI) [9]. More
recently, researchers have investigated familiarity effects
using neuroimaging methods. To examine how the corti-
cal response and familiar music are related, an EEG was
used by Kumagai et al. [10]. They found that unfamiliar
music activated a cortical response better than familiar music.
The right hemisphere is triggered by an unfamiliar feeling,
whereas the left hemisphere is activated by a familiar feeling
for an odor or music, as confirmed by an fMRI study [11].
Thammasan et al. [12] investigated the correlation of brain
activity and music familiarity in spectral power and connec-
tivity based on EEG. They revealed that music familiarity has
an impact on power and functional connectivity. Interestingly,
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many recent studies have demonstrated that familiarity can
modify attention. Barenholtz et al. demonstrated that famil-
iarity influences selective attention to a video [13]. In a face
recognition study, less attention will be paid to unfamiliar
faces than familiar faces [14]. Kumagai et al. [15] investi-
gated the concept that familiarity and attention level affect
the level of entrainment.

Attention is a state that is difficult to measure through
self-assessment. EEG is an effective tool to evaluate
changes in attention conditions. Some studies have utilized a
Brain–Computer Interface to evaluate attention. For example,
Patsis et al. [16]measured the attention states of Tetris players
using BCI. Lim et al. [17] proposed a new system that mon-
itored the attention of attention-deficit/hyperactivity disor-
der (ADHD) children during a Stroop task using a headband
with dry EEG sensors. They suggested that a training game
based on BCI can be used as an effective therapy for ADHD.
Rosenberg et al. predicted performance variability across
subjects using the strength of functional brain networks in a
vigilance task [18]. Furthermore, several studies have eval-
uated the characteristics of the EEG with ADHD [19], [20].
They reported that the amplitudes of ADHD sufferers in the
β1/theta ratio in the frontal regions were lower than in healthy
children. One other study [21] examined the relation between
EEG potential and attention indices in children between
12–13 years old and reported that children with good working
ability exhibit a high spectral energy ratio between beta-1 and
theta bands.

We aimed to evaluate whether attention indexes varied
across subjects when they watched a music video. To achieve
this goal, we employed the Directed Transfer Function (DTF)
to estimate the functional connectivity and then applied
hierarchical clustering approaches to group subjects based
on the attention index (alpha/theta ratio). DTF has been
successfully implemented in previous research [22]–[24]
and has been shown to be practically robust to volume
conduction [19], [20]. DTF is an effective connectivity
method based on the phase difference between channels that
employs the Multivariate Autoregressive Model (MVAR).

Clustering analysis has been successfully used to evaluate
individual variation based on the EEG feature. For example,
Buckelmüller et al. [27] adapted a similarity measure and
cluster analysis based on electroencephalogram spectra to
investigate intra-individual and inter-individual variability in
an EEG sleep study. Maksimenko et al. [28] applied a cluster
analysis that employed the hierarchical clustering approach
based on the subject’s EEG features. In their research, they
found that EEG activity during mental tasks varied from one
subject to another.

In the present study, we investigated the relations between
directed connectivity features and attention indexes. Based
on [15], [29], [30], we present the following hypotheses:

1) Watching familiar/unfamiliar videos can generate dif-
ferent attention indexes across subjects.

2) Information flow in the fronto-central regions may
relate to attentional processing.

Based on our information, this is the first research to
demonstrate a clustering attention indexes using a directed
functional connectivity feature.

II. METHODS
A. DATASET
In the current study, we used a public database for emotion
analysis using physiological signals (DEAP) [31], a multi-
modal dataset collected using electroencephalograms, physi-
ological, and video signals. Thirty-two subjects (16 females
and 16 males with ages ranging from 19 to 37) participated in
the data collection. EEG signals were acquired from 32 AgCl
electrodes at a sampling rate of 512 Hz using the Biosemi
ActiveTwo system while subjects watched 40 video stimuli
displayed in the 17-inch screen. In the experiment process,
40 videos were displayed in 40 trials, with each trial consist-
ing of a progress display of 2 s, baseline recording of 5 s,
and a music video of 60 s, as displayed in Fig. 1. At the
end of each video trial, some ratings were recorded from
the subjects: valence, arousal, dominance, and liking on a
continuous scale from 1 (low) to 9 (high), and familiarity to
the music on a discrete scale from 1 (‘‘never saw the video
before the experiment’’) to 5 (‘‘knew it very well’’).

FIGURE 1. Experiment protocol.

B. EEG SIGNALS PREPROCESSING
The procedures of EEG signals preprocessing can be summa-
rized as follows [31]: 1) EEG data were resampled at 128 Hz;
2) electrooculography (EOG) artifacts were removed using
the blind source separation technique; 3) a bandpass filter
(4–45 Hz) was applied to remove electromyography (EMG)
artifacts in the high frequencies; and 4) EEG data were aver-
aged to the common reference.

In this study, we investigated the correlation between
directed functional connectivity features and attention
indexes in familiar and unfamiliar states. Therefore, we used
the familiarity rating that was recorded in the experiment.
By following the procedure in [12], familiarity ratings were
defined as follows: 3–5 as familiar and 1–2 as unfamiliar.
Ratings of familiarity were not present in three subjects:
subjects 2, 15, and 23. The standard of the familiar/unfamiliar
ratio was set at 0.30, resulting in the data from subjects 4,
5, 25, and 27 being disregarded [12]. Thammasan et al. [12]
also ignored EEG data from four subjects: subjects 9, 11, 22,
and 24. These four subjects were identified to have more
than 25% of bad channels (a power spectral density (PSD)
value above 100 µV2/Hz) [12]. We then performed an analy-
sis using only the data from the other 21 subjects. Illustration
of the EEG data analysis is presented in Fig. 2.
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FIGURE 2. Flowchart of EEG data analysis.

C. DIRECTED TRANSFER FUNCTION
The Directed Transfer Function (DTF) was used for the cal-
culation of effective connectivity in the relationships between
cortical areas of the human brain. DTF is a connectivity met-
ric based on multivariate autoregressive (MVAR) modeling,
defined in the frequency domain [32]:

For a multivariate k-channel process, X (t) = (X 1(t),
X 2(t), . . . ,X k(t)), the multivariate autoregressive model
takes the form in equation (1):

X (t) =
∑p

m=1
Â(m) · X (t − m)+ E(t) or

=

∑p

m=1
A (m) · X (t − m) = E(t), (1)

where E(t) is a k-dimensional vector and Â is a square
k × k matrix. Transforming the multivariate autoregressive
model to the frequency domain, we obtain the following using
equation (2):

A (f )X (f ) = E (f ) ,

where A (f ) = −
∑k

m=1
A (m) · e−i.2π.f .m

→ X (f ) = A−1 (f )E (f )

= H (f )E (f ) , (2)

The matrix of coefficients H is called the transfer matrix. The
Directed Transfer Function is stated as a normalized form of
the transfer matrix using equation (3):

DTF2
j→i (f ) =

∣∣Hij(f )∣∣2∑k
j=1

∣∣Hij(f )∣∣2 , (3)

The following formula expresses the quality of the fitting of
the model given in equation (4):

k · d < 0.1 · N , (4)

where N is the window length, d is the model order, and
k is the number of the EEG channels. The model order was
estimated using the Akaike information criterion.

For each participant, we first calculated the DTF using
eConnectome toolbox [33] from 32-channels EEG data
for the window length of 10 s at time course of 0–10 s
and a median model order of O = 10. As a result,
the 32 × 32 adjacency matrix of DTFij (1f) denotes
the sensor space of the ‘‘information flow’’ from elec-
trode j to electrode i, at frequency f . By taking the
median over frequency bands of interest, we obtained a
32 × 32 matrix of the DTF values, calculated using
equation (5):

mDTFj→ i(f ) = median(DTFj→ i(1f )), (5)

This value was considered separately in the following fre-
quency bands: theta (4–7 Hz) and alpha (8–12 Hz).

Second, we applied a threshold for each subject’s
DTF matrix. The threshold was set to one standard deviation
after the median [34]. Then, the ratio between alpha and theta
was calculated with the following equation (6):

mDTFk = mDTF j→i alpha/mDTFj→i theta, (6)

The ratio between alpha and theta band is often used as the
index of attentional processing [29], [35].

We divided the DTF adjacency matrix (32 × 32) into
six regions of interest (ROIs) as follows: frontal (FP1, FP2,
AF3, AF4, Fz, F3, F4, F7, F8), central (FC5, FC6, FC1,
FC2, Cz, C3, C4), left temporal (T7, CP5), right temporal
(T8, CP6), parietal (CP1, CP2, Pz, P3, P4, P7, P8), and
occipital (PO3, PO4, Oz, O1, O2).

Finally, mDTFk values were calculated for both familiar
and unfamiliar conditions. Then, we averaged the mDTFk
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between two ROIs—for example, between frontal and central
areas—which was computed according to equation (7):

mDTFkcentral→frontal =
1
xy

∑
x

∑
y
mDTF j(x)→i(y), (7)

where x represents electrodes in the central region and
y represents electrodes in the frontal region. As a result, for
each participant, we achieved a 6× 6 DTF adjacency matrix.

D. ANALYSIS OF CLUSTERING
The aim of the clustering approach, when evaluating indi-
vidual variability, is to partition the subjects’ EEG fea-
tures into groups according to their similarity. One widely
used clustering algorithm is hierarchical clustering. Hierar-
chical clustering has several advantages compared to other
methods: 1) it results in informative visualization and explo-
ration, where the result is presented in the form of trees—
namely a dendrogram—thus, the number of clusters can be
decided by looking at the dendrogram [36]; and 2) it is easy
to implement for small datasets. In this part, we applied hier-
archical clustering [37], [38] to group participants based on
their connectivity features, specifically the information flow
of alpha/theta ratio from frontal to central and from central
to frontal areas. The clustering procedure for our proposed
method is described below:

1) We computed connectivity features, which employed
the Directed Transfer Function (DTF) based on equa-
tions (1–7) for both familiar and unfamiliar conditions.

2) We applied hierarchical clustering based on the
Euclidean distance matrix.

3) We determined the number of groups using the Dunn
Index, an index of cluster validity for clustering pro-
posed in [39] which attempts to identify ‘‘compact and
well-separated clusters’’. Dunn’s Index, DIm, for m
clusters is given by equation (8):

DIm = min
1≤j≤m

{
min

1≤i≤m,j 6=i

{
δ
(
Ci,Cj

)
max

1≤k≤m1k

}}
, (8)

where δ(Ci,Cj) is the inter-cluster Euclidian distance
between clusters Ci and Cj, 1k = max, d(x,y), and
d(x,y) is the Euclidian distance between the points x
and y in cluster Ci.

E. STATISTICAL ANALYSIS
First, a one-way analysis of variance (ANOVA) and Bon-
ferroni correction post hoc test for multiple comparisons
(ρ < 0.05) were performed to evaluate significant differences
between groups and between conditions, separately. Then, a
two-way multivariate analysis of variance (MANOVA) with
ρ < 0.05 was conducted to determine the significance for
interaction between group and condition. All statistical anal-
yses were performed using SPSS version 22.

III. RESULTS
In this study, we analyzed the DEAP dataset that recorded
EEG signals from 21 participants while they were watching

40 emotional videos. Furthermore, the dataset was separated
into familiar and unfamiliar datasets corresponding to a famil-
iarity rating (see Methods).

A. CLUSTERING RESULT
The dendrogram in Fig. 3 displays the result of clustering.
Furthermore, the Dunn Index was calculated to evaluate the
performance of the hierarchical clustering technique, which
ranged from 0 to 1, where a higher value indicated a more
appropriate cluster framework [40]. It can be noticed from
Table 1 that the Dunn Index obtained the highest value for
the three clusters. Based on this, all participants were cat-
egorized into the following three clusters (groups): group I
(subjects #1–#12), group II (subjects #13–#16), and group III
(subjects #17–#21). Table 2 presents the information flow
from the frontal to central and from the central to frontal areas
(mDTFk) for both familiar and unfamiliar conditions for each
of the 21 participants.

FIGURE 3. The clustering result.

B. FUNCTIONAL CONNECTIVITY
1) GROUP COMPARISON
In this study, the resulted DTF adjacency matrix (32 × 32)
was then defined into six regions of interest (ROIs). To eval-
uate the changes of information flows between ROIs, we per-
formed a one-way ANOVA between attention index groups
(LI vs MI, MI vs HI, and LI vs HI), and between condi-
tions (LI, MI, and HI groups, of familiar vs unfamiliar).
Bonferroni correction was applied for multiple comparisons.
Fig. 4a-4c demonstrate the statistical comparison of the
directed connectivity of the three groups in the familiar
condition. In Fig. 4a, compared with the MI group, the
LI group showed significant connections from frontal to cen-
tral (ρ < 0.001), frontal to right temporal (ρ < 0.01), and
frontal to parietal (ρ < 0.01). As can be seen in Fig. 4b,
MI vs HI groups shows a significant information flow from
frontal to central (ρ < 0.001), frontal to right temporal
(ρ < 0.05), from central to frontal (ρ < 0.001), central to left
temporal (ρ < 0.001), and central to occipital (ρ < 0.01).
In the comparison of the LI group and the HI in Fig. 4c,
we found that the significant directed connectivity between
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TABLE 1. Performance evaluation.

FIGURE 4. Comparison of connectivity strength between groups from all
regions of interest (ROIs) during familiar conditions (a-c) and unfamiliar
conditions (d-e). LT and RT represent left temporal and right temporal
areas, respectively. A one-way ANOVA was used to calculate significant
differences with ρ values of ρ < 0.001, ρ < 0.01, and ρ < 0.05 (Bonferroni
corrected), indicated by line color and line thickness.

ROIs was almost the same asMI vs HI with some differences;
i.e., a significantly enhanced level of difference from central
to occipital (ρ < 0.001), an additional information flow from
central to parietal (ρ < 0.05), and flows from frontal to
central and frontal to right temporal did not exist.

Fig. 4d-4f show information flows between groups in an
unfamiliar state. For the LI vs MI groups and the MI vs HI
groups, we found there was no significant information flow
betweenROIs. Significant connectionswere found only in the
LI vs HI; i.e., from frontal to central (ρ < 0.05) and frontal
to parietal (ρ < 0.05).

2) STATES COMPARISON
Comparisons between familiar and unfamiliar conditions
for each of three groups are shown in Fig. 5, in which
familiar state was higher than unfamiliar state. In the
LI group, we found significant information flow from
frontal central (ρ < 0.01), frontal to left temporal
(ρ < 0.05), frontal to right temporal (ρ < 0.01), frontal to
parietal (ρ < 0.05), and from frontal to occipital (ρ < 0.01).
We also found significant connections from parietal to
frontal (ρ < 0.01), parietal to central (ρ < 0.01), pari-
etal to left temporal (ρ < 0.01), parietal to right temporal
(ρ < 0.05), and from parietal to occipital areas (ρ < 0.05).
Similarly, in the MI group, statistically significant
connections were found from frontal to central (ρ < 0.001),

frontal to left temporal (ρ < 0.01), and frontal to right tempo-
ral (ρ < 0.01). Significant information flows were found also
from parietal to right temporal (ρ < 0.05) and from parietal
to occipital areas (ρ < 0.05). Lastly, information flows
from central to frontal (ρ < 0.001), central to left temporal
(ρ < 0.01), central to occipital (ρ < 0.01), and from parietal
to right temporal (ρ < 0.05) were observed in the HI group.

FIGURE 5. Comparison of connectivity strength between conditions
(familiar vs unfamiliar) from all ROIs: (a) low index (LI) group, (b) middle
index (MI) group, and high index (HI) group. The significant connection
is indicated by line color and line thickness with ρ values of ρ < 0.001,
ρ < 0.01, and ρ < 0.05, where the familiar conditions are higher than the
unfamiliar conditions.

3) GROUP AND STATE INTERACTION
A two-waymultivariate analysis of variance (MANOVA)was
applied to evaluate the significance of group and state interac-
tion. Two independent variables were group (LI/MI/HI) and
state (familiar/unfamiliar), whereas the dependent variables
were the information flows between ROIS. Fig. 6 shows
significant information flows from frontal to central
(ρ < 0.001), frontal to right temporal (ρ < 0.01), and frontal
to parietal (ρ < 0.01). There were also flows from central to
frontal (ρ < 0.001), central to left temporal (ρ < 0.001), and
from central to occipital (ρ < 0.001).

IV. DISCUSSION
Previous studies have shown that visual stimulation can be
an effective way to engage attention [33], [41], [42]. Fur-
thermore, attention can be generated by familiarity [15].
For example, familiarity was reported to be able to affect
selective attention to audiovisual speech cues [13]. In this
study, we evaluated the attention index of subjects when
they were watching familiar/unfamiliar videos. Hierarchi-
cal clustering was employed to cluster the attention index
based on directed connectivity features. In the current study,
we found that connectivity strengths from the central area to
other regions (frontal, parietal, and occipital) were enhanced
with an increased attention index during familiar condi-
tions, as demonstrated in Fig. 4 (a-b). As we previously
explained (see Methods), the attention index was obtained
by the alpha/theta ratio averaged from frontal to central
and from central to frontal areas. Our result is in line with
Palva et al., who reported that alpha-band amplitude
increased in attention-demanding tasks [43]. Alpha-band
power increased after the training period of a video game in
a paired-task presentation that forced the subjects to extend
attentional switching [44]. This result was supported by
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TABLE 2. Functional connectivity features from the frontal to central and the central to frontal areas for both familiar and unfamiliar conditions for each
of the 21 participants.

FIGURE 6. The significant information flows between ROIs for group x
state interactions, indicated by line color with ρ values of ρ < 0.001 and
ρ < 0.01.

Sadaghiani et al., who found a positive correlation between
the alpha band and blood oxygen level-dependent (BOLD)
signal [45]. Similar to this, Dosenbach et al. reported that
brain regions in the inferior frontal, insular, and cingulate
cortices played an important role in cognitive function [46].
In addition, a fronto-central theta band has been observed in
healthy subjects and the ADHD population [47]–[49]. For
instance, Mann et al. reported an increased frontal and central
theta in ADHD children during drawing conditions [48].
An enhanced activation has been reported in dorsal anterior
cingulate cortex (dACC) in attention to neutral stimuli [50].
During the selective attention task, an increase of activity was
founded in the ventrolateral prefrontal cortex (vlPFC) [51].
The anterior cingulate cortex (ACC), dorsolateral prefrontal

cortex (dlPFC), inferior frontal gyrus, and amygdala have
been reported as brain areas that are related to attention [52].
Taken together, our results confirm and magnify the results
of previous studies that the frontal and central regions have
an important role in attentional processing.

Furthermore, we also observed significant connectiv-
ity from the central to occipital areas in familiar states
(Fig. 4b and Fig. 4c). Our results were supported by a pre-
vious study of event-related potentials (ERP). This study
suggested that the earliest response amplified by attention
at 75 ms was recorded from the dorsal occipital areas
in a visual task in which a subject was asked to
notice the position of a target (vertical or reversed) in
flashes that were randomly displayed to each field [53].
Pantazatos et al. found specific interactions between the
ventromedial prefrontal cortex (vmPFC) and lateral occipital
cortex (LOC) in a natural and complex search task [54].
These results support the notion that the occipital lobe has a
primary role in examining visual information and attentional
modulation.

In comparison between familiar and unfamiliar conditions,
our results demonstrated that familiar states were dominant
over unfamiliar states for all groups (Fig. 5). An fMRI
study reported that the medial frontal lobe neurons were
more activated in response to personally familiar people
(mother or colleague) compared to unfamiliar faces in normal
subjects [55]. Another fMRI study also revealed that the
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medial frontal lobe, insula, middle temporal, and inferior
parietal were more active in response to a well-known face
when contrasted to an unknown face [56]. Platek et al.
reported that familiar faces invoked some areas in the medial
frontal and parietal lobes reflecting that these areas may play
a significant role in face familiarity and that recognition of
familiar faces are localized to lateral frontal, temporal, and
parietal areas [56]. In this study, we found significant familiar
information flow from parietal to right temporal, which was
greater than unfamiliar. This result is in agreement with the
result reported by Sugimoto et al. in an fMRI study that
the right temporo-parietal junction (rTPJ) was significantly
greater in the competition with familiar friends than with
unfamiliar others [57]. In addition, the functional connectiv-
ity of the rTPJ and reward-linked regions, composed of the
striatum and substantia nigra, was larger in response to famil-
iar friends compared to unfamiliar others [57]. Another fMRI
study reported the familiarity effects with well-known people
were observed in the left supra-marginal gyrus, the bilateral
angular gyri, the left precuneus, and the middle part of the
bilateral posterior cingulate cortices [58]. They also observed
brain activation of the bilateral temporo-parietal, the right
anterolateral temporal cortices, posterior middle temporal
gyrus, posterior cingulate cortex, and the left precuneus when
responding to personally well-known people [58]. In a study
of spatial locations (photographs of the building), Elman et al.
reported the activation of the posterior regions in the ventral
PPC (posterior angular gyrus, LOC) and anterior regions in
the medial PPC (anterior precuneus and retrosplenial cortex)
when viewed familiar locations [59]. Generally, our results
agree with previous studies that the frontal, temporal, and
parietal were the most active brain regions in response to
familiar stimuli (Fig. 5).

V. CONCLUSION
In this study, by using hierarchical clustering based on infor-
mation flows of frontal to central and central to frontal, sub-
jects were clustered into three groups: low index (LI), middle
index (MI), and high index (HI). The altered topological
properties between regions of the attention index groups were
demonstrated using a directed connectivity approach that
identified the importance of the frontal and central regions
regarding attentional processing. In addition, our results also
reveal the dominance of familiar stimuli compared to unfa-
miliar stimuli, which evoked significant effects in the frontal,
temporal, and parietal areas. Our findings also show that
frontal and central regions were the main sources in the
interaction between group and state. In future studies, data
analysis with a high-density setup is required to obtain a more
accurate result and to corroborate our findings.
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