
Received February 23, 2021, accepted April 6, 2021, date of publication April 9, 2021, date of current version April 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072231

FastPathology: An Open-Source Platform for
Deep Learning-Based Research and Decision
Support in Digital Pathology
ANDRÉ PEDERSEN 1,3, MARIT VALLA 1,3,4, ANNA M. BOFIN1, JAVIER PÉREZ DE FRUTOS2,
INGERID REINERTSEN 2,5, AND ERIK SMISTAD 2,5
1Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
2SINTEF Medical Technology, 7465 Trondheim, Norway
3Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
4Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
5Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Corresponding author: André Pedersen (andre.pedersen@ntnu.no)

This work was supported in part by The Liaison Committee for Education, Research and Innovation in Central Norway
(Samarbeidsorganet), and in part by the Cancer Foundation, St. Olavs Hospital, Trondheim University Hospital (Kreftfondet).

ABSTRACT Deep convolutional neural networks (CNNs) are the current state-of-the-art for digital analysis
of histopathological images. The large size of whole-slide microscopy images (WSIs) requires advanced
memory handling to read, display and process these images. There are several open-source platforms
for working with WSIs, but few support deployment of CNN models. These applications use third-party
solutions for inference, making them less user-friendly and unsuitable for high-performance image analysis.
To make deployment of CNNs user-friendly and feasible on low-end machines, we have developed a new
platform, FastPathology, using the FAST framework and C++. It minimizes memory usage for reading and
processing WSIs, deployment of CNN models, and real-time interactive visualization of results. Runtime
experiments were conducted on four different use cases, using different architectures, inference engines,
hardware configurations and operating systems. Memory usage for reading, visualizing, zooming and
panning a WSI were measured, using FastPathology and three existing platforms. FastPathology performed
similarly in terms of memory to the other C++-based application, while using considerably less than the
two Java-based platforms. The choice of neural network model, inference engine, hardware and processors
influenced runtime considerably. Thus, FastPathology includes all steps needed for efficient visualization
and processing of WSIs in a single application, including inference of CNNs with real-time display of the
results. Source code, binary releases, video demonstrations and test data can be found online on GitHub at
https://github.com/SINTEFMedtek/FAST-Pathology/.

INDEX TERMS Deep learning, neural networks, high performance, digital pathology, decision support.

I. INTRODUCTION
Whole Slide microscopy Images (WSIs) used in digital
pathology are often large, and images captured at ×400 can
have approximately 200k × 100k color pixels resulting in
an uncompressed size of ∼ 56 GB [1]. This exceeds the
amount of Random-Access Memory (RAM) and Graphics
Processing Unit (GPU) memory on most computer systems.
Thus, special data handling is required to store, read, process
and display these images.

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

With the integration of digital pathology into clinical prac-
tice worldwide [2], [3], there is a need for tools that can assist
clinicians in their daily practice. Deep learning, and particu-
larly Convolutional Neural Networks (CNNs), currently rep-
resent the state-of-the-art in automated and semi-automated
analysis. CNNs are a class of artificial neural networks that
can learn spatial features in the input data and are thus widely
used in a range of computer vision tasks, including radiology
and digital pathology. In the analysis of WSIs, the use of
CNNs has resulted in accuracies surpassing traditional image
analysis techniques [4]–[6]. Still, deploying CNNs requires
computer science expertise, making it difficult for clinicians

58216 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3637-953X
https://orcid.org/0000-0001-7336-8779
https://orcid.org/0000-0003-0999-3849
https://orcid.org/0000-0002-7258-4709
https://orcid.org/0000-0003-3804-997X


A. Pedersen et al.: FastPathology: An Open-Source Platform

and non-engineers to implement these methods into clinical
practice. Thus, there is a need for an easy-to-use software that
can load, visualize and process large WSIs using CNNs.

There are several open-source softwares available for visu-
alizing and performing traditional image analysis on WSIs
such as QuPath [7] and Orbit [8]. Still, most of these do
not support deployment of CNNs. Most developers working
with CNNs train their models in Python using frameworks
like TensorFlow [9] and Keras [10]. Thus, platforms intended
for use in digital pathology should support deployment of
these models. A solution to this may be to deploy models
in Python directly, using the same libraries, as done in Orbit.
Inference in Python is optimized, because the actual Inference
Engines (IEs), such as TensorFlow, are usually written in
C and C++, and use parallel processing and GPUs. How-
ever, the Python language itself is not optimized and is thus
unfit for large scale, high performance software develop-
ment. Most existing platforms use Java/Groovy as the main
language. Despite boasting good multi-platform support and
being a modern object-oriented language, the performance
of Java compared to C and C++ is debated [11], [12]. It is
possible to deploy TensorFlow-based models in Java, with
libraries like DeepLearning4J [13], but its support for layers
and network architectures is currently limited.

We argue that due to the high memory and computational
demands of processing and visualizing WSIs, modern C++
together with GPU libraries such as OpenCL and OpenGL
are better suited to create such a software. We therefore
propose to use and extend the existing high-performance C++
framework FAST [14] to develop an open-source platform for
reading, visualizing and processing WSIs using deep CNNs.
FAST was introduced in 2015 as a framework for high per-
formance medical image computing and visualization using
multi-core Central Processing Units (CPUs) and GPUs [14].
In 2019 [15], it was extendedwith CNN inference capabilities
using multiple inference engines such as TensorFlow, Open-
VINO [16] and TensorRT [17]. In this article, we describe
a novel application FastPathology based on FAST which
consists of a Graphical User Interface (GUI) and open trained
neural networks for analyzing digital pathology images.
We also outline the components that have been added
to FAST to enable processing and visualization of WSIs.
Four different neural network inference cases, includ-
ing patch-wise classification, low-resolution segmentation,
high-resolution segmentation and object detection, are used
to demonstrate the capabilities and computational perfor-
mance of the platform. The application runs on both
Windows and Ubuntu Linux Operating Systems (OSs) and
is available online at https://github.com/SINTEFMedtek/
FAST-Pathology/.

A. RELATED WORK
QuPath [7] is a popular software for visualizing, analyz-
ing and annotating WSIs. It is a Java-based application
that supports reading WSIs using open-source readers such
as Bio-Formats [18] and OpenSlide [19]. QuPath can be

applied directly using the GUI, but it also includes an
integrated script editor for writing Groovy-based code for
running more complex commands and algorithms. Its anno-
tation tool supports multiple different, dynamic brushes, and
it can be used for various structures at different magnifi-
cation levels. Using QuPath, it is possible to create new
classifiers directly in the software, e.g. using Support Vector
Machines (SVMs) and RandomForests (RFs). Quite recently,
attempts to support deployment of trained CNNs have been
made through StarDist [20], using TensorFlow to deploy a
deep learning-based model for cell nucleus instance segmen-
tation. Currently, the user cannot deploy their own trained
CNNs in QuPath. However, it is possible to import external
predictions from disk and save them as annotations.

The software ASAP [21] supports visualization, annota-
tion and analysis of WSIs. Unlike QuPath, ASAP is based
on C++. ASAP can also be used in Python directly through
a wrapper, which is suitable as most machine learning
researchers develop and train their models in Python.

Orbit [8] is a recently released software. It includes pro-
cessing and annotating tools similar to QuPath. However, it is
possible to deploy and train CNNs directly in the software.
Orbit is written in Java, but the deep learning-module is writ-
ten in Python, and executed from Java. For computationally
intensive tasks, such as training of CNNs, Orbit uses a Spark
infrastructure, which makes it possible to relax the footprint
on the local hardware.

Due to the large size of WSIs, utilizing algorithms on
these has a high computational cost. Cytomine [22] is a
platform that solves this by running analyses through a
web interface using a cloud-based service. It has similar
options for visualization, annotation and analysis to QuPath.
Its core solutions are open-source, however more advanced
modules are not free-to-use. It also lacks options for
CNN inference.

B. CONTRIBUTIONS
Following our previous work on neural network inference
in FAST [15], which demonstrated basic WSI processing
functionality, the following are the main contributions of this
article:
• A new, free-to-use and open-source application called
FastPathology for deep-learning based digital pathol-
ogy, consisting of a user-friendly GUI and a collection
of open trained neural networks.

• A new system for creating, reading and writing arbitrary
large images and segmentations with low latency and
memory footprint, using a tiled image pyramid approach
with memory mapping implemented in FAST.

• A new GPU-based renderer for visualization of
high-resolution neural network predictions as transpar-
ent colored overlays on top of WSIs interactively in
real-time.

• A text pipelinemethod in FAST, enabling users to create,
modify and use complex processing and visualization
pipelines without programming.

VOLUME 9, 2021 58217



A. Pedersen et al.: FastPathology: An Open-Source Platform

• GPU-based methods for fast detection and rendering of
bounding boxes detected on WSIs in FAST.

• Improved storage capabilities of predictions in FAST,
making neural network deployment generalizable and
scalable as demonstrated on fourWSI specific use cases.

• Quantitative memory usage comparison of four
open-source digital pathology applications.

II. METHODS
In the existing FAST framework, several components needed
to be created to read, visualize and processWSIs. This section
first describes how these components were designed to handle
WSIs on a computer system with limited memory and com-
putational resources. Then, the FastPathology application
itself is described, including how it was designed to enable
users without programming experience to apply deep learning
models on WSIs.

A. READING WHOLE SLIDE IMAGES
WSIs are usually stored in proprietary formats from var-
ious scanner vendors. The open-source, C-based library
OpenSlide [19] can read most of these proprietary formats.
Since these images are very large, they are usually stored
as tiled image pyramids. OpenSlide was added to FAST to
enable reading of these files, thereby accessing the raw color
pixel data. OpenSlide uses the virtual memory mechanisms
of the operating systems. Thus, by streaming data on demand
from disk to RAM, it is possible to open and read large files
without exhausting the RAM system memory.

B. CREATING ARBITRARY LARGE IMAGES
When performing image analysis tasks such as segmentation
on high-resolution image planes of WSIs, it is necessary to
create, write and read large images while performing seg-
mentation using a sliding window approach. To facilitate
this, a tiled image pyramid data object was added to FAST,
enabling the creation of images of arbitrary sizes. Given an
image size ofM×N , FAST creates L levels where each level
has the size M

2l ×
N
2l with l ranging from 0 to L − 1. Levels

smaller than 4096 × 4096 are not created. This limit was
chosen to keep the number of levels low, as it affects storage
usage, while still having a low-resolution image level which
can fill the entire screen without looking blurred. Storing all
levels in memory of a×400WSI, would require an extremely
large amount of memory. Thus the operating system’s native
file-based memory mapping mechanisms are used, which
on Linux is the 64 bit mmap function and on Windows the
file mapping mechanism. These file mapping mechanisms
essentially create a large file on disk, and virtually map it
to RAM, thus streaming data back and forth. Reading and
writing data in this manner is slower compared to using the
RAM only. Furthermore, the speed is affected by disk speed,
and it requires additional disk space. Levels that use less than
a threshold of 512 MB are stored in RAM instead without
memory mapping. This was done to increase performance
of loading the first levels at the cost of RAM usage up the

specific threshold. The threshold corresponds to storing a
level of ∼ 11.5k × 11.5k pixels with 4 bytes per pixel.

C. RENDERING A WSI WITH OVERLAYS
High performance interactive image rendering with multiple
overlays, colors and opacity usually requires a GPU imple-
mentation. Since GPUs also have a very limited memory size,
WSIs will not fit into the GPUs memory. There is no native
virtual memory system on GPUs, thus a virtual memory
system for WSIs was implemented for GPUs in FAST, using
OpenGL. From the image pyramid, only the required tiles at
the required resolution in the image pyramid are transferred to
the GPUmemory as textures. To further reduce GPUmemory
usage, the tiles are stored using OpenGL’s built-in texture
compression algorithms (GL_COMPRESSED_RGBA). The
tiles and resolution required at a given time are automati-
cally determined based on the current position and amount
of zoom of the current view of the image. Reading tiles
from disk and streaming them to the GPU is time consum-
ing. Therefore, the tile textures are processed and uploaded
to the GPU in a separate thread. When the tile texture is
done it is stored in a first-in-first-out (FIFO) cache. The
user can manually specify the maximum cache size in bytes.
Every time a tile is used, it is placed at the back of the
cache. When the cache exceeds its limit, tiles are removed
from the front of the cache and their textures deleted. This
is done to limit the amount of GPU memory used for
rendering. Before a given tile is ready to be rendered, the next-
best resolution tiles already cached are displayed. The low-
est resolution of the image pyramid is always present in
GPU memory. Thus, the WSI and any overlays will always
be displayed, even when higher resolution tiles are being
loaded. The prediction overlays are continuously updated
while the neural network is processing. For low-resolution
predictions, this is done by updating the visualization on the
GPU in real-time. When rendering high-resolution predic-
tions stored as tiled image pyramids (e.g. wholeWSI segmen-
tation (use case 3)), a more advanced process is needed. Every
time the high-resolution prediction is updated, e.g. a new
patch has been processed, the patch prediction is written to
level 0 of the image pyramid and every pixel changed is
propagated upwards in the image pyramid. Every modified
tile is marked as dirty in the GPU-based renderer, thereby
triggering the system to update the tile’s texture with the latest
predictions.

The user can easily pan and zoom to visualize all parts
of a WSI with low latency and a bounded GPU memory
usage. In FAST, multiple images and objects can be dis-
played simultaneously with an arbitrary number of over-
lays. This enables high and low-resolution segmentations,
patch-wise classifications, and bounding boxes to be dis-
played on top of a WSI with different colors and opac-
ity levels. These can also be changed in real-time while
processing.

Figure 1 shows an example of how the predictions can
be visualized at different resolutions as overlays on top of

58218 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

FIGURE 1. Illustration of how predictions, in this case segmented cell nuclei (green), can be visualized on top of a WSI in the viewer on different
magnification levels.

theWSI. This illustrates the large size of theseWSIs and why
a tiled image pyramid data structure is required to visualize
and process these images.

D. TISSUE SEGMENTATION
Since WSIs are so large, applying a sliding window method
across the image might be time consuming, especially when
using CNNs. Thus, removing regions other than the tis-
sue sample would be an advantage. In FAST, a simple
tissue detector was implemented which segments the WSI by
thresholding the RGB image color space, using a predefined
threshold. The image level with lowest resolution is seg-
mented based on the Euclidean distance between a specific
RGB triplet and the color white. Morphological closing is
then performed to bias sensitivity in tissue detection. The
default parameters, such as the threshold value, were empir-
ically determined and tuned on WSIs from a series of breast
cancer tissue samples. The tissue segmentation method was
implemented in OpenCL to run in parallel on the GPU or on
the multi-core CPU.

E. NEURAL NETWORK PROCESSING
Inference of neural networks is done through FAST by load-
ing a trained model stored on disk as described in [15].
FAST comes with multiple inference engines including:
1) Intel’s OpenVINO which can run on Intel CPUs as well as
their integrated GPUs, 2) Google’s TensorFlowwhich can run
on NVIDIA GPUs with the CUDA and cuDNN framework,
or directly on CPUs, and 3) NVIDIA’s TensorRT which can
run on NVIDIA GPUs using CUDA and cuDNN. FAST will
automatically determine which inference engines can run on
the current system depending on whether CUDA, cuDNN or
TensorRT are installed or not.

Inmany image analysis solutions theWSI is tiled into small
patches of a given size and magnification level. A method
is then applied to each patch independently, and the results
are stitched together to form the WSI’s analysis result. FAST
uses a patch generator to tile a WSI into patches in a
separate thread on the CPU. Thus, a neural network can
simultaneously process patches while new patches are being
generated. Due to the parallel nature of GPUs, it can be
beneficial to perform neural network inference on batches

of patches, which can be done in FAST using the patch to
batch generator. Finally, the patch stitcher in FAST takes
the stream of patch-wise predictions to form a final result
image or tensor which can be visualized or further analyzed.
For methods which generate objects such as bounding boxes,
an accumulator is used instead which simply concatenates
the objects into a list. Since computations and visualizations
are run in separate threads in FAST, the predictions can be
visualized on top of the WSI, while the patches are being
processed, simultaneously.

It is also possible to run different analyses on different
threads in FAST. However, as amount of memory and threads
are limited, running multiple processes simultaneously might
affect the overall runtime performance.

Results are stored differently depending on whether one
is performing patch-wise classification, object detection or
segmentation. For patch-wise classification, predictions are
visualized as small rectangles with different colors for differ-
ent classes and varying opacity dependent on classification
confidence level. For object detection, predictions are visual-
ized as bounding boxes, where the color of the box indicates
the predicted class. For semantic segmentation, pixels are
classified, and given a color and opacity depending on the
predicted class and confidence level.

To enable introduction of new models and generalizing
to different multi-input/output network architectures, each
model assumes that it has a corresponding model description
text-file. This file includes information on how the models
should be handled. For instance, for some inference engines,
the input size must be set by the user, as it is not interpretable
directly from the model.

F. GRAPHICAL USER INTERFACE
In order to use the WSI functionality in FAST without pro-
gramming, a GUI is required. The GUI of FastPathology
was implemented using Qt 5 [23]. The GUI was split into
two windows. On the right side there is a large OpenGL
window for visualizing WSIs and analysis results from CNN
predictions. On the left, the user can find a dynamic taskbar
with five sections for handling WSIs.

1) Import: Options to create or load existing projects and
reading WSIs.

VOLUME 9, 2021 58219



A. Pedersen et al.: FastPathology: An Open-Source Platform

FIGURE 2. An example of FastPathology’s GUI showing some basic functionalities. The task bar can be seen on the left side. The right side contains a
OpenGL window rendering a WSI. On top of the window is a progress bar and a script editor containing a text pipeline.

2) Process: Selection of available processing methods,
e.g. tissue segmentation or inference with CNN.

3) View: Viewer for selecting results to visualize,
e.g. tumor segmentation, patch-wise histological
prediction.

4) Stats: Extract statistics from results, e.g. histogram of
histological grade predictions, final overall WSI-level
prediction.

5) Export: Exporting results in appropriate formats,
e.g..png or.mhd/.raw for segmentations and heatmaps,
or .csv for inference results.

An example of the GUI can be seen in Figure 2. The View,
Stats and Export widgets are dynamically updated depending
on which results are available. In the View widget one can
also change the opacity of the result or the class directly, and
the color. Results can be removed and inference can be halted.
Figure 3 shows how the user can interact with the GUI and
how the different components relate.

G. TEXT PIPELINES
FAST implements text pipelines, a txt-file containing infor-
mation regarding which components to use in a pipeline.
These pipelines are deployable directly within the software.
It is also possible to load external pipelines, or to create
or edit pipelines using the built-in script-editor, as seen
in Figure 2. To make the editor more user-friendly, text high-
lighting was added. This produces different colors for FAST
objects and corresponding attributes, e.g. patch generator and

magnification level. Using FastPathology, it is also possible
to modify other text-files, such as the model description
text-file.

H. ADVANCED MODE
An advanced mode was added to enable users to change and
tune hyperparameters of algorithms and models. For tissue
segmentation, the threshold and kernel size for the morpho-
logical operators can be set in the GUI. A dynamic preview
of the segmentation is then updated in real time, to give the
user feedback about the selected parameters.

I. PROJECTS
It may be convenient to run the same analysis on
multiple WSIs. Therefore, a Project can be created, and
several WSIs can be added to the project. By selecting a
pipeline, and choosing run-for-project, the pipeline is run
sequentially on all WSIs in the project. Results are stored
within the project in a separate folder. This makes it possible
to load the project including the results, and export the results
to other platforms, e.g. QuPath.

J. STORING RESULTS
Storing results from different image analysis is an important
part of a WSI analysis platform. Currently, it is possible to
store the tissue segmentation and predictions on disk using the
metaimage (.mhd/.raw) format in FAST. Tensors from neural
networks are stored using the HDF5 format.

58220 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

FIGURE 3. Illustration of the user workflow for analyzing WSIs in FastPathology. It also shows how each component in the GUI are related, and how the
user can run a pipeline (Process) and get feedback from the neural network, either from the OpenGL window (View) or from the statistics summary
(Stats). WSIs can be added through the Import widget and results are stored on disk using the Export widget.

K. INFERENCE USE CASES
Four different neural network inference cases were selected to
demonstrate the capabilities and performance of the applica-
tion. All models were implemented and trained using Tensor-
Flow 1.13. For use cases 1, 3 and 4, the tissue segmentation
method was used to limit the neural network processing to
tiles with tissue only. All models were trained as a proof-of-
concept for the platform, not to achieve the highest possible
accuracy.

1) USE CASE 1 - PATCH-WISE CLASSIFICATION
This use case focuses on patch-wise classification of WSIs.
The image was tiled into non-overlapping tiles of size 512×
512×3 at×200magnification level, and RGB intensities nor-
malized to the range [0, 1]. The network usedwas a CNNwith
the MobileNetV2 [24] encoder pretrained on the ImageNet
dataset [25]. The classifier part contained a global average
max pooling layer and two dense layers with 64 and 4 neurons
respectively. Between the dense layers, batch normalization,
ReLU and dropout with a rate of 0.5 were used. In the last
layer a softmax activation function was used to obtain the
output probability prediction for each class. The model has
∼ 2.31M parameters. It was trained on the Grand Challenge
onBreast Cancer Histology Images (BACH) dataset [26]. The
model classifies tissue into four classes: normal tissue, benign
lesion, in situ, and invasive carcinoma. A patch stitcher is used
to create a single heatmap of all the classified patches. The
heatmap is visualized on top of theWSI with a different color
for each class. The opacity reflects the confidence score of the
class as shown in Figure 4a).

2) USE CASE 2 - LOW-RESOLUTION SEGMENTATION
This task focuses on semantic segmentation of WSIs by
segmenting pixels of the entire WSI using the pyramid level
with the lowest resolution. Thus, this use case does not pro-
cess patches, but the entire image. The network uses a fully

convolutional encoder-decoder scheme, based on the U-Net
architecture [27]. From images of size 1024 × 1024 × 3,
the network classifies each pixel as tumor or background. All
the convolutional layers in the model are followed by batch
normalization, ReLU and a spatial dropout of 0.1. However,
in the output layer, the softmax activation function was used.
The total number of parameters was ∼ 11.56M. The dataset
used is a subset of a series of breast cancer cases curated
by the Breast Cancer Subtypes Project [28]. The subset
comprises Hematoxylin-Eosin (H&E)-stained full-face tissue
sections (4µ thick) from breast cancer tumors. WSIs were
captured at ×400 magnification. The result is visualized on
top of the WSI with each class having a different color. The
opacity reflects the confidence score of the class. Figure 4b)
shows the results of this use case, where the segmented tumor
region is shown in transparent red, whereas the background
class is completely transparent.

3) USE CASE 3 - HIGH-RESOLUTION SEGMENTATION
We used the same U-Net-architecture as in use case 2, to per-
form segmentation on independent patches. The image was
tiled as in use case 1. Tiles of size 256 × 256 × 3 were
used. Patches from varying image planes were extracted
(around ×200), but higher resolution tiles were preferred.
The PanNuke dataset [29], [30] was used to train the model.
PanNuke is a multi-organ pan-cancer dataset for nuclear seg-
mentation and classification. It contains 19 different tissue
types and five different classes of nuclei: inflammatory cell,
connective tissue, neoplastic, epithelial, and dead (apoptic
or necrotic) nuclei. We only trained the model to perform
nuclear segmentation, regardless of class. The total number
of parameters was∼ 7.87M. The segmentation of each patch
was stitched together to form a single, large segmentation
image. This image has the same size as the image pyramid
level it is processing, and the result is formed into a new
image segmentation pyramid as described in section II-B.

VOLUME 9, 2021 58221



A. Pedersen et al.: FastPathology: An Open-Source Platform

FIGURE 4. Illustrating the resulting predictions of each use case on top of a WSI. a) patch-wise classification of tissue, b) low-resolution segmentation of
breast cancer tumor, c) high-resolution segmentation of cell nuclei, and d) object detection of cell nuclei.

The result is visualized on top of the WSI with each class
having a different color (see Figure 4c).

4) USE CASE 4 - OBJECT DETECTION AND CLASSIFICATION
We used the same tiling strategy as for use case 3,
with the same image planes and input size. However,
in this case we performed object detection using the Tiny-
YOLOv3-architecture [31]. Implementation and training of
Tiny-YOLOv3 was inspired by the specified GitHub reposi-
tory.1 The model was pretrained on the COCO dataset [32],
and fine-tuned on the PanNuke dataset. Transfer learning was
performed due to the challenge of training an object detector
from scratch, where the greatest observed benefit was in
convergence speed. Bounding box coordinates with corre-
sponding confidence and predicted class for all predicted
candidates were made. The total number of parameters was∼
8.67M. Non-maximum suppression was performed to handle
overlapping bounding boxes. From all patches, these were
then accumulated into one large bounding box set, visualized
as colored lines with OpenGL, where the color indicates the
predicted class (see Figure 4d).

III. EXPERIMENTS
A. RUNTIME
To assess speed, we performed runtime experiments using
the four use cases. The experiments were run on a single

1 https://github.com/qqwweee/keras-yolo3

Dell desktop with Ubuntu 18.04 64 bit operating system, with
32 GB of RAM, an Intel i7-9800X CPU and two NVIDIA
GPUs, GeForce RTX 2070 and Quadro P5000. We measured
runtimes using the four inference engines: TensorFlow CPU,
TensorFlow GPU (v1.14), OpenVINO CPU (v2020.3) and
TensorRT (v7.0.0.11). TensorRT was only used in use cases 1
and 4, where an UFF-model was available. All U-Net models
contained spatial dropout and upsampling layers that were
not supported by TensorRT, and thus could not be converted.
For each inference engine, a warmup run was done before
10 consecutive runs were performed. Runtimes for each mod-
ule in a pipeline were reported. The warmup was done to
avoid measurements being influenced by previous runs. The
experiments were run sequentially.

From these experiments, the population mean (X̄ ) and
standard error of the mean (SX̄ ) were calculated. Multiple
Shapiro-Wilk tests [33] were conducted to state whether
the data were normal. The Benjamini-Hochberg false dis-
covery rate method [34] was used to correct for multi-
ple testing. For all hypothesis tests, a significance level
of 5 % was used. Only six out of 32 variables had small
deviations from the normal distribution, thus a normal dis-
tribution was assumed. The mean and 95%-confidence inter-
vals were reported. In addition, multiple pairwise tests
were performed using Tukey’s range test [35] to evaluate
whether there were a significant difference between any
of the total runtimes (see supplementary material for the
p-values).

58222 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

All experiments were done on the A05.svs×200WSI from
the BACH dataset. Measurements were in milliseconds, if not
stated otherwise. To simplify the measurements, rendering
was excluded in all runtime measurements. The OpenGL
rendering runtime is so small it can be regarded as negligible.
The real bottleneck is inference speed and patch generation.
To make all experiments directly comparable, a batch size of
one was used during inference.

For all runtime measurements we reported the time used
for each component (patch generator, neural network input
and output processing, neural network inference, and patch
stitcher), and the combined time in a FAST pipeline. Neural
network input processing includes resizing the images if
necessary and intensity normalization (0-255→ 0-1).

B. MEMORY
Wemonitored memory usage on selected tasks and compared
them to the QuPath (v0.2.3), ASAP (v1.9) and Orbit (v3.64)
platforms. All experiments were run on the sameDell desktop
as used in Section III-A (using the RTX 2070 GPU). The
WSI used was the TE-014.svs from the Tumor Proliferation
Assessment Challenge 2016 [36], since it is a large, openly
available ×400 WSI.
In this experiment, memory usage was measured after

starting the program, after opening the WSI, and after zoom-
ing and panning the view for 2.5 minutes. Both RAM and
GPU memory usage was measured. To make the comparison
fair, we attempted to make similar movements and zoom for
all platforms.

Orbit initializes the WSI from a zoomed region, in contrast
to the three other which initializes from a low-resolution
overview image. In order to achieve the same overview field
of view for all, it was necessary to zoom out initially when
using Orbit. This, however spiked the RAM usage for Orbit.
Thus, to make comparison fair, we only measured memory
usage after the initial image was displayed when opening a
WSI for all applications.

The physical memory usage was monitored using the
interactive process viewer htop on Linux. Due to this, if a
process used ≥ 10 GB of RAM, htop would report it in the
format 0.010 TB, which meant that we had lower resolution
on these measurements. The graphical memory usage was
monitored using the NVIDIA System Management Interface
(nvidia-smi).

C. MODEL AND HARDWARE CHOICE
To further assess how different neural network architectures
could affect inference speed on a specific use case, we ran
use case 1 with a more demanding InceptionV3 model [15].
This model is available in the FAST test data.2 The model
should have a classifier part identical to the one used for our
MobileNetV2 model.

The same use case was also run on a low-end HP laptop
with Windows 10 64 bit operating system, 16 GB of RAM,

2 https://github.com/smistad/FAST/wiki/Test-data

an Intel i7-7600 CPU, and Intel HD Graphics 620 integrated
GPU, to show how runtimes could differ between low- and
high-end machines.

To compare difference in runtime between operating sys-
tems, we also run the same experiments using a high-end
Razer laptop with Windows 10 64 bit operating sys-
tem, 32 GB of RAM, an Intel i7-10750H CPU, an Intel
UHD graphics integrated GPU, and NVIDIA GeForce RTX
2070 Max-Q GPU. To our understanding, the performance
of both the CPU and GPU should be comparable to that of
the Dell desktop computer used in the experiments. During
experiments with both Windows laptops, the machines were
constantly being charged and real-time anti-malware protec-
tion was turned off. For all machines, all experiments were
performed using a Solid State Drive (SSD).

IV. RESULTS
A. RUNTIME
Comparing the choice of inference engine, Tables 2 - 5 show
that inference with TensorFlow CPU was the slowest alter-
native, for each respective use case, especially using Ten-
sorFlow CPU (see supplementary material for the p-values).
Inference with GPU was the fastest, with TensorRT slightly
faster than TensorFlow CUDA. However, no significant dif-
ference was found between TensorFlow CUDA and Ten-
sorRT in any of the runtime experiments. The OpenVINO
CPU IE had comparable inference speed with the GPU
alternatives, even surpassing TensorFlow CUDA on the
low-resolution segmentation task. However, no significant
difference was observed. Thus, there was no benefit of using
the GPU for low-resolution segmentation. We also ran infer-
ence with two different GPUs using TensorRT, and found
negligible difference in terms of inference speed between
the two hardwares. Also, more complex tasks such as object
detection and high-resolution segmentation resulted in slower
runtimes than patch-wise classification and low-resolution
segmentation, across all inference engines.

B. MEMORY
With regards to memory, there was a strong difference
between the C++ and the Java-based applications (see
Table 1). Both C++-based platforms used considerably less
memory across all experiments.

Using nvidia-smi we observed that FastPathology was
the only platform that ran both computation and graph-
ics on the GPU (C+G). FAST uses OpenCL for com-
putations and OpenGL for rendering. The two Java-based
softwares (QuPath and Orbit) only ran graphics on GPU,
either using DirectX or another non-OpenGL form of ren-
dering. ASAP and Orbit did not use any GPU, whereas
QuPath used a negligible amount. Hence, FastPathology
was the only platform capable of exploiting the advan-
tage of having a GPU available for both computations
and rendering. It was observed that both C++ appli-
cations (FastPathology and ASAP) opened their WSIs

VOLUME 9, 2021 58223



A. Pedersen et al.: FastPathology: An Open-Source Platform

TABLE 1. Memory measurements of reading, panning and zooming the view of a ×400 WSI. All memory usage values are in MB.

TABLE 2. Runtime measurements of use case 1 - Patch-wise classification, using the MobileNetV2 encoder performed on the Ubuntu desktop. Each row
corresponds to an experimental setup. Each cell displays the average runtime and 95 % confidence interval limits for 10 successive runs.

TABLE 3. Runtime measurements of use case 2 - low-resolution semantic segmentation.

TABLE 4. Runtime measurements of use case 3 - high-resolution semantic segmentation.

instantly (< 1 s), whereas both Java-based softwares (QuPath
and Orbit) were slower (3-4 s).

C. MODEL AND HARDWARE CHOICE
Tables 2 and 6 show runtime measurements on use case 1
using two different networks, MobileNetV2 and Incep-
tionV3. Due to the increase in complexity, we observed that
inference using CUDA was faster than using all CPU alter-
natives, in use case 1. This example showed that having a

GPU available for inference can greatly speed up runtime,
especially when models become more complex. A similar
conclusion can also be drawn from Table 5 where a com-
plex U-Net architecture was used, in contrast to using a
lightweight Tiny-YOLOv3 architecture as seen in Table 4.

Tables 7 and 8 show inference using the low-end laptop.
There was a significant increase in runtime for all infer-
ence engines. The low-end laptop had an integrated GPU
and thus we could run inference using OpenVINO GPU.

58224 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

TABLE 5. Runtime measurements of use case 4 - object detection and classification.

TABLE 6. Runtime measurements of patch-wise classification (use case 1), using the InceptionV3 encoder performed on the Ubuntu desktop.

TABLE 7. Runtime measurements of patch-wise classification (use case 1), using the MobileNetV2 encoder performed on the low-end windows laptop.

TABLE 8. Runtime measurements of patch-wise classification (use case 1), using the InceptionV3 encoder performed on the low-end windows laptop.

This alternative is only better when more demanding models
are used. Here, a much larger difference in runtime can be
seen between the two CPU alternatives, TensorFlow CPU
and OpenVINO CPU. OpenVINO was superior in terms of
runtime.

Tables 9 and 10 show runtime measurements of the
same use case with both encoders using the high-end
Windows laptop. In this case we achieved runtime perfor-
mance similar to the performance using the Ubuntu desk-
top. We found no significant difference using TensorRT
between the two high-end machines, and TensorRT on Win-
dows and TensorFlow CUDA on Ubuntu. For CPU there

was a significant drop in performance for all use cases and
encoders.

V. DISCUSSION
In this paper, we have presented a new platform, Fast-
Pathology, for visualization and analysis of WSIs. We have
described the components developed to achieve this
high-performance and easy-to-use platform. The software
was evaluated in terms of memory usage, inference speed,
and model and OS compatibility (see supplementary material
for the p-values). A variety of deep learning use cases, model
architectures, inference engines and processors were used.

VOLUME 9, 2021 58225



A. Pedersen et al.: FastPathology: An Open-Source Platform

TABLE 9. Runtime measurements of patch-wise classification (use case 1), using the MobileNetV2 encoder performed on the high-end windows laptop.

TABLE 10. Runtime measurements of patch-wise classification (use case 1), using the InceptionV3 encoder performed on the high-end windows laptop.

A. MEMORY USAGE AND RUNTIME
In the memory experiments, FastPathology performed simi-
larly to another C++-based software (ASAP), whereas both
Java-based alternatives (QuPath and Orbit) were more mem-
ory expensive, using a large amount of memory while zoom-
ing. We have presented a runtime benchmark. Among the
CPU alternatives, OpenVINOCPU performed the best. Infer-
ence onGPUwas the fastest, but no significant difference was
found when comparing TensorFlow CUDA and TensorRT.
A small degradation in runtime was observed when using
Windows compared to Ubuntu, but there was no significant
difference using GPU. Runtimes on the low-end machine
were slower, especially for more demanding models, but if
an integrated GPU, such as Intel HD Graphics, is available,
inference can be improved using OpenVINO GPU.

In use case 2, OpenVINO outperformed TensorFlow, even
with GPU. This is due to TensorFlow having a large ini-
tialization overhead, of almost one second. This penalty is
lesser in the other use cases, because the network is then
run on a large number of patches. In use case 1, using
TensorRT, we achieved similar runtime using two GPUs
with quite varying memory size, 16 GB vs. 8 GB. This can
be explained by both GPUs having similar computational
power, and FAST/TensorRT only using the memory required
to perform the task at hand. Hence, having a GPU with more
memory does not necessarily improve runtime.

A slower runtime on the low-endmachine can be explained
by a lower frequency and number of cores (2 vs. 6) of
the CPU. FAST takes advantage of all cores during inference
and visualization. Thus, having a greater number of cores
is beneficial, especially when running inference in parallel.

Using the high-endmachine onWindows, we also saw a small
degradation in runtime using CPU. This may be explained
by Windows having larger overhead compared to Ubuntu,
or differences in hardware components that were not con-
sidered in this study, e.g. SSD. However, on GPU using
TensorRT, there was a negligible difference between the two
high-end machines. The small drop in performance might be
due to the Windows machine having a Max-Q GPU design
which is known to slightly limit the performance of the GPU,
especially with regards to speed.

An interesting observation is that, for several of the use
cases, using aGPU for inference does not give a large speedup
over CPU inference in the total runtime of processing a WSI.
This is mainly because the total runtimewas dominated by the
slow patch generation and not the neural network inference.
The patch generation is slow because the WSI is not present
in RAM, and has to be read through a virtual memory system.

In this study, we used two different encoders for use case 1,
MobileNetV2 and InceptionV3. Both networks are baseline
architectures, commonly used in digital pathology [26], [37],
[38]. The latter is more computationally demanding, making
inference slower compared toMobileNetV2.MobileNetV2 is
useful for real-time deployment, while InceptionV3 is suit-
able for solving more complex tasks.

We get comparable runtime measurements as in a previ-
ous study [15]. This is expected as we use the same Incep-
tionV3 model, applied to the same WSI, on the same use
case, both using FAST. Small deviations are probably due
to differences in hardware. These are the only measurements
that are comparable with the prior study. All additional work
is novel.

58226 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

B. COMPARISON WITH OTHER PLATFORMS
QuPath is known to have a responsive, user-friendly viewer,
with a seamless rendering of patches from different magnifi-
cation levels. An optimized memory management or alloca-
tion of large amounts of data in memory is required to provide
such a user experience. This could explain why QuPath used
the largest amount of memory of all four tested solutions.
FastPathology and ASAP provide a similar experience with
a considerably smaller memory footprint. Rendering WSIs
with Orbit did not work as swiftly, neither on Ubuntu nor
Windows. To make FastPathology as efficient and fast as
possible, we have in this article described new methods for
performing full-resolution image analysis such as segmen-
tation on WSIs, a GPU-based method for visualization of
full-resolution segmentations, and a GPU-based method for
detection and rendering of millions of bounding boxes on top
of a WSI.

There is a wide range of platforms to choose from when
working with WSIs. Solutions such as ASAP are made to be
lightweight and responsive in order to support visualization
and annotation of giga-resolution WSIs. Platforms such as
QuPath enable deployment of built-in image analysis meth-
ods, either in Groovy, Python, or through ImageJ, as well
as the option to implement the user’s own methods. Orbit
takes it further by making it possible for the user to train and
deploy their own deep learning models in Python within the
software. FastPathology can deploy CNNs in the same way as
Orbit while maintaining comparable memory consumption to
ASAP during visualization. It is also simple and user-friendly,
requiring no code-interaction to deploy models.

Some models are more computationally demanding and
thus naturally require greater memory. To some extent, mem-
ory usage can be adjusted through pipeline design, and by
choice of model compression and inference engine. Depend-
ing on the hardware, FastPathology takes advantage of all
available resources to produce a tailored experience when
deploying models. Thus, pipeline designs such as batch infer-
ence can be done to further improve runtime performance.
However, it is also possible to deploy models on low-end
machines, even without a GPU. Machines that are using
Intel CPUs, typically also include integrated graphics. In this
case OpenVINO GPU could be used to improve runtime
performance.

In FastPathology, the components used for reading, render-
ing and processing WSIs, and displaying predictions on top
of the image, are made available through FAST. Since Python
is one of the most popular languages for data scientists to
develop neural network methods, FAST has been made avail-
able in Python as an official pip package,3 and is currently
available for Ubuntu (version 18 and 20) and Windows 10.
This means that platforms that can use Python (e.g. Orbit
and QuPath), could also use our solutions, for instance for
enabling or improving deployment of CNNs.

3pip install pyfast - https://pypi.org/project/pyFAST/

C. STRENGTHS AND WEAKNESSES
The platform has been developed through close collaboration
with the pathologists at St. Olavs Hospital, Trondheim, Nor-
way, to ensure user-friendliness and clinical relevance. The
memory usage of the platform for reading, visualizing and
panning a ×400 WSI has been compared to three existing
softwares. As none of the existing platforms have published
runtime benchmarks, the present study seeks to bridge the
gap by providing a benchmark. TheWSIs, models and source
code for running these experiments have been made public to
facilitate reproducibility and encourage others to run similar
benchmarks.

The runtime measurements were only performed using
three machines. Runtimes on new machines may vary,
depending on hardware, as well as version and configura-
tion of the OS. It is possible to further improve runtime by
compressing models (e.g. using half precision), using a dif-
ferent patch size, or running models on lower magnification
levels. However, this might degrade the final result. Such a
study would require a more in-depth analysis in the trade-off
between design and performance. As the models used were
only trained to show proof of concept, this was considered
outside the scope of this paper.

Regarding memory usage, experiments were only run once
on one machine as these experiments were performed manu-
ally and were tedious to repeat. The measurements were per-
formed by one person, and not the most likely end-user of the
platform. Thus, in the future, a more in-depth study should be
done to verify to what extent runtime and memory consump-
tion differ depending on OS, hardware and user-interaction
with the viewer. Including memory usage for the use cases
would be interesting. However, FastPathology is the only
platform to stream CNN-based predictions as overlays during
inference, and thus a fair comparison cannot be made.

In all our experiments, we used a batch size of one when
running inference. In theory, increasing the batch size should
improve runtime. However, batch size is proportional to
memory usage. Rendering theWSI and predictions as overlay
also require GPU memory. Thus, large batch inference on
low-end systems is not realistic. Nonetheless, as seen from
all runtime experiments, patch generation is a bottleneck.
There is also the dependency on hardware. If a less profi-
cient CPU was available and a strong dedicated GPU, one
would likely observe a much larger difference in CPU/GPU
runtime, at least regarding inference runtime. Future studies
will explore further improvements for the aforementioned
trade-offs.

In order to remove areas of the WSI that only contain
glass, Otsu’s method is commonly used to automatically set
the threshold [39]–[41]. However, we observed that when
the tissue section was large, covering almost the entire slide,
Otsu’smethod produced thresholds that separated tissue com-
ponents, rather than background (glass). This phenomenon
occurred because the threshold is based solely on the inten-
sity histogram. Therefore, instead of using Otsu’s method,
we empirically tuned the threshold and set it manually during

VOLUME 9, 2021 58227



A. Pedersen et al.: FastPathology: An Open-Source Platform

deployment. Thus, if suboptimal tissue segmentation on a
specific WSI is observed, the threshold can be manually
adjusted by the user in FastPathology. Similar behaviour
of Otsu’s method has been observed in related work by
Bandi et al. [40]. They proposed a more advanced approach
using deep learning. Their proposed design could already be
deployed if their trained model was available, as the architec-
ture chosen is already supported in FastPathology.

FastPathology is continuously in development, and thus
this paper only presents the first release. Future work includes
support for more complex models, support for more WSI
and neural network storage formats, and basic annotation and
region of interest tools. As this is an open-source project,
we encourage the community to contribute through GitHub.

VI. CONCLUSION
In this paper, we presented an open-source deep learning-based
platform for digital pathology called FastPathology. It was
implemented in C++ using the FAST framework, and was
evaluated in terms of runtime on four use cases, and in terms
of memory usage while viewing a ×400 WSI. FastPathol-
ogy had comparable memory usage compared to another
C++ platform, outperforming two Java-based platforms.
In addition, FastPathology was the only platform that can
perform neural network predictions and visualize the results
as overlays in real-time, as well as having a user-friendly way
of deploying external models, access to a variety of different
inference engines, and utilize both CPU and GPU for ren-
dering and processing. Source code, binary releases, video
demonstrations and test data can be found online on GitHub
at https://github.com/SINTEFMedtek/FAST-Pathology/.

REFERENCES
[1] P. Bandi et al., ‘‘From detection of individual metastases to classification of

lymph node status at the patient level: The camelyon17 challenge,’’ IEEE
Trans. Med. Imag., vol. 38, no. 2, pp. 550–560, Feb. 2019.

[2] A. Baidoshvili, A. Bucur, J. van Leeuwen, J. van der Laak, P. Kluin, and
P. J. van Diest, ‘‘Evaluating the benefits of digital pathology implementa-
tion: Time savings in laboratory logistics,’’ Histopathology, vol. 73, no. 5,
pp. 784–794, Nov. 2018.

[3] J. A. Retamero, J. Aneiros-Fernandez, and R. G. del Moral, ‘‘Complete
digital pathology for routine histopathology diagnosis in a multicenter
hospital network,’’ Arch. Pathol. Lab. Med., vol. 144, no. 2, pp. 221–228,
Feb. 2020.

[4] X. Liu, L. Faes, A. U. Kale, S. K. Wagner, D. J. Fu, A. Bruynseels,
T. Mahendiran, G. Moraes, M. Shamdas, C. Kern, J. R. Ledsam,
M. K. Schmid, K. Balaskas, E. J. Topol, L. M. Bachmann, P. A. Keane,
and A. K. Denniston, ‘‘A comparison of deep learning performance
against health-care professionals in detecting diseases from medi-
cal imaging: A systematic review and meta-analysis,’’ Lancet Digit.
Health, vol. 1, no. 6, pp. e271–e297, Oct. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2589750019301232

[5] J. Ker, Y. Bai, H. Y. Lee, J. Rao, and L. Wang, ‘‘Automated brain his-
tology classification using machine learning,’’ J. Clin. Neurosci., vol. 66,
pp. 239–245, Aug. 2019.

[6] J. Ker, L.Wang, J. Rao, and T. Lim, ‘‘Deep learning applications inmedical
image analysis,’’ IEEE Access, vol. 6, pp. 9375–9389, 2018.

[7] P. Bankhead, M. B. Loughrey, J. A. Fernández, Y. Dombrowski,
D. G. McArt, P. D. Dunne, S. McQuaid, R. T. Gray, L. J. Murray,
H. G. Coleman, J. A. James, M. Salto-Tellez, and P. W. Hamilton,
‘‘QuPath: Open source software for digital pathology image analysis,’’ Sci.
Rep., vol. 7, no. 1, Dec. 2017, Art. no. 16878.

[8] M. Stritt, A. K. Stalder, and E. Vezzali, ‘‘Orbit image analysis: An open-
source whole slide image analysis tool,’’ PLOS Comput. Biol., vol. 16,
no. 2, Feb. 2020, Art. no. e1007313.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, and S. Ghemawat. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
[Online]. Available: https://www.tensorflow.org/

[10] F. Chollet. (2015). Keras. [Online]. Available: https://github.
com/fchollet/keras

[11] R. Hundt, ‘‘Loop recognition in C++/Java/Go/Scala,’’ in Proc.
Scala Days, 2011. [Online]. Available: https://days2011.scala-
lang.org/sites/days2011/files/ws3-1-Hundt.pdf

[12] L. Gherardi, D. Brugali, and D. Comotti, ‘‘A java vs. C++ performance
evaluation: A 3D modeling benchmark,’’ in Proc. Int. Conf. Simulation,
Modeling, Program. Auton. Robots, vol. 7628, Nov. 2012, pp. 161–172.

[13] Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-
Source Distributed Deep Learning for the JVM. Accessed: Apr. 15, 2020.
[Online]. Available: http://deeplearning4j.org

[14] E. Smistad, M. Bozorgi, and F. Lindseth, ‘‘FAST: Framework for heteroge-
neous medical image computing and visualization,’’ Int. J. Comput. Assist.
Radiol. Surgery, vol. 10, no. 11, pp. 1811–1822, Nov. 2015.

[15] E. Smistad, A. Ostvik, and A. Pedersen, ‘‘High performance neural net-
work inference, streaming, and visualization of medical images using
FAST,’’ IEEE Access, vol. 7, pp. 136310–136321, 2019.

[16] Intel. (2019).OpenVINO Toolkit. Accessed: Jun. 10, 2019. [Online]. Avail-
able: https://software.intel.com/openvino-toolkit

[17] NVIDIA. (2019). TensorRT. Accessed: Jun. 10, 2019. [Online]. Available:
https://developer.nvidia.com/tensorrt

[18] M. Linkert, C. Rueden, C. Allan, J.-M. Burel, W. Moore, A. Patterson,
B. Loranger, J. Moore, C. Neves, D. Macdonald, A. Tarkowska, C. Sticco,
E. Ganley, M. Rossner, K. Eliceiri, and J. Swedlow, ‘‘Metadata matters:
Access to image data in the real world,’’ J. Cell Biol., vol. 189, pp. 777–782,
May 2010.

[19] M. Satyanarayanan, A. Goode, B. Gilbert, J. Harkes, and D. Jukic,
‘‘OpenSlide: A vendor-neutral software foundation for digital pathology,’’
J. Pathol. Informat., vol. 4, no. 1, p. 27, 2013. [Online]. Available:
http://www.jpathinformatics.org/article.asp?issn=2153-3539;year
=2013;volume=4;issue=1;spage=27;epage=27;aulast=Goode;t=6

[20] U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, ‘‘Cell detection with
star-convex polygons,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervent., Jun. 2018, pp. 265–273.

[21] G. Litjens. (2017). ASAP. [Online]. Available: https://github.com/
geertlitjens/ASAP

[22] R. Marée, L. Rollus, B. Stevens, R. Hoyoux, G. Louppe, R. Vandaele,
J.-M. Begon, P. Kainz, P. Geurts, and L. Wehenkel, ‘‘Cytomine: An open-
source software for collaborative analysis of whole-slide images,’’ Diag-
nostic Pathol., vol. 1, no. 8, p. 13, 2016.

[23] The Qt Company. Qt 5. Accessed: Oct. 1, 2020. [Online]. Available:
http://www.qt.io

[24] A. Howard, A. Zhmoginov, L.-C. Chen, M. Sandler, andM. Zhu, ‘‘Inverted
residuals and linear bottlenecks: Mobile networks for classification, detec-
tion and segmentation,’’ in Proc. CVPR, 2018.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[26] G. Aresta et al., ‘‘BACH: Grand challenge on breast cancer histology
images,’’Med. Image Anal., vol. 56, pp. 122–139, Aug. 2019.

[27] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Springer, 2015, pp. 234–241.

[28] M. J. Engstrøm, S. Opdahl, A. I. Hagen, P. R. Romundstad, L. A. Akslen,
O. A. Haugen, L. J. Vatten, and A. M. Bofin, ‘‘Molecular subtypes,
histopathological grade and survival in a historic cohort of breast cancer
patients,’’ Breast Cancer Res. Treatment, vol. 140, no. 3, pp. 463–473,
Aug. 2013.

[29] J. Gamper, N. A. Koohbanani, K. Benet, A. Khuram, and N. Rajpoot,
‘‘PanNuke: An open pan-cancer histology dataset for nuclei instance seg-
mentation and classification,’’ in Proc. Eur. Congr. Digit. Pathol. Cham,
Switzerland: Springer, 2019, pp. 11–19.

[30] J. Gamper, N. A. Koohbanani, K. Benes, S. Graham, M. Jahanifar,
S. A. Khurram, A. Azam, K. Hewitt, and N. Rajpoot, ‘‘PanNuke dataset
extension, insights and baselines,’’ 2020, arXiv:2003.10778. [Online].
Available: http://arxiv.org/abs/2003.10778

58228 VOLUME 9, 2021



A. Pedersen et al.: FastPathology: An Open-Source Platform

[31] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improve-
ment,’’ 2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/
abs/1804.02767

[32] T.-Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Computer Vision, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.
Cham, Switzerland: Springer, 2014, pp. 740–755.

[33] S. S. Shapiro and M. B. Wilk, ‘‘An analysis of variance test for nor-
mality (complete samples),’’ Biometrika, vol. 52, nos. 3–4, pp. 591–611,
Dec. 1965, doi: 10.1093/biomet/52.3-4.591.

[34] Y. Benjamini and Y. Hochberg, ‘‘Controlling the false discovery rate:
A practical and powerful approach to multiple testing,’’ J. Roy. Stat. Soc.,
B, Methodol., vol. 57, no. 1, pp. 289–300, Jan. 1995.

[35] J. W. Tukey, ‘‘Comparing individual means in the analysis of variance,’’
Biometrics, vol. 5, no. 2, pp. 99–114, 1949.

[36] M. Veta et al., ‘‘Predicting breast tumor proliferation from whole-
slide images: The TUPAC16 challenge,’’ Med. Image Anal., vol. 54,
pp. 111–121, May 2019.

[37] S. H. Kassani, P. H. Kassani, M. J. Wesolowski, K. A. Schneider, and
R.Deters, ‘‘Classification of histopathological biopsy images using ensem-
ble of deep learning networks,’’ Sep. 2019, arXiv:1909.11870. [Online].
Available: https://arxiv.org/abs/1909.11870

[38] O.-J. Skrede, S. De Raedt, A. Kleppe, T. S. Hveem, K. Liestøl, J.Maddison,
H. A. Askautrud, M. Pradhan, J. A. Nesheim, F. Albregtsen, I. N. Farstad,
E. Domingo, D. N. Church, A. Nesbakken, N. A. Shepherd, I. Tomlinson,
R. Kerr, M. Novelli, D. J. Kerr, and H. E. Danielsen, ‘‘Deep learning
for prediction of colorectal cancer outcome: A discovery and validation
study,’’ Lancet, vol. 395, no. 10221, pp. 350–360, Feb. 2020.

[39] K. R. J. Oskal, M. Risdal, E. A. M. Janssen, E. S. Undersrud, and
T. O. Gulsrud, ‘‘A U-Net based approach to epidermal tissue segmentation
in whole slide histopathological images,’’ Social Netw. Appl. Sci., vol. 1,
no. 7, p. 672, Jul. 2019.

[40] P. Bándi, M. Balkenhol, B. van Ginneken, J. van der Laak, and G. Litjens,
‘‘Resolution-agnostic tissue segmentation in whole-slide histopathology
images with convolutional neural networks,’’ PeerJ, vol. 7, p. e8242,
Dec. 2019.

[41] Z. Guo, H. Liu, H. Ni, X. Wang, M. Su, W. Guo, K. Wang, T. Jiang, and
Y. Qian, ‘‘A fast and refined cancer regions segmentation framework in
whole-slide breast pathological images,’’ Sci. Rep., vol. 9, no. 1, p. 882,
Dec. 2019.

ANDRÉ PEDERSEN received his civil engineer-
ing degree in Applied Physics and Mathematics
with specialization in machine learning and statis-
tics in 2019, at the Arctic University of Norway
(UiT) in Troms121, Norway. Currently, he is pur-
suing a PhD in medical technology with focus on
artificial intelligence for improved breast cancer
prognostication at the Norwegian University of
Science and Technology (NTNU). He also works
part-time at SINTEF Medical Technology. His

main research interests include statistics, medical image analysis, deep learn-
ing and computational pathology and radiology.

MARIT VALLA is a specialist in pathologist from
2013, with a PhD inmedicine from 2017. Hermain
research interests include digital pathology and
the use of artificial intelligence-based methods,
molecular pathology, and translational research.
She works as an associate professor at NTNU and
as a consultant pathologist at St. Olavs Hospital,
Trondheim University Hospital.

ANNA M. BOFIN is Professor of Medicine
(Pathology) and Academic leader of the Medical
Student Research Programme at NTNU. She is PI
of the Breast Cancer Subtypes research project.
She graduated from the Royal College of Surgeons
in Ireland, University of Medicine and Health Sci-
ences, in 1979, became a specialist in Pathology
in 1992, and Doctor Medicinae (D.M.Sc.), NTNU
in 2004. Her main research interests include
tissuebased studies of breast cancer, molecular

pathology and translational research.

JAVIER PÉREZ DE FRUTOS received his indus-
trial engineer degree in industrial electronics and
automation in 2014, and his MSc degree in
automation and robotics in 2016, both at the Uni-
versidad Politecnica de Madrid (UPM) in Madrid,
Spain. Currently, he is a PhD candidate working
on machine learning methods for image to image
registration at SINTEF Medical Technology and
the Norwegian University of Science and Technol-
ogy (NTNU), and a researcher at SINTEFMedical

Technology. His main research interests include image processing, use of
robotics in medical applications and deep learning.

INGERID REINERTSEN received her civil engi-
neering degree in physics in 1999 from Insti-
tut National des Sciences Appliquees (INSA),
Toulose, France and her MSc in medical physics
from McGill University, Montreal, Quebec,
Canada in 2002. She completed her PhD in
Biomedical engineering at McGill University in
2007. She is currently working as a Senior Reseach
Scientist at rSINTEF Digital, Medical Technology
and holds a position as Adjunct Associate Pro-

fessor at the Norwegian University of Science and Technology (NTNU).
Her research interests include medical image processing in radiology and
pathology, intraoperative imaging and ultrasound.

ERIK SMISTAD received his civil engineer-
ing degree in computer science in 2012, and
his PhD in medical image processing in 2015,
both at the Norwegian University of Science
and Technology (NTNU) in Trondheim, Norway.
Currently, he his working as a research scientist
at SINTEF Medical Technology, an independent
not-for-profit research organization, and as a post
doctoral researcher at NTNU. His main research
interests include medical image processing, deep

learning, ultrasound and GPU and parallel computing. His personal webpage
can be found at https://www.eriksrnistad.no.

VOLUME 9, 2021 58229

http://dx.doi.org/10.1093/biomet/52.3-4.591

