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ABSTRACT System monitors are applications used to monitor other systems (often mission critical) and
take corrective actions upon a system failure. Rather than reactively take action after a failure, the potential
of fuzzy logic to anticipate and proactively take corrective actions is explored here. Failures adversely affect
a system’s non-functional qualities (e.g., availability, reliability, and usability) and may result in a variety
of losses such as data, productivity, or safety losses. The detection and prevention of failures necessarily
improves a critical system’s non-functional qualities and avoids losses. The paper is self-contained and
reviews set and logic theory, fuzzy inference systems (FIS), explores parameterization, and tests the
neighborhood of rule thresholds to evaluate the potential for anticipating failures. Results demonstrate
detectable gradients in FIS state spaces and means fuzzy logic based system monitors can anticipate rule

violations or system failures.

INDEX TERMS Autonomous systems, fault tolerance, fuzzy systems, monitoring, software reliability.

I. INTRODUCTION

With increasing system size, complexity, and levels of
automation come compounded and disproportionate risks
from system failures. Historically, disaster management was
both passive and reactive, but the current trend leverages met-
rics and status information to proactively monitor and address
issues before they become failures. A decade ago, ORACLE’s
flagship product was described as a self-monitoring, self-
diagnostic, and self-tuning database [1] and Amazon’s Cloud-
Watch monitors performance across entire infrastructures and
automates common administrative tasks [2]. More recently,
NASA developed a safety-critical autonomy framework that
not only supercedes control of a vehicle to avoid external
hazards, but tracks its internal health and triggers contingency
behaviors such as an emergency landing due to a critical sen-
sor’s malfunction or failure [3]. In [4], researchers fed sensor
data into a condition monitoring system to evaluate whether
scheduled maintenance should be expedited to avoid unsafe
conditions or reduced efficacy. System monitors have also
been proposed for on-line continuous monitoring of loads

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

on turbine rotor blade of wind turbines [5] and monitoring
the deformation of dam slopes [6]. These are examples of
systems that utilize some form of self-health monitoring and
management.

Meanwhile, the application of fuzzy logic has been con-
sidered in a varied wide range of research fields, such as
the detection of untrusted nodes in smart grid networks [7],
detection of anomalies in computer network segments [8],
estimation of the illumination states of the pixels in video
surveillance [9], guidance and Control of Marine Surface
Vehicles and Underwater Vehicles [10], control of induction
motor drives applications [11], or diseases diagnosis [12].

System monitors are part expert system and part controller
in that they use metrics to assess a system’s status or per-
formance and automatically take corrective action to prevent
losses. This paper is a case study of a production system
monitor that for 7 years monitored the stability of a custom
Geographic Information System (GIS). The custom GIS had
a complex business layer comprised of.Net web-services,
web-applications, system-level services, support libraries,
and Java applets all glued together using an experimental
message-bus technology called Cross Request Broker (XRB).
There were significant stability issues in the message-bus,

56523


https://orcid.org/0000-0002-1738-2477
https://orcid.org/0000-0001-8986-884X
https://orcid.org/0000-0002-8929-6017
https://orcid.org/0000-0002-2767-0501

IEEE Access

N. Khan et al.: Fuzzy Logic Applied to System Monitors

which resulted in data loss, lost productivity, and required
almost continuous human intervention.

After a few weeks of observation, the warning signs of
a system failure began to materialize and an initial set of
rules was captured inequalities with thresholds. Those rules
were encoded in a system monitor based on Boolean-logic
that checked to see if the XRB service was running, polled
memory and CPU usage, and repeatedly sent simple requests
designed to make a round trip through the business and data
layers to test whether XRB was operational (“‘ping”’). Based
on those metrics, the monitoring system was tasked with
injecting status information into the GIS system’s login page
to mitigate an additional load on the system and intervening
if necessary by killing and restarting the XRB service. This
system monitor averted about 70% of system failures, created
the impression of stability, and prevented the loss of data and
productivity.

Extending the system monitor based on Boolean logic to
fuzzy logic appeared to be a natural extension and is explored
in the current work. Fuzzy logic would decouple discrete
values from rules (e.g., memory usage) and thereby make the
rules platform independent. It also opened up the possibility
of making such system monitors proactive if the state space
for fuzzy logic rules exhibited gradients that could indicate
a trend to or from a failure condition. This paper compares
and contrasts the development and performance of a 4-input
2-output system monitor built using Boolean logic, type-1
fuzzy logic, and an adaptive neuro-fuzzy technique.

The challenge in applying fuzzy logic to this application
of a system monitor regards the numerous design choices
for specifying a FIS, so the first order of business was to
evaluate the sensitivity of a FIS to those design choices.
Thereafter, using the experimentally determined best FIS
design, the question of anticipating failure is explored by
evaluating input neighborhoods to simulate the system mon-
itor’s response to successive inputs.

The main contributions of this paper are:

1) Exploration and stratification of FIS design options by

their impact on performance.

2) Results supporting the use of FIS for proactive sys-

tem monitors provided the state space monotonically
increases from global minima along any dimension.

Il. PROPERTIES OF PROACTIVE SYSTEM MONITORS

Like other expert systems, system monitors use IF-THEN
rules with thresholds, where the antecedent defines the con-
ditions that must be satisfied before taking the action defined
in the consequent. Conditions are Boolean expressions used
to evaluate whether certain conditions have been exceeded,
i.e., that a failure has occurred. What is desired is a greater
opportunity to identify and take corrective action before a
failure occurs. This could be addressed by adding more
rules. However, the rulebase may become unmanageable or
ungrounded from expert opinion. Adding rules also presumes
that the correct threshold for every combination of input is
knowable and noiseless.
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For deeper insight into the qualities required for an expert
system to anticipate failure, consider an expert system based
on Boolean logic that has two independent Real inputs (x, y)
and one dependent output (z) so that the state space can be
visualized as a three dimensional landscape. If rules were
defined using only the equality operator where only certain
input combinations evoked a response, the landscape would
be empty except where input combinations were defined. The
equality operator would require an infinite number of rules
to completely describe a state space and is therefore a poor
choice except for combinatorial systems.

A significant improvement resulting in far fewer rules
would be the use of inequality operators to define continuous
parts the landscape. However, since Boolean logic is only
defined on the set {0,1}, there would be step-wise changes
in the landscape at rule boundaries [13] (e.g., akin to the
sharp corners and vertical faces in QBERT’s world). Disjoint
or step-wise changes are undesirable because any sudden
change in output fails to provide any indication of a devel-
oping problem.

Fuzzy logic is defined on the interval [0,1] and thereby
offers intermediate truth values, which can support more
gradual transitions in state space [13]. Sequences of those
intermediate truth values can be interpreted as a trend toward
(or away) from system failures. Graphically, fuzzy inequal-
ities reduce the slope of step-wise transitions. The semantic
interpretation of the slope of these transitions is vagueness
and the width of the support is uncertainty.

IIl. THEORETICAL BACKGROUND

A. SET THEORY

In classical set theory, the universal set X uncategorically
represents all elements within some domain, such as R, and
subsets of X are limited to elements related by common
attributes [13]. Elements are discrete objects and an element’s
membership in subset A is either quantitatively defined in
terms of a Boolean valued membership function u : A —
{0, 1} such that u(a) = 1ifa € A and u(@ = 0 if
a ¢ A, or qualitatively defined by a characteristic function
that specifies all the conditions an element must satisfy to
be considered a member of a particular set. In fuzzy set
theory, the domain of a universal set X is called a universe
of discourse or a “‘linguistic variable” whose elements are
fuzzy sets called “linguistic values™ [14], which represent a
set of discrete elements. Put differently, classical set theory
assigns discrete values to subsets of X, whereas fuzzy set
theory assigns discrete values to fuzzy sets and then assigns
fuzzy sets to subsets of X, i.e., fuzzy sets represent a layer of
indirection between discrete values and subsets of X. Mem-
bership in a fuzzy set is specified in terms of a continuous
linear function  : A — [0, 1], such as triangular, Gaussian,
or bell shaped curves [13]. The curves describing fuzzy sets
within some universe of discourse customarily overlap near
their extremities, which means a particular discrete value can
have nonzero membership in a variety of fuzzy sets [15] or
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simultaneously have nonzero membership in A and A [13].
Linguistic variables and values are typically assigned descrip-
tive labels, e.g., Size = {Small, Medium, Large}.
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FIGURE 1. Fuzzy sets allow intermediate truth values whereas classical
sets do not. Vagueness regards the transition between values. In Boolean
membership functions, the change from one value to another is step-wise
and has an infinite slope, which means membership in classical sets is
not vague. With fuzzy membership functions, the change from one value
to another typically has less than infinite slope. Vagueness is that subset
of a fuzzy set’s domain under the slopes of its membership function,
which represent uncertainty about where the boundary between
linguistic values actually are. Imprecision regards the size of an fuzzy
set’s footprint, which is infinitesimally small in a classical set, but covers
some contiguous subset of the domain of X for a fuzzy set.

FIGURE 1 helps visualize the anatomical differences
between Boolean and fuzzy truth values in terms of three
properties: vagueness, imprecision, and truth value. Fuzzy
sets allow intermediate truth values whereas classical sets
do not. Vagueness regards the transition between values.
In Boolean membership functions, the change from one value
to another is step-wise and has an infinite slope, which
means membership in classical sets is not vague. With fuzzy
membership functions, the change from one value to another
typically has less than infinite slope. Vagueness is that subset
of a fuzzy set’s domain under the slopes of its membership
function, which represent uncertainty about where the bound-
ary between linguistic values actually are.

Imprecision regards the size of an fuzzy set’s footprint,
which is infinitesimally small in a classical set, but covers
some contiguous subset of the domain of X for a fuzzy set.
For example, a rectangular membership function is imprecise
but not vague. The outer boundaries of a trapezoidal mem-
bership function are vague, whereas all but a single point
on a Gaussian membership function are vague. Motivated by
the discussion in [16], we also note that as a membership
function’s rising and falling slopes approach infinity, vague-
ness (and possibly imprecision) disappears, but that does not
necessarily reduce a fuzzy set into a classical set since the
membership may top out at some intermediate value between
O and 1. A fuzzy set reduces to a classical set only if all forms
of uncertainty disappear [17]. The linear functions used to
describe fuzzy sets contain parameters that can be tuned to
manipulate their shape and position.

From a semantics point of view, fuzzy sets model mem-
bership uncertainty using intermediate truth values, imprecise
knowledge, and vagueness with regard to the boundaries
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between different fuzzy sets [13], [18]. The geometrical
interpretation is that membership uncertainty is responsible
for gradual changes in state space, vagueness describes the
gradient at rule boundaries, and imprecision circumscribes a
neighborhood affected by interpolated values; all of which
how affect gradual transitions in state space are.

Typical operations on sets include union, intersection,
complement, and composition. Since sets are defined by
membership functions, set operations can also be defined in
terms of membership functions [14]. Generic symbols are
used for some set operators due to the multiplicity of imple-
mentations that differ in their mathematical tractability [14].
Union can be implemented using any t-norm operator
such as minimum, intersection can be implemented by any
t-conorm operator @ such as maximum, complement as the
difference 1 — p(a), and composition in terms of a t-conorm
of a t-norm.

B. LOGIC THEORY

Classical logic performs deductive reasoning using basic
inference and replacement rules to traverse the transitive
relationships between both premises and logical statements
and either confirms a predetermined conclusion or fails to
do so, which is either a proof by contradiction or means the
conclusion is not entailed by the available premises [19].
Premises are facts with established truth value and logical
statements are premises that are joined together using logical
operators such as AND, OR, NOT, or implication. Replace-
ment rules provide logically equivalent transformations of
logical statements, whereas inference rules provide templates
for logically sound reasoning or arguments [19].

Logical operators have set theoretical corollaries: the
corollary for AND is intersection, the corollary for OR is
union, and the corollary for NOT is the complement of a
set [20]. Logical operators can be implemented exactly the
same way as their counterparts. In classical logic, the impli-
cation p — ¢ can be implemented as MAX[1 — p, gl, where
p is the antecedent, ¢ is the consequent, and w,—.4(p, ) €
{0, 1} [13]. Using Zadeh’s extension principle [20] that
induces a relationship between nonfuzzy and fuzzy variables
by analogy [14], the fuzzy implication A — B can be imple-
mented as MAX[1 — pua(x), up(y)], where pus—p(x, y)A —
B € [0, 1] [20], [21]. Fuzzy logic can perform deductive
and inductive reasoning where conclusions are not absolutely
supported by the premises [13] and relies on a single infer-
ence rule.

In classical logic, the implication p — ¢ asserts the truth of
g contingent on the truth of p, but asserts nothing about p. The
inference rule modus ponens combines the assertion p and the
implication p — ¢ in order to assert the conclusion ¢, which
is rendered as the logical statement (p A (p — ¢q)) — ¢, and
this combination of logical statements is valid only when each
of the variables p and ¢ reference the same objects, respec-
tively. Using the extension principle, the fuzzy corollary to
modus ponens is (A A (A — B)) — B [20], [21], but since
variable references in fuzzy logic are also a matter of degree,
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FIGURE 2. Reference design for fuzzy inference system. Adapted
from [20].

references to the same object must have the same degree.
Generalized modus ponens, (A’ A (A — B)) — B/, relaxes
this constraint and allows approximate inferences anytime
there is a nonzero degree of compatibility between like terms,
which is computed as w = AN A’ [14]. In the case of a single
antecedent, the degree of compatibility w truncates the mem-
bership function of B to yield the membership for B'. In the
case of multiple antecedents, the intersection of all degrees
of compatibility, which is called the degree of fulfillment or
firing strength, is used to truncate B. Finally, in the case of
multiple rules with multiple antecedents, the inference output
is the union of all B’ [14].

. Average

Truth

Height (ft)

FIGURE 3. Linguistic variable Height with linguistic values Short (dotted),
Average (solid), and Tall (dashed). The discrete input 6'6” would
simultaneously belong to fuzzy set Short to degree 0.01, Average to
degree 0.33, and Tall to degree 0.75.

IV. RULE BASED FUZZY LOGIC SYSTEMS
A. OPERATION
As shown on FIGURE 2, a fuzzy inference system (FIS) takes
both a vector of discrete inputs and a rule matrix and produces
a discrete output. Internally, a FIS is composed of a fuzzifier,
inference engine, and defuzzifier, which will be described in
this section. A fuzzy inference system does not assign discrete
user inputs directly to variables, but rather assigns them to
fuzzy sets that belong to linguistic variables. For example,
if a linguistic variable Height with domain [0°,8’] contained
fuzzy sets Short, Average, and Tall, all defined as partially
overlapping Gaussian curves, then the discrete input 6°6”
would be assigned to fuzzy set Short to degree 0.01, Average
to degree 0.33, and Tall to degree 0.75 as shown in FIGURE 3.
This custom form of assignment is called fuzzification to
differentiate it from the standard assignment operation.

User defined implication rules establish relationships
between certain combinations of linguistic values for inputs
and outputs. For example, the rule “If Height = Tall Then
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SlamDunker = Great” establishes a relationship between the
particular fuzzy sets Tall and Great. At a high level, the FIS
inference engine combines fuzzified inputs with such rules
to determine the degree of truth of the rule’s consequent. At a
low level, a discrete input intersects the domain of fuzzy set
Tall at x = x’ and the membership of Tall at x" is y. The
truth of the consequent Great can not exceed the truth of
y and is therefore truncated by y, which yields a modified
version of the consequent fuzzy set. Here, y is called the
firing level for this particular rule; each rule may have its
own firing level depending on the interaction between user
inputs and their corresponding fuzzy sets. In the case of rules
with multiple antecedents, the firing level is defined as the
% of all y’s obtained from the interaction of user inputs and
their corresponding fuzzy sets. In the case of many rules, each
rule output may be truncated to a different degree, but the
inference output is defined as the @ of all rule outputs and is
also a fuzzy set.

The defuzzifier component converts the inference engine’s
fuzzy set into a representative discrete value. The exhaus-
tive approach, called centroid defuzzification, computes a
weighted average of membership grades across a discretized
output domain. This defuzzifier is considered to be com-
putationally expensive because it is predicated on comput-
ing the @ of all rule outputs and the discretization of the
output domain. Less computationally expensive defuzzifiers
replace union with an arithmetic operation or use heuristics
that abstract away detail. There are numerous alternatives,
but the ones included in this study include: bisector of area,
which identifies the point in the output domain that equally
divides the total area of the output fuzzy set into two equal
parts; and the mean of middle defuzzifier, which identifies the
maximum value or, in the case of a plateau at that maximum,
identifies the mid-point of that plateau.

B. DESIGN

Even with the same discrete inputs and rulebase, a FIS can
produce different outputs by manipulating the definitions of
linguistic variables, changing the membership functions or
definitions of fuzzy sets, or by using different % and &
operators. The domain of linguistic variables can be changed
as can the number of fuzzy sets within the linguistic variable.
The curves used to define fuzzy sets can be changed from,
for example, triangular to Gaussian curves, and each type of
curve has its own embedded parameters that affect its shape
and position. The choice of how fuzzy sets are defined is how
uncertainty is modeled, but [13] notes that most applications
are largely insensitive to variations in curvature and therefore
simpler set models are recommended.

In this study, implementations of the % operator are lim-
ited to minimum and product, and the v operator is used
to implement both the logical AND operator for rules with
multiple antecedents and to implement implication. Likewise,
implementations of the @ operator are limited here to maxi-
mum, probabalistic-or, and sum, and the & operator is used
for the logical OR operation and aggregation. Assuming the
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domain of X and curve parameters were held constant, there
are still at least 264 FIS variations based on the 24 distinct
operator combinations and 11 standard membership function
definitions.

Fuzzy inference systems can also be manipulated by select-
ing the type of rulebase, which has two possible forms. The
antecedent in fuzzy implication rules always have the form
“If x; is A1 and ...x, is A,.” The consequent for Mamdani
FIS has the form ““y is By ...y is B,,” whereas in Sugeno FIS
the consequent has the form “z = f(x, y)”’ [14]. Rule outputs
are fuzzy sets that need to be defuzzified to yield a crisp
outputs in Mamdani FIS, whereas rule outputs of Sugeno FIS
are already crisp numbers from which a weighted average is
computed to represent the inference output, which thereby
avoids the computational expense of defuzzification.

The remaining way a FIS can be manipulated is by altering
the content of the rulebase in terms of its size and individual
rule definitions. According to [22], a major stumbling block
for expert systems in the past was the requirement that all
inputs be provided before an inference could take place, but
fuzzy logic systems can produce output with partial infor-
mation because missing inputs are interpolated. Not having
to specify all inputs affords the ability to encode general-
izations in fuzzy rules, which is a form of rule abstraction.
Furthermore, fuzzification provides a 1:N mapping between
discrete inputs and linguistic values, which allows rules to be
defined qualitatively rather than be hard-coded with discrete
thresholds and this too is a form of abstraction. These forms
of rule abstraction give fuzzy logic systems a powerful advan-
tage over classical systems because a manageable set of rules
can yield a smooth and continuous control surface, whereas
classical systems would require a significantly larger rulebase
and still only have step-wise surfaces.

A practical limit exists on rulebase size because of con-
flicting expert opinions or because the aggregate of expert
experience seems to become increasingly diffused or blurred,
making it harder for experts to articulate rules. The chal-
lenge eventually becomes compensating for rule and thresh-
old uncertainties. Historically, attempts to apply probability
theory to rules created derivative problems related to joint
probabilities and cascading adjustments in probabilities as
the rulebase changed [18]. Fuzzy logic addresses member-
ship uncertainty, but ignores input uncertainty pertaining to
measurement, noise, and semantics. Avoiding the burden-
some requirement of having to specify additional rules to
handle such input uncertainties demands even greater levels
of abstraction. Systems with higher order abstraction, such as
type-2 fuzzy logic, will have even smoother surfaces resulting
in greater system accuracy or precision while maintaining a
manageable number of rules [21], but in this study we concern
ourselves with type-1 fuzzy logic.

V. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

A. OPERATION

The above discussion makes it clear that although a FIS
makes it easier to encode expert knowledge into expressive
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rules, there are nested parametrization problems that may
require considerable effort to tune. For relatively noiseless
applications with low semantic subjectivity [14], [23] where
a sufficiently representative dataset is available, a FIS can be
generated and tuned by a neural network. A prerequisite to
understanding how a neural network can be used to generate
a fuzzy inference system is to understand the relationship
between the two types of systems.

A two-input first-order Sugeno fuzzy inference sys-
tem (FIS) with its counterparts in a neural network can be
found on figure 12.1 in [14]. An adaptive neuro-fuzzy infer-
ence system (ANFIS) is an adaptive five-layer feedforward
network that is trained using a labeled dataset [14]. Fuzzy
sets in the FIS are the layer-1 adaptive nodes in ANFIS
architecture, the firing level for each rule corresponds to
layer-2 weights, normalized weights are in layer-3, FIS rule
outputs correspond to layer-4 adaptive output nodes, and the
overall FIS output is the weighted average of rule outputs and
their weights, which corresponds to the layer-5 output.

A representative set of input/output tuples can be used
to generate a Sugeno FIS using an adaptive feedforward
neural network, where a learning process tunes the param-
eters of each node’s output function and parameters of FIS
membership functions until the network converges on the
expected outputs for each tuple. When membership param-
eters are fixed, the learning process propagates errors back-
wards through the network and, for each tuple p in the training
dataset, computes the sum of squared differences E, between
the expected and actual values. The total error, E = XE,,
is minimized analytically by computing ordered derivatives
with respect to each node and partial derivatives with respect
to each parameter. The learning algorithm terminates when
the error becomes zero, falls below a threshold, or terminates
when a maximum number of iterations is reached. While the
error is above a specified threshold, each node’s parameters
are updated using a steepest descent algorithm that adjusts
the node’s parameters to reduce that node’s error and, in turn,
the network’s total error. When membership parameters are
not fixed, forward passes through the network update output
function parameters, while backward passes update member-
ship function parameters [14].

Using MATLAB to generate a FIS from a representative
set of input/output tuples is a four step process: datasets are
loaded, a FIS is initialized using a training dataset, the FIS
is trained using ANFIS, and the FIS is validated using a test
or validation dataset [23]. Because MATLAB’s ANFIS tech-
nique is limited to single output Sugeno FIS [23], MATLAB
assumes all but the last element in each tuple represent inputs
and that the last element represents the expected output.
MATLAB’s genfis1 command produces a skeletal FIS and
sets the range for each fuzzy input variable to the minimum
and maximum values from each column of input data. The
FIS output is defined as a linear first-order polynomial that
has N+1 terms, where the first N terms are the products of
inputs and coefficients and the last term is a constant. During
initialization, the output fuzzy variable is initialized with a
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set of vectors representing these coefficients and constants,
all initialized to zero, and the number of vectors equals the
number of distinct values in the training dataset. This insight
into initialization allows the manipulation of input ranges
by appending tuples into the dataset with the appropriate
bounds. Furthermore, the resolution of the resulting system
may be controlled by either binning or splitting the set of
output values. The genfisl command also allows users to
specify the shape and quantity of membership functions used
in each fuzzy variable. Although [13] states that FIS are not
sensitive to the shape of membership functions, it is worth
noting that the slope of the rising and falling edges of the
different shapes for membership functions squarely affects
how abrupt or smooth the transition is from one fuzzy set to
another. MATLAB’s anfis command produces another FIS
by tuning the parameters of all input and output member func-
tions of the skeletal FIS using a back-propagation algorithm
such that the trained FIS is able to reproduce the input/output
relationships specified in the training dataset.

Upon producing a trained FIS, the final step is valida-
tion, which is easy to evaluate using the plots produced
by MATLAB’s Neuro-Fuzzy Design (NFD) applet. NFD
tests how well results from the trained FIS fit against other
sets of input/output tuples. Both the training and checking
datasets and the trained FIS can be loaded into NFD from
the MATLAB workspace and the “Test FIS” operations plot
actual results against FIS results. Points in both the training
and testing datasets should overlap well. A few outliers may
not necessarily be a problem since the least squares algorithm
makes compromises between conflicting tuples. A large num-
ber of outliers in the training data would suggest an insuffi-
cient number of epochs, whereas a large number of outliers in
the testing dataset would suggest either an inadequate training
dataset or over-taining.

B. DESIGN

Although ANFIS automatically tunes membership function
parameters, generates rules, and defaults the selection of %
and @ operators for logical operations and aggregation, those
operators can still be manipulated and there are additional
ANFIS specific parameters regarding the number of mem-
bership functions, their curvature, how rules are partitioned,
and a choice of optimization technique. If there was a large
number of inputs (e.g., more than 10 or more), then the
skeletal FIS can be initialized using clustering, which may
reduce the dimensionality of the problem [14]. Otherwise,
the ANFIS process partitions input space based on the inter-
section of M member functions for N universes of discourse
(MN space).

Optimization choices include back-propagation and a
hybrid learning rule that combines back-propagation with
least squares optimization. Back-propagation can be used to
tune the membership function parameters, whereas the hybrid
approach additionally tunes output function parameters. Opti-
mization has parameters of its own, which include the number
of iterations (epochs) and an early termination threshold.
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VI. EXPERIMENTATION

The theoretical premise of this paper is that fuzzy logic
can help monitoring systems anticipate failures, but because
there are many design choices, the first order of busi-
ness is to evaluate the sensitivity of a FIS to those design
choices. Membership functions were specified graphically
using MATLAB’s Membership Function Editor so no effort
was made to evaluate how best to specify embedded param-
eters absent a graphical design tool. Finally, using the
experimentally determined best FIS design, the question of
anticipating failure is explored by evaluating input neighbor-
hoods to simulate the system monitor’s response to successive
inputs.

To evaluate FIS performance, the outputs from each fuzzy
system was compared against known input/output combina-
tions and used to compute a variance, which was reported in
aggregate per test as percent error (hereinafter, Errorg,). The
mean and standard deviation for a category represents the rel-
ative impact and range of impact from tuning that particular
parameter. Attention will also be given to rule boundaries to
assess fuzzy logic’s ability to gradually transition between
states.

To evaluate the ability to anticipate failure, experiments
will evaluate a series of inputs chosen on either side of rule
boundaries to see whether there is a monotonic trend towards
or from failure. If consistently so, that would support the idea
that the intermediate truth values in fuzzy expert systems can
be exploited to anticipate failures.

As shown on FIGURE 2, rules are a critical part of
fuzzy inference systems, but the current work does not
evaluate the impact of different rules. Because the dataset
and rules for the fuzzy expert system are common to both
experiments, the next few sections will describe the fuzzy
expert system, its rulebase, and dataset. That will be fol-
lowed by additional detail on how each experiment was
conducted.

A. RULEBASE

A flowchart that documented the operation of the Boolean
XRB system monitor was translated into the set of rules
listed in TABLE 1. Note that the Boolean rules do not spec-
ify all inputs because sometimes only a subset of inputs
was sufficient to make an intervention decision. For exam-
ple, if the XRB service was not running then there is no
need to consider resource utilization. These rules were sim-
ply fuzzified to create the fuzzy rules shown in TABLE 2,
which was certainly convenient. If rules were not already
defined, then users would have to establish and collect met-
rics from which rules could be induced. The researchers
in [4] found machine learning required less effort to employ
than fuzzy-logic because the latter required data acquisi-
tion for each type of failure to support rule definition.
Data driven approaches, however, may deter acquiring inti-
mate knowledge and expert insight into a critical system’s
behavior. Finally, note that ANFIS automatically generates
a rulebase.
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TABLE 1. Boolean rules adapted from the XRB system monitor's documentation.

Rule | ServiceUp | MemoryUsage | CpuUsage | Ping Status Restart
1 Off - — - Offline Yes
2 On < 500 — — OK No
3 On > 500 < 20 — Comatose Yes
4 On > 500 > 60 - Unstable Yes
5 On > 500 (20, 60) — Busy No
6 On — - None | Comatose Yes
7 On - - SOS Unstable Yes
8 On — — OK OK No
TABLE 2. Fuzzy rules adapted from Boolean rulebase.
Rule | ServiceUp | MemoryUsage | CpuUsage | Ping Status Restart
1 Off — — — Offline Yes
2 On Low - — OK No
3 On High Low — Comatose Yes
4 On High High — Unstable Yes
5 On High Med — Busy No
6 On — - None | Comatose Yes
7 On - - SOS Unstable Yes
8 On — — OK OK No

B. ENGINEERED MEMBERSHIP FUNCTIONS

Al FIS in this study input the following linguistic variables:
ServiceUp, MemoryUsage, CpuUsage, and Ping. The output
linguistic variables were Status and Restart. Each linguistic
variable is comprised of a number of linguistic values. There
are a variety of ways to model these values (e.g., analytic,
geometric, list [13]) but are modeled graphically here.

The Service linguistic variable contained linguistic values
No and Yes, which were modeled in the baseline FIS using
trapezoidal functions with almost vertical slope at the domain
midpoint since the corresponding input is noiseless and there
is no uncertainty in that value.

The MemoryUsage linguistic variable contained linguistic
values Low, Med, and High. In the baseline FIS, Low and
High were modeled as trapezoidal functions because they
could occupy either end of the domain completely and have
a slope on the other side to represent the uncertainty of upper
and lower boundaries, respectively. Med was modeled as a
bell function since the flaring tails of the bell curve seem to
capture the greater uncertainty in the meaning of “medium.”

The CpuUsage linguistic variable contained linguistic val-
ues Low, Med, and High, which were modeled in the baseline
FIS as bell curves. Since here the meaning of Med is a more
imprecise concept, it occupied a larger part of the domain
than the other values. Because the transition between Low and
Med appeared to have greater subjectivity than the transition
between Med and High, this subjectivity was encoded into
the model by using a shallower slope between the former and
steeper slope in the latter.

The Ping linguistic variable contained linguistic values
None, SOS, and OK, which were modeled in the baseline
FIS as trapezoidal curves with near infinite slope because the
input was noiseless. Accordingly, an arbitrary domain was
partitioned into equally sized segments and listed in order of
decreasing severity.
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The output linguistic variable Status contained linguistic
values Offline, Comatose, Unstable, Busy, and OK. In the
baseline FIS, these were modeled using triangular curves
and also partitioned an arbitrary domain into equally sized
segments in order of decreasing severity. There is significant
vagueness in these linguistic values. Trapezoidal curves were
not used since trapezoidal boundaries are typically steeper
(i.e., imply less uncertainty) whereas curves with shallower
sloped boundaries would have conflated those values.

Finally, the output linguistic variable Restart, which con-
trols the XRB monitor’s decision to kill and restart the
XRB-service, had linguistic values No and Yes modeled as
trapezoids that evenly divided an arbitrary domain. Since the
boundary between these values has uncertainty, the transition
between these two linguistic values should be sloped. These
details are shown graphically in FIGURE 4.

C. DATASET

For the system under study, the system monitor’s log file
offers only a synoptic view of the supervised system’s per-
formance because it recorded health metrics only when there
was an intervention. In hindsight, metrics during normal oper-
ation would also have been informative. TABLE 3 provides a
summary of the metrics captured during interventions, which
always had an abnormal Ping result. The system monitor also
maintained a more detailed error log but that was repeatedly
overwritten with information from the last intervention. That
detail was intended to support debugging as well as inform
additional rules.

Note that any time there was an intervention, the system
monitor would immediately retest to ensure the intervention
was successful. For half of all interventions, the XRB service
only used 4MB RAM and negligible CPU time, which is
exactly the resource consumption profile after initialization
or a restart. Therefore, these low resource interventions are
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FIGURE 4. Linguistic variables and values of the baseline FIS. See section V.B for the rationale behind the specification of linguistic values as shown here.

TABLE 3. Summary of the system monitor’s log file of interventions.

Memory Range | CPU Range | Instances
[0,10) [0,0] 1053
[10,100) [0,0) 147
100, 200) 0,0) 82
200, 300) 0,0) 89
300, 400) 0,0) 61
400, 500) 0,0) 70
500, 600) 0,70) 311
600, 700) 0,70) 160
700, 800) 0, 80) 91
800, 900) 0, 80) 46
900, 1000) 0, 20) 9
1000, 1100) 0, 20) 6
1100, 1200) 10, 20) 2
1200, 1300) 20, 20) 2

cascading failures that immediately followed an intervention.
These low resource interventions are likely due to startup
delays reconnecting the XRB service to business or data
layers and if so, half of all recorded interventions could have
been avoided by factoring in a longer delay to allow time to
reinitialize.

The labeled dataset in TABLE 4 contains the memory,
CPU usage, and XRB ping metrics extracted from the
Boolean-based expert system’s log file, which contained over
2,000 records of interventions. Test class O represents cases
where the XRB service is offline, so the service needs to be
restarted regardless of the other metrics. Class 1 are cases
where the XRB service was detected but unresponsive within
its timeout period. Again, regardless of other metrics, the ser-
vice needs to be restarted. Class 2 is when the response from
the XRB service was malformed in which case the system is
considered unstable. Class 3 are nominal conditions across a
variety of load conditions.

D. FIS DESIGN SENSITIVITY ANALYSIS
1) TEST CONFIGURATIONS

The first experimental question regards FIS design. TABLE 5
lists the 67 different tests performed across 8 test categories.
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Tests within each category typically varied one aspect of the
FIS. All tests used the same rulebase listed in TABLE 2
and dataset listed in TABLE 4. Parameter categories were
assumed to be independent to avoid a combinatorial number
of tests with the exception of categories that paired defuzzifier
and logical operators. Categorizing tests were intended to
induce a rank ordering of categories that had the greatest
impact on results.

Test categories for the manually engineered FIS regarded
the choice of: defuzzifier, logic operators, and membership
models. The defuzzifier category was comprised of 3 tests
using the following defuzzifiers: centroid, bisector, and mean
of middle (MOM). The two logic operator test categories
each contained 24 tests that used different logic operators
for AND, OR, implication, and aggregation. The membership
model category of tests contained 3 tests that varied the
uncertainty model using triangular, trapezoidal, of Gaussian
curves.

The baseline Mamdani FIS configuration used MOM
defuzzification, minimum to implement the logical opera-
tors AND and implication, and maximum to implement OR
and aggregation. For brevity, TABLE 5 lists test configura-
tions in terms of how they deviate from this baseline FIS
configuration.

ANFIS specific test categories were: the number of lin-
guistic values within a linguistic variable (hereinafter “MF
quantity’”), membership model, optimization technique, and
partitioning strategy. Because the automatically generated
ANFIS rulesbase has exponential growth with the number of
linguistic values per linguistic variable, ANFIS MF quantity
tests were limited to 2, 3, and 4 membership functions. The
ANFIS membership model category contained 6 tests that
evaluated the effect of triangular, trapezoidal, and Gaussian
curves with either constant or linear outputs. The ANFIS
optimization category contained 2 tests that evaluated the
affect of the back-propagation and hybrid optimization tech-
niques. Finally, the ANFIS rule partitioning category con-
tained 2 tests that evaluated the affect of training with the
entire dataset versus a partitioned training and test datasets.
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TABLE 4. Test and evaluation dataset. Each class represents a set of
inputs that produce the same outputs, with the exception of Class

4 which has miscellaneous tests. The meaning of the status and restart
values are defined by the Status and Restart linguistic variable in
FIGURE 4, respectively.

Class ServiceUp | Memory | Cpu Ping Status | Restart
0 0 100 Low | None 0 1
0 0 100 Low SOS 0 1
0 0 100 Low OK 0 1
0 0 100 Med | None 0 1
0 0 100 Med SOS 0 1
0 0 100 Med OK 0 |
0 0 100 High | None 0 1
0 0 100 High SOS 0 1
0 0 100 High OK 0 1
0 0 500 Low | None 0 1
0 0 500 Low SOS 0 1
0 0 500 Low OK 0 1
0 0 500 Med | None 0 1
0 0 500 Med SOS 0 1
0 0 500 Med OK 0 1
0 0 500 High | None 0 1
0 0 500 High SOS 0 1
0 0 500 High OK 0 1
0 0 900 Low | None 0 1
0 0 900 Low SOS 0 |
0 0 900 Low OK 0 1
0 0 900 Med | None 0 1
0 0 900 Med SOS 0 1
0 0 900 Med OK 0 1
0 0 900 High | None 0 1
0 0 900 High SOS 0 1
0 0 900 High OK 0 1
1 1 100 Low | None 0.25 1
1 1 100 Med | None 0.25 1
1 1 100 High | None 0.25 1
1 1 500 Low | None 0.25 1
1 1 500 Med | None 0.25 1
1 1 500 High | None 0.25 1
1 1 900 Low | None 0.25 1
1 1 900 Med | None 0.25 1
1 1 900 High | None 0.25 1
2 1 100 Low SOS 0.50 1
2 1 100 Med SOS 0.50 1
2 1 100 High SOS 0.50 1
2 1 500 Low SOS 0.50 1
2 1 500 Med SOS 0.50 1
2 1 500 High SOS 0.50 1
2 1 900 Low SOS 0.50 1
2 1 900 Med SOS 0.50 1
2 1 900 High SOS 0.50 1
3 1 100 Low OK 1 0
3 1 100 Med OK 1 0
3 1 100 High OK 1 0
3 1 500 Low OK 1 0
4 1 900 Med SOS 1 0
4 1 900 High SOS 1 1
4 1 500 Med OK 0.40 0
4 1 500 High OK 0.75 0
4 1 900 Low OK 0.65 1

All ANFIS tests trained their own FIS and used the same set
of inputs, which are listed in TABLE 4.

2) EXPERIMENTAL PROCEDURE

Experiments were conducted in MATLAB because it pro-
vided both GUI and various capabilities for building FIS
declaratively using FIS definition files. These definition files
specify which operators to use, the quantity of membership
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functions, their parameters, and the rulebase. These FIS def-
inition files simplified and facilitated a large number of tests
because they were easy to define with scripting. The FIS
configuration was also decoupled from the application that
ran the tests.

To facilitate testing a large number of cases, the test appli-
cation used readfis to read a FIS definition file and then
used evalfis to test that configuration with a predefined
set of input data. Because correct outputs were known in
advance, the test function was able to summarize the perfor-
mance of the configuration in terms of Errorg,.

Since the logic operator tests had combinatorial variations,
a SQL database was used to quickly generate all possible
operator combinations using a cross product on a table of
operators. Cross products are generated anytime there is no
join between SQL tables. These logic operator combinations
were spooled to a file, which was then parsed by a script
that instantiated a template FIS definition file to generate
all 24 FIS definition files for each operator test category.
Each of these definition files were given enumerated integer
filenames to simplify processing FIS files iteratively. The
MATLAB script that ran each test configuration also tracked
and reported each configuration’s Errorg,.

E. ANTICIPATING FAILURE

1) TEST CONFIGURATIONS

Evaluating whether fuzzy logic based expert systems can
anticipate failures requires testing the neighborhood of values
of TABLE 2 rules for a gradient. Because these tests are rule
specific, all rule weights will be set to 0 except for the rule
under test, which will be weighted 1. Setting rule weights to
0 mutes rule outputs, which impacts the aggregation of rule
outputs and the defuzzification of that aggregate to produce
a crisp value. There is no need to evaluate rules where the
system status is normal or off, so only rules 3 through 7 will
be evaluated.

Two neighborhoods of linguistic values will be tested; one
near the maximum membership value and another where two
linguistic values overlap. The former case is unambiguous
and the latter purposely assesses the impact of ambiguity.
Tests are also stratified by the number of linguistic vari-
ables with a multiplicity of values, i.e., in some tests, certain
combinations of variables will be held constant in order to
evaluate the neighborhood along specific dimensions. Other
tests evaluate the impact of changes to multiple variables.
The Case column on TABLE 7 captures these variations:
tests near maximum membership have no ambiguity and are
labeled 0; tests involving one variable’s overlapping values
are labeled 1; and tests involving overlapping values across
multiple variables are labeled N.

The selection of values for these test cases is driven by
plots like FIGURE 4. It is important to note that such plots
are different for each FIS configuration so care will be taken
to ensure the use of a pertinent set of plots for the highest
performing manually engineered FIS.
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TABLE 5. Listing of experimental configurations along with the performance metric Erroro,.

Test# | Category # | Category Name | Configuration Errorg,
1 Centroid (“Baseline FIS”) 20.53
2 1 Defuzzifier MOM 17.98
3 Bisector 19.59
4 Centroid; min,max,min,max 20.53
5 Centroid; min,max,min,probor 20.62
6 Centroid; min,max,min,sum 20.51
7 Centroid; min,max,prod,max 20.51
8 Centroid; min,max,prod,probor 20.61
9 Centroid; min,max,prod,sum 20.50
10 Centroid; min,probor,min,max 20.53
11 Centroid; min,probor,min,probor 20.62
12 Centroid; min,probor,min,sum 20.51
13 Centroid; min,probor,prod,max 20.51
14 Centroid; min,probor,prod,probor 20.61
15 9 Logic Centroid; min,probor,prod,sum 20.50
16 Operators Centroid; prod,max,min,max 20.53
17 Centroid; prod,max,min,probor 20.62
18 Centroid; prod,max,min,sum 20.51
19 Centroid; prod,max,prod,max 20.51

20 Centroid; prod,max,prod,probor 20.61
21 Centroid; prod,max,prod,sum 20.50
22 Centroid; prod,probor,min,max 20.53
23 Centroid; prod,probor,min,probor 20.62
24 Centroid; prod,probor,min,sum 20.51
25 Centroid; prod,probor,prod,max 20.51
26 Centroid; prod,probor,prod,probor 20.61
27 Centroid; prod,probor,prod,sum 20.50
28 MOM; min,max,min,max 17.98
29 MOM; min,max,min,probor 17.98
30 MOM; min,max,min,sum 17.72
31 MOM; min,max,prod,max 17.98
32 MOM; min,max,prod,probor 17.98
33 MOM; min,max,prod,sum 17.98
34 MOM; min,probor,min,max 17.98
35 MOM; min,probor,min,probor 17.98
36 MOM; min,probor,min,sum 17.72
37 MOM; min,probor,prod,max 17.98
38 MOM; min,probor,prod,probor 17.98
39 3 Logic MOM; min,probor,prod,sum 17.98
40 N Operators MOM; prod,max,min,max 17.98
41 MOM; prod,max,min,probor 17.98
42 MOM; prod,max,min,sum 17.72
43 MOM; prod,max,prod,max 17.98
44 MOM; prod,max,prod,probor 17.98
45 MOM,; prod,max,prod,sum 17.98
46 MOM,; prod,probor,min,max 17.98
47 MOM,; prod,probor,min,probor 17.98
48 MOM,; prod,probor,min,sum 17.72
49 MOM; prod,probor,prod,max 17.98
50 MOM,; prod,probor,prod,probor 17.98
51 MOM; prod,probor,prod,sum 17.98
52 Triangular 9.19

53 4 MF Model Trapezoidal 16.31
54 Gaussian 6.22

55 2 Triangular MF, Constant output 2.71

56 5 ANFIS MF 3 Triangular MF, Constant output 0.01

57 Quantity 4 Triangular MF, Constant output 0.01

58 2 Triangular MF, Constant output 2.71

59 2 Trapezoidal MF, Constant output 2.50

60 6 ANFIS MF 2 Guassian MF, Constant output 2.50

61 & Output 2 Triangular MF, Linear output 0.70

62 2 Trapezoidal MF, Linear output 0.52

63 2 Guassian MF, Linear output 0.53

64 7 ANFIS Back-Propagation, 2 MF, Constant output 49.72
65 Optimization Hybrid Optimization, 2 MF, Constant output | 2.71

66 3 ANFIS rule No partitioning, train using entire dataset 2.50

67 partition Partitioned training and test datasets 21.00
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Because the aforementioned tests used rule weights to
isolate system responses for a single rule, an additional set
of tests was needed to evaluate neighborhoods with all rules
activated. TABLE 8 puts an asterisk on rules to indicate this
difference from tests in TABLE 7. The convention used for
the Case column in TABLE 8 also applies to TABLE 8. Here,
only Cases 0 and N were evaluated since little value was seen
in trying to isolate the affect of a single variable across all
rules.

2) EXPERIMENTAL PROCEDURE

MATLAB’s Rule Viewer is a GUI that accepts a vector of
inputs, but manual entry is error prone. Instead, the linguistic
values were entered into a spreadsheet from which a formula
was used to generate calls to MATLAB’s evalfis function
along with inputs from each row. That list of calls was then
copied into and executed in MATLAB.

For rule specific tests, all other rule weights had to be set
to 0, which was done using MATLAB’s Rule Editor. This was
less prone to human error because the weights were set to 0
or 1 and the update process was always followed by a quick
iteration through all rules to ensure only the target rule was
weighted 1. However, an additional step was exporting the
updated FIS back into the workspace, which was subject to
an omission error but easily detectable and correctable as the
results were unexpected.

Here the test metric was not Errorg,, but rather a qualitative
assessment of whether there were small monotonic changes
in output given small changes in the input. Again, in Boolean
based expert systems, the system’s output can change from
one extreme to another on either side of a rule boundary but -
given the state spaces depicted in FIGURE 5 - the expectation
here is that the neighborhood of a test point will exhibit a
gradient rather than a step-wise change.

VIl. RESULTS

In order to establish a quantitative comparison of different
FIS performances, the selected measure was the Errorg, as
was mentioned previously. This measure, also called Mean
Absolute Error (MAE), is defined as follows:

K
MAE =) |(hi — hy)] M

i=1

where K is the size of the test and evaluation dataset from
TABLE 4 (so that, K = 54 x 2 = 108 (54 rows x
2 result variables)) while h, h € RX are the ground truth and
predicted results, respectively. The procedure to compute this
measure is listed in Algorithm 1.

FIS performance in terms of Errorg, values for each test cat-
egory are detailed in TABLE 5 and summarized in TABLE 6.
TABLE 5 lists the 67 different tests performed across 8 test
categories and their performance in terms of Errorg,. Tests
within each category typically varied one aspect of the FIS
to induce a rank ordering of categories with the greatest
impact on results. The mean Errorg, can be used to rank the
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FIGURE 5. The top-left subfigure shows the landscape of a Boolean
2-valued expert system, whose rule boundaries have infinite slope. The
top-right subfigure shows the same system using fuzzy logical operators,
whose rule boundaries have less than infinite slope. The lower
subfigures illustrate the affect of different membership models. Note that
although both membership models exhibit an rising slope towards the
rear-right, the trapezoidal model exhibits a curl, which is an additional
detail not present in the other models. Z-values equal to 1 on these
subfigures indicates an intervention. The rear-right edge of the
subfigures represents the Offline system status, the top-left corner
represents Comatose, and the adjacent hump on the top-left is Unstable.
This level of detail on the specific type of failure is not available to the
Boolean 2-valued expert system.

Algorithm 1 Procedure for Computing Errorg, in TABLE 5

1: n =2 //number of outputs (status and restart)
2: fis; < readfis(filename)
3: for xj = svc, ram, cpu, ping in TABLE 4,
yj = status, restart in TABLE 4 do
p_result(j, 1:n) < evalfis(x;) //predicted result
gt_result(j,1:n) < yj //ground truth
end for
for i in rows(gt_result),
Jj in columns(gt_result) do
error(i, j) = abs(p_result(i, j) — gt_result(i, j))
9: end for
10: Errorg, = sum(error(:, :))

AN U

*®

test category design options by their relative performance.
Test categories can be re-interpreted as tuning categories for
purposes of discussing the impact of different design options.
The minimum and maximum Errorg, could be interpreted to
indicate the range of control those design options have over
FIS performance.

A. FIS DESIGN SENSITIVITY ANALYSIS

1) MANUALLY ENGINEERED FIS

From TABLE 6, the variety of logical operators and defuzzi-
fier have the greatest impact on FIS performance, but appear
to be false choices since those design options do not yield
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TABLE 6. Summary Errory, by test categories. Lower is better. The

statistical values were computed from the Erroro, values for each test
category listed in TABLE 5. The row in bold-face represents the system
configuration with the best performance.

# | Category Mean =+ StdDev Min Max
1 | Defuzzifier 19.59 +£01.29 17.98 | 20.53
2 | Operators (w/Centroid) | 20.52 £ 00.05 20.5 20.62
3 | Operators 17.98 + 00.10 17.72 | 17.98
4 | MF model 09.19 £+ 05.19 6.22 16.31
5 | ANFIS MF Quantity 00.01 £ 01.56 0.01 2.71
6 | ANFIS MF Model 01.60 & 01.09 0.52 271
7 | ANFIS Optimization 26.22 4+ 33.24 271 49.72
8 | ANFIS Partitioning 11.75 £ 13.08 2.5 21

perceptible differences in performance. Reference [13] stated
that most applications did not show great sensitivity to the
shape of membership functions, which we confirm given the
membership model had the lowest mean impact on perfor-
mance. However, the choice of membership model had the
largest range of control over performance; affecting Errorg,
by 6% to 16%. The smaller lower bound for the mini-
mum Errorg, means this set of design options offers the
finest grained control over system performance. This obser-
vations are reasonable since membership models represent
uncertainty.

FIGURE 5 depicts FIS landscapes distinguished by the
operators used. Z-values equal to 1 on these subfigures indi-
cates an intervention. The top-left subfigure shows the land-
scape of a Boolean 2-valued expert system, whose rule
boundaries have infinite slope. The top-right subfigure shows
the same system using fuzzy logical operators, whose rule
boundaries have less than infinite slope. The other subfig-
ures illustrate the affect of different membership models.
Note that although both membership models exhibit an rising
slope towards the rear-right, the trapezoidal model exhibits
a curl, which is an additional detail not present in the other
models.

The triangular membership models appeared to have the
smallest slopes at rule boundaries and therefore appeared to
be better suited for advanced warnings, but results for test
52 and 54 on TABLE 5 show that Gaussian membership
models outperformed triangular models. To understand why,
MATLAB’s Surface Viewer was used to compare different
combinations of dimensions of these two FIS. Since the
rulebase was the same, the expectation was that there would
only be slight differences between the landscapes and this was
largely confirmed. However, 2 sets of dimensions exhibited
a significant difference. As shown on FIGURE 6, the CPU
x Ping x Status as well as the Memory x Ping x Status
landscapes were monotonic only on the Guassian member-
ship model. The corresponding landscape for the triangular
membership models appeared to saturate to extreme values
near rule boundaries, though it is not clear as to why.

2) TRAINED FIS
From TABLE 6, the choice of optimizer had the greatest
impact on performance. The large standard deviation suggests
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FIGURE 6. Different membership models of the same rulebase may
exhibit differences in landscape monotonicity. The state spaces
monotonically increased from the global minimum only for the Guassian
membership model (left side). The corresponding state space for the
triangular membership models (right side) appeared to saturate to
extreme values near rule boundaries, though it is not clear why.

a high degree of control, but there were only two options
(back-propagation, hybrid optimization) so the large standard
deviation is due to stratification. Given the same convergence
tolerance and epochs, hybrid optimization out performed
back-propagation by a factor of 25.

Partitioning into training and test datasets had the next
greatest impact on performance. Unpartitioned training out-
performed likely due to over-fitting. Poorer results for the
partitioned dataset suggests that performance is proportional
to the amount of training, so larger and more representative
the training datasets perform better.

The number of connections and rules in an ANFIS neural
network grows exponentially with the number of linguistic
values but with depreciating benefit. There was an apprecia-
ble improvement from 2 to 3 linguistic values, but a negli-
gible improvement from 3 to 4 linguistic values. Therefore,
although the quantity of linguistic values per variable has the
greatest impact on the size of the ANFIS neural network,
the number of linguistic values had a diminishing impact on
performance.
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FIGURE 7. Notional illustration highlighting the increasing resolution of
landscape features with 1, 2, and 3 linguistic values from left to right.

The graphical interpretation of an increasing number of
linguistic values is shown in FIGURE 7. The complexity of
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TABLE 7. Specification and results for isolated rule boundary-tests.

Test Inputs Expected Actual Assessment
# | Rule | Case Service | Memory | CPU | Ping Status | Restart | Status | Restart Status | Restart | N | Overall
1 0.05 0.925
2 3 0 1 950 0.07 0 0.25 1 0.25 0.925 1 1 1 1
3 0.10 0.910
4 700 0.750
5 3 1 1 725 0.00 0 0.25 1 0.25 0.770 1 1 1 1
6 750 0.790
7 0.23 0.820
8 3 1 1 950 0.24 0 0.25 1 0.25 0.810 1 1 1 1
9 0.25 0.805
10 700 0.23 0.750
11 3 N 1 725 0.24 0 0.25 1 0.25 0.770 1 1 1 1
12 750 0.25 0.790
13 0.90 0.825
14 4 0 1 950 0.93 0 0.50 1 0.50 0.880 1 1 1 1
15 0.97 0.925
16 700 0.750
17 4 1 1 725 1.00 0 0.50 1 0.50 0.770 1 1 1 1
18 750 0.790
19 0.84 0.730
20 4 1 1 950 0.85 0 0.50 1 0.50 0.745 1 1 1 1
21 0.86 0.765
22 700 0.84 0.730
23 4 N 1 725 0.85 0 0.50 1 0.50 0.745 1 1 1 1
24 750 0.86 0.765
25 0.55
26 5 0 1 950 0.60 1 0.75 0 0.75 0.075 1 1 0 0
27 0.65
28 700 0.245
29 5 1 1 725 0.60 1 0.75 0 0.75 0.230 1 1 1 1
30 750 0.210
31 0.23 0.330
32 5 1 1 950 0.24 1 0.75 0 0.75 0.320 1 1 1 1
33 0.25 0.310
34 700 0.23 0.330
35 5 N 1 725 0.24 1 0.75 0 0.75 0.320 1 1 1 1
36 750 0.25 0.310
37 0.05 0.925
38 6 0 1 1000 0 0.10 0.25 1 0.25 0.915 1 1 1 1
39 0.15 0.870
40 0.23 0.810
41 6 1 1 1000 0 0.25 0.25 1 0.25 0.790 1 1 1 0
42 0.28 0.770
43 0.45
44 7 0 1 1000 1 0.50 0.50 1 0.50 0.925 1 1 0 0
45 0.55
46 0.65 0.810
47 7 1 1 1000 1 0.68 0.50 1 0.50 0.780 1 1 1 1
48 0.70 0.750

the FIS landscape increases with the number of linguistic
values. Despite their differences, landscapes involving fewer
linguistic values appear to abstract away details seen on land-
scapes with more. The likely explanation by way of analogy
would be that if ANFIS was a curve-fitting process, then
the number of linguistic values would be the order of the
curve-fitting polynomial.

Finally, note that although the ANFIS generated system
was able to correctly detect failures with better accuracy
than any manually designed FIS, it utilized far more rules.
Therefore although a trained system may outperform a man-
ually designed FIS, the excess number of rules may simply
represent overfitting and otherwise not be understandable.
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However, an ANFIS expert system requires far less effort to
engineer and yields far greater performance provided training
data is available.

B. ANTICIPATING FAILURE

Test 54 on TABLE 5 shows that the baseline FIS modified
to use only Gaussian membership models outperformed all
other manually engineered configurations, so that was the FIS
used for these tests. Results from the linguistic neighborhood
near maximum membership values are shown in TABLE 7
and results where two linguistic values overlap are shown in
TABLE 8.
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TABLE 8. Specification and results for rule boundary tests with all other rules activated.

Test Inputs Expected Actual Assessment
# | Rule | Case Service | Memory | CPU | Ping Status | Restart | Status | Restart Status | Restart | N | Overall
49 925 0.05 | 0.05 0.925
50 3% 0 1 950 0.10 | 0.10 0.25 1 0.25 0.915 1 1 1 1
51 975 0.15 | 0.15 0.875
52 700 0.20 | 0.05 0.925
53 3* N 1 725 0.25 | 0.10 0.25 1 0.25 0.915 1 1 1 1
54 750 030 | 0.15 0.870
55 925 093 | 045
56 4% 0 1 950 095 | 0.50 0.50 1 0.50 0.925 1 1 0 0
57 975 097 | 0.55
58 700 093 | 0.05 0.925
59 4% N 1 725 095 | 0.10 0.50 1 0.25 0.915 0 1 1 0
60 750 097 | 0.15 0.870
61 925 0.55 | 095
62 5% 0 1 950 0.60 | 0.98 0.75 0 1 0.075 0 1 0 0
63 975 0.65 | 1.00
64 700 033 | 095
65 5% N 1 725 035 | 098 0.75 0 1 0.075 0 1 0 0
66 750 0.37 | 1.00
67 1000 0.00 | 0.05 0.925
68 6* 0 1 950 0.05 | 0.10 0.25 1 0.25 0.925 1 1 1 1
69 925 0.10 | 0.15 0.910
70 700 023 | 0.20 0.830
71 6* N 1 725 024 | 025 0.25 1 0.25 0.790 1 1 1 1
72 750 0.25 | 0.30 0.790
73 1000 095 | 048
74 T* 0 1 950 098 | 0.50 0.50 1 0.50 0.925 1 1 0 0
75 925 1.00 | 0.53
76 700 0.89 | 0.65 0.810
77 7* N 1 725 091 | 0.68 0.50 1 0.50 0.780 1 1 0 0
78 750 093 | 0.70 0.790

Rule 7 Tests 43-45
0.8 0.5

Rule 5 Tests 25-27

RestartService

0.5 0.4
0 0.5 1 0 0.6 1
Ping CpuUsage

(a) (b)

FIGURE 8. Tests that did not exhibit a gradient had neighborhoods with
the same input values, i.e., landscape plateau.

All results from TABLE 7 exhibit a gradient for the
output Restart with 2 exceptions. As why tests 25-27 and
tests 43-45 did not exhibit a gradient, the suspicion was the
test values were on a plateau. This was confirmed using
MATLAB?’s Surface Viewer to plot the relationship between
the test variables and Restart, as shown in FIGURE 8. This
observation means that plots such as FIGURE 4 are insuf-
ficient to identify rule boundaries. In both of these cases,
the test inputs were taken in the neighborhood of peaks
from the middle of three linguistic values modeled as Gaus-
sian curves, which is all the more unexpected that there are
plateaus at those points. Upon further investigation, it appears
insufficient to base test values on linguistic values alone since
the operation of FIS resolves combinations of membership
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values to a firing level that truncates the output defined in
the rule. Therefore, a better approach to understanding the
affect inputs have on the outputs require a broader view of
the system, which is provided by either MATLAB’s Surface
Viewer or Rule Viewer.

That largely also explains why the Status output variable
was quiescent regardless of inputs across all tests. For tests
isolating a particular rule, the rule itself specifies what the
output linguistic value should be. Irrespective of how that
linguistic value is modeled, the firing level only truncates the
magnitude of that specified output, which is then defuzzified
to the model’s central value.

Yet even with all rules activated, a detectable gradient in
the neighborhood of test points was found 60% of the time.
This appears largely due to the defuzzification of aggregated
rule outputs in order to produce crisp output values. That
process essentially discretizes the output into one predefined
linguistic value for each output. Therefore, the application
of fuzzy logic to system monitors should avoid defuzzifica-
tion. This reveals a gap in the current study. Namely, that
all the manually engineered FIS were based on Mamdani
FIS. Sugeno FIS yield a weighted average that may have
avoided discretized defuzzification. ANFIS uses the Sugeno
output model and that may explain why ANFIS significantly
outperformed the manually engineered FIS.

Finally, both test cases for rule 5 on TABLE 8 had unex-
pected results. Specifically, these were the only tests that had
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an incorrect Status output. The most probable explanation is
that those test revealed an error in the rulebase. Rule 5 only
specifies values for Service, Memory, and CPU variables
in order to make a determination about the system’s Status
and decision to intervene. The thought was that limiting the
number of linguistic variables in rules had greater generality,
which is why Ping was undefined. The FIS correctly decided
there was no need to intervene, but was unable to discriminate
Busy and OK. Upon investigation, this was partly confirmed.
Adding a value for Ping in rule 5 diminished the Status
output from 1 to as low as 0.83, but was still higher than the
expected 0.75. It appears that the concept of Busy and OK are
being conflated, which biases the Status output towards OK,
possibly due to aggregation. Translating the Busy linguistic
away from OK resolved the ambiguity between Busy and
OK, but conflated Busy with the Unstable. This suggests that
semantically overlapping linguistic values should be avoided.

VIil. CONCLUSION

A. FIS DESIGN SENSITIVITY ANALYSIS

Although there are a fair number of design options involved
when designing fuzzy inference systems, the KISS principle
is advised. There was no significant variation in results based
on different defuzzifiers or logical operators. The choice
of membership model for linguistic values was the single
best way to tune the performance of a FIS, but should be
graphically checked for monoticity. Here, Guassian models
had a monotonic landscape and outperformed both triangular
and trapezoidal models.

ANTFIS require the least amount of effort to build provided
training data is available. As is often the case for supervised
systems, the quality of the system is proportional to the size
of training and test datasets. MATLAB’s hybrid optimization
significantly outperformed back-propagation and is therefore
the recommended approach for MATLAB users. Increasing
the number of linguistic values per linguistic variable will
result in an exponentially complex neural network and has
diminishing returns.

B. ANTICIPATING FAILURE

System monitors that use fuzzy logic can anticipate failures
because the boundaries between rules have a gradient. The
key to the application of Mamdani fuzzy logic to system
monitors is to avoid defuzzifying. Sugeno FIS yield weighted
values, which may have more gradual changes in output and
may produce even better results, but needs to be experimen-
tally confirmed in follow-on work. Although we have not
evaluated type-2 fuzzy logic in the current work, [21] notes
in the context of control systems that type-2 may offer even
smoother state spaces, which may further enhance a system
monitor’s ability to proactively anticipate failure. Similar
to the comparison of type-1 and type-2 fuzzy logic for a
particular control system in [24], the extension of this work
to type-2 fuzzy logic would similarly emphasize added value
in a very controlled way.
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Regardless of how a fuzzy system monitor is designed,
the boundaries between rules need to be assessed more
broadly than simply examining linguistic values at rule vari-
ables. This is because fuzzy inference systems combine vari-
able values to find a firing level, which is used to truncate
the rule’s output variables and that interplay is not apparent
by examining only plots of linguistic values. Another key
observation was that linguistic values should be sufficiently
stratified semantically to avoid conflating the meaning of
adjacent values.
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