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ABSTRACT Face frontalization is a critical and difficult task on face pose reconstruction. Previous
researches use simple posture information as guidance, such as pose coding and facial landmarks. To explore
the guidance effect of profile faces, we propose detailed features that provide much detailed information.
In this paper, a Detailed Feature Guided Generative Adversarial Pose Reconstruction Network (DGPR) is
proposed. Firstly, frontal pose coding and profile detailed features are fed into DGPR to generate detailed
features of front face. Then, the second generator combines frontal detailed features and profile face to
reconstruct front face. Besides, we propose a conditional enhancement loss to strengthen the guiding role of
detailed features, and a smoothing loss to reduce edge sharpness in generated faces. Experimental results
show that our method generates photorealistic front faces and outperforms state-of-the-art methods on
M2FPA and CAS-PEAL. Specifically, DGPR improves the face recognition accuracy under pose angles of
±60◦, ±75◦, ±90◦ by 2%, 1%, and 6% respectively over the state-of-the-art methods on M2FPA, achieves
the average rank-1 recognition rate to 99.95% and improves it by 0.05% on CAS-PEAL. These results
demonstrate the effects of detailed features and corresponding modules.

INDEX TERMS Face frontalization, face pose reconstruction, Generative Adversarial Network, face
rotation.

I. INTRODUCTION
Profile faces exist widely in the real world for the applica-
tion field of face recognition. Face frontalization converts
them into front faces improves face recognition accuracy
significantly by preserving the rich identification information
from the profile faces. Benefiting from convolutional neural
networks, such as Generative Adversarial Networks (GAN)
[1], Variational Autoencoder (VAE) [2], great progress has
been achieved in the field of face frontalization. However,
insufficient feature information of profile faces has made a
main obstacle to the frontalized face quality, especially under
the extreme pose angles (for example, 90◦).
Previous researchers have made many outstanding con-

tributions, greatly promoted progress on face frontaliza-
tion. Some researchers [3]–[5] tried to build a 3D model
to generate a reconstruction of front faces. Generally, they
reconstructed frontal view faces from estimated 3D surface
based on existent 2D profile faces. This type of methods
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is time-consuming and hard to learn, and vulnerable to an
irregular surface.

Some researches (TP-GAN [6], CAPG-GAN [7]) solve
this task by 2D-based methods: learning a pose-invariant
embedding to reconstruct frontal faces, where model archi-
tectures were meticulously considered and finely designed.
After encoding faces as high-level features in latent spaces,
multiple sub-modules process features in different aspects to
generate photorealistic frontal faces.

This type of method focuses on high-level features,
neglects detailed information, such as edges, textures and
corners which contain rich information useful for the quality
improvement of the frontalized faces. They used only simple
pose information as guidance, applying one-hot vector to
store pose clues, and facial landmark positions to direct the
frontalization process. For example, CAPG-GAN [7] utilizes
five facial landmarks (eyes, nose, mouth) which cannot store
rich pose features on the other areas of the face skin.

Besides, these methods used the common loss functions
which had not considered the importance of the detail
smoothness, suffered from rough and unrealistic details in
their results.
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FIGURE 1. The frontal view synthesis by DGPR. There are three groups and each is consist of three columns, the first column is real faces,
the second column is input profile faces and the third column is generated frontal faces. The first and second groups illustrate 90◦ profile
faces and corresponding real and generated front faces. The third group displays 75◦, 60◦, 45◦ profile faces and corresponding generated
results.

Based on these observations, we propose to explore
more detailed information from profile faces, aiming to
provide more effective information for face frontalization.
Specifically, we extract profile sketches as detailed features,
which preserve rich identifying information for pose rota-
tion. To eliminate the influence of rough detailed features,
smoothing loss is proposed to improve the smoothness of
generated detailed features. In addition, we present a condi-
tional enhancement loss to strengthen the detailed feature’s
guidance effect on generation of target pose.

In this paper, the Detailed Feature Guided Generative
Adversarial Pose Reconstruction Network (DGPR) is pro-
posed, which include two generators and two discriminators:
a detailed feature convert generator Gm and a pose convert
generator Gt . Gm was used to generate frontal detailed fea-
tures from profile faces, andGt was designed to combine pro-
file faces with the corresponding frontal detailed features and
eventually generate front faces. Experimental results show
that DGPR reaches the state-of-the-art under metric of rank-1
recognition rate. After taking detailed features of pro-
file faces into account, we also reconstruct photoreal-
istic front faces from extreme poses, such as ±90◦,
which have much less information compared with smaller
pose.

The contributions of this paper can be summarized as three-
folds: (1) we firstly utilize the rich sketch information of
profile faces as guidance to generate front faces, which pro-
vides more details, and the improved effects is demonstrated.
(2) We proposed a structure of dual generators to combine
profile faces and detailed features, which achieves excellent
results. (3) Conditional enhancement loss and smoothing loss
are proposed to enhances pose consistency and edge natu-
ralness. At the special cases of the extreme horizontal poses
(such as ±90◦) with little information, our model can also
obtain clarifying frontal faces.

The rest of this paper is organized as follows: Section II
describes the related works. Section III details our proposed

method. Experimental results are shown in Section IV, and
Section V summaries this paper.

II. RELATED WORKS
Lots of researchers proposed effective algorithms for face
frontalization. Manifold learning methods [8], [9] improved
feature representation for downstream tasks, but failed
in capturing more robust data characteristics in specific
tasks compared with deep-learning methods. The existing
deep-learning methods can be summarized as two classes:
the first type of methods was based on 3D models, which
learned a 3D-surface from 2D faces and then rotated and
projected to front view. Hassner et al. [3] used a single
unmodified 3D reference surface to generate the front view.
Yin et al. [4] used traditional rotation methods to estimate 3D
grid to reconstruct front faces in target pose. Cao et al. [10]
proposed to generate front face by estimating 3D faces sur-
face. They employed two pathway generators, which were
used to learn to estimate facial texture map and UV map [11]
respectively. Zhou et al. [12] generated 3D faces based on
3DDFA [13], and then rendered frontal faces. Zhao et al. [14]
estimated 3D surface based on 3DMM[15], and devised a two
pathway structure to deal with global and local texture.

These kinds of methods relied on a high precision model
trained on a 3D fitting database or a strict and accurate 2D
to 3D conversion coordinate system. The error accumulates
during the process of projecting faces from 2D to 3D or from
3D to 2D easily. In addition, reducing surface smoothness of
final synthesized faces occurs frequently, which reduces the
naturalness of the reconstructed face image.

The second type of methods generated frontal faces with-
out assistant of the 3D model. There were lots of meth-
ods based on Generative Adversarial Network (GAN) [1],
Huang et al. proposed TP-GAN [6], a two-pathway method
that combined two networks with perceive global and local
features respectively, enhanced the realism of synthetic
front face. Tran et al. proposed Disentangled Representation
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learning GAN(DR-GAN) [16], which used pose coding
guide generator and discriminator to decouple the feature
representation of poses. Couple-Agent Pose-Guided GAN
(CAPG-GAN) [7] equipped five facial landmarks heatmaps
as pose guidance, supplemented by a coupled discriminator to
constrain pose and structure distribution. The pose guidance
in CAPG-GAN was identity irrelevant, which limited the
diversity of generated faces. Ganimation [17] used action
units to get target face with attention masks.

Yin et al. [18] proposed a dual attention structure model
DA-GAN. DA-GAN equipped self-attention into genera-
tor and enhanced discriminator by facial attention, which
was assisted by facial masks. Lu et al. [19] devised global
and local discriminators to generate clarifying front face.
Duan and Zhang [20] proposed a coarse-to-fine architec-
ture BoostGAN. BoostGAN regarded multi-occlusive profile
faces as input, and then generated front faces for every profile.
Finally, the frontal face was boosted from multi-front faces.
Similarly, Banerjee et al. [21] reconstructed front faces from
occlusive faces, too. Cao et al. [22] proposed LB-GAN,
which is consist of Face Normalizer and Face Editor. Face
Normalizer firstly generated frontal view faces, and Face
Editor rotated faces to target pose. Liu et al. [23] proposed a
novel model PPN-GAN to generate front faces progressively.
PPN-GAN started from inferring an intermediate face that
had a small view difference to the profile face, and then
increased the view difference step by step until the frontal
view arrives.

Sagonas et al. [24] solved face frontalization with a statis-
tical method. Yim et al. [25] proposed a front view synthesis
method with multi-task learning. Cole et al. [26] decomposed
face into a set of sparse landmark points and aligned texture
maps, which were combined to generate front faces by image
warping. Qian et al. proposed Additive Focal Variational
Auto-encoder (AF-VAE) [27] that combined VAEwith GAN.
They introduced a novel random gaussian mixture hypothesis
to improve the de-entanglement effect of face content and
obtained realistic frontal images. Kan et al. [28] proposed
Stacked Progressive Auto-encoder (SPAE), which iteratively
transformed large poses to virtual smaller pose, until target
pose was generated. Yang et al. [29] and Feng and Yuen [30]
proposed similar methods with virtual poses.

The above mentioned methods all used simple pose coding
or landmark points as posture information, the detailed infor-
mation (such as contours and textures) of profile face had not
been extensively used.

III. METHOD
A. OVERVIEW
Recent researches on face frontalization barely concerned
about the guidance of profile faces. However, edges contain a
lot of information, such as the shape of face, facial structure,
and even identity. Therefore, making full use of edges in
profile improve the quality of reconstructed frontal faces.
We believe that using sketch as detailed features improves
the generator’s perception of details.

Specifically, we firstly generate detailed features for all
faces for preprocessing. The profile faces and corresponding
detailed features are the input of our model. Then, we employ
the proposed generator to convert profile detailed features to
frontal ones. Next, we feed profile face and corresponding
frontal detailed features together into another generator. Then
the frontal faces are generated finally.

In the following sections, detailed features are introduced
for better understanding firstly. Then, we describe the archi-
tecture of our proposed DGPR. Finally, we introduce the
proposed conditional enhancement loss and smoothing loss.
The other losses we used are described, too.

B. DETAILED FEATURE
Posture information plays a vital role to reconstruct front
faces from profile faces. The posture with rich details make
model reconstruct more realistic target face. Inspired by the
study of Yi et al. [31], we employ [31] to obtain a sketch
image of each profile face.

Compared with one-hot coding, sketches contain almost all
edge information of profile faces, which can more efficiently
guide model to generate high-quality synthetic faces. Unlike
previous methods, which share the same coding for multiple
profile persons at one pose, detailed features is one-to-one
that improve similarity between synthesized and real front
faces. Figure 2 shows the difference between posture guid-
ance we used and CAPG-GAN [7].

FIGURE 2. The comparison of different guidance. The five facial
landmarks heatmap (a) is used in CAPG-GAN, (b) is 68 facial landmarks
with lines, and the sketch image (c) is used in our method. It is intuitive
that the sketch provides more information than facial landmarks
heatmaps.

C. NETWORK STRUCTURE
DGPR can be divided into two parts: The first part is
the detailed feature convert generator Gm, which gener-
ates a frontal detailed feature. The second part is the pose
convert generator Gt , which combines the output of Gm
and profile face as inputs to generate front face. Figure 3
shows the overall structure of DGPR based on detailed
features.

We represent detailed features as m in this paper. x repre-
sents a face image at any pose in the dataset X , and we expect
to obtain a synthetic face f corresponding to the target pose
cy. The generated f is expected proximity to real frontal face
infinitely. DGPR can be expressed as formulas (1) and (2):

mf = Gm
(
mx , cy

)
(1)

f = Gt
(
x,mf

)
, (2)
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FIGURE 3. The overall structure of DGPR. It consists of 2 generators and corresponding discriminators: the detailed feature convert
generator, the pose convert generator, detailed feature discriminator, and faces discriminator.

where cy is one-hot coding of target pose, mx is detailed
feature of profile face x. Gm reconstruct detailed feature mf .
And f is front face generated by Gt .
In addition, we cycle the training stage by revising input

and output at each iteration. The cycle process increases
the robustness of model. Specifically, the results obtained
are fed back to the model to reconstruct the original input.
At the same time, cycle loss is used to optimize the two
generators and further improve the performance of our
model.

1) DETAILED FEATURE CONVERT GENERATOR Gm

In practice, detailed features of frontal face cannot be
obtained. Thus, we design detailed features convert generator
Gm to convert detailed features into a frontal one. The struc-
ture ofGm is shown in Table 1. The residual blocks ResBlocks
are composed of ReflectionPad2d and convolutional layer
with 3 × 3 kernel size. The normalization layers in residual
blocks adopt Adaptive Instance Normalize (AdaIN) [32],
as shown in formula (3).

AdaIN (x, y) = σ (y)
(
x − µ(x)
σ (x)

)
+ µ(y) (3)

There are differences in the data distribution under dif-
ferent poses. In order to make Gm adaptively learn the dif-
ference, we employ Multi-Layer Perceptron (MLP) to learn
the parameters µ and σ in Adaptive Instance Normalization
layers. The structure of MLP is shown in Table 2, where
N is the total number of parameters in Adaptive Instance
Normalization.

TABLE 1. The structure of detail feature convert generator Gm.

TABLE 2. The structure of MLP. N is the total number of parameters in
adaptive instance normalization layers.

2) POSE CONVERT GENERATOR Gt
Frontal detailed featuresmf is generated byGm and is input to
Gt together with profile face x. Then,Gt output the final front
face f . The x contains face identity and texture information.
Meanwhile, frontal detailed feature mf provides posture and
structure information. DGPR combines these two kinds of
content together to generate a photorealistic face.

The structure of Gt is different from Gm in the first layer.
It adds an additional learnable parameter β for combing mf
and x: x+βmf . After down-sampling, a self-attention mech-
anism is equipped to force model to focus more attention on
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effective features. In the following ResBlocks,Gt adopt Batch
Normalization [33] instead of Adaptive Instance Normalize.
The settings of other layers are same as Gm.

3) DISCRIMINATORS
The discriminator Dm tries to distinguish generated and real
detailed features, while Dt tries to distinguish generated and
real images. The adversarial training procedure reduces the
difference between generated and real images. In order to
make generator achieve better performance and refine the
details of generated images at the same time, both discrim-
inators based on PatchGAN [34] are adopted. The structure
of discriminators are shown in Table 3.

TABLE 3. The structure of discriminators.

D. LOSS FUNCTIONS
1) ADVERSARIAL LOSS
Judging the authenticity of results can prompt generator to
obtain frontal faces with distribution close to real. We use
a modified adversarial loss proposed by WGAN-GP [35],
[36] to distinguish real or fake images, which adds a gradient
penalty to the original adversarial loss. Specifically, the input
of Gm is profile detailed feature mx and frontal pose coding
cy, the output is frontal detailed feature mf . Adversarial loss
Lm can be expressed as (4):

Lm = Emx∼Pmx
[
Dm

(
mf
)]
− Emx∼Pmχ [Dm (mx)]

+ λ1EĨ∼PI

[(∥∥∥∇ĨDI (Ĩ )∥∥∥2 − 1
)2]

, (4)

where Pmx is the data distribution of profile detailed features,
PĨ is random difference distribution, λ1 is penalty coefficient.
Gt also uses the adversarial loss Lt proposed

by WGAN-GP, which is shown in (5). Px is the data distri-
bution of X . Põ is random difference distribution and λ2 is
penalty coefficient.

Lt = Ex∼Px [Dt (f )]− Ex∼Px [Dt (x)]

+ λ2Eõ∼Pσ̃
[(∥∥∇ĨDo(õ)∥∥2 − 1

)2] (5)

2) RECONSTRUCTION LOSS
With the thought of cycle consistency, we adopt a reconstruc-
tion structure that we feed final results back into the model to
reconstruct inputs. The performance of generators would ben-
efit from cycle reconstruction loss. We adopt reconstruction
loss functions in both Gm and Gt to optimize the generator
parameters. Formula (6) is reconstruction loss for Gm, and
formula (7) for Gt .

Lrm =
∥∥mf − m̂f ∥∥2 (6)

Lrt = ‖f − f̂ ‖2 (7)

3) SMOOTHING LOSS
In the beginning, we used the same method to train Gm
and Gt , but due to the different image types processed by
two generators, Gt gets good generation while Gm reaches
collapse easily. Inspired by research [17], smoothing loss Ls
and L̂s promote to reduce sharpness of detailed features and
avoid collapse. Ls and L̂s is formulated as equations 8 and 9
respectively.

Ls= λ3Emx∼Pmx

×

[∑H ,W

i,j

[(
Mi+1,j −Mi,j

)2
+
(
Mi,j+1 −Mi,j

)2]]
(8)

L̂s= λ4Emf∼Pmf

×

[∑H ,W

i,j

[(
M̂i+1,j − M̂i,j

)2
+
(
M̂i,j+1 − M̂i,j

)2]]
(9)

where M = Gm
(
mx | cy

)
, M̂ = Gm

(
mf | cx

)
, Pmf is the data

distribution of generated frontal detailed features. λ3 and λ4
are the parameters of smoothing loss.

4) CONDITIONAL ENHANCEMENT LOSS
To enhance the constraint of pose conditions on generated
results, DGPR employs a fully connected layer to classify
the poses of features that output from Conv41 in Gt . The
cross entropy loss is calculated as conditional enhancement
loss Lc1 and Lc2. This loss contains two items: the first
item calculates the difference between generated and target
pose and constrains generated face to match the target pose.
The second item uses real images as reference to learn how
to make pose judgments from real distribution.

For Gm, we expect to enhance the influence of guidance
information cy. The conditional enhancement loss for Gm is
as follows:

Lc1 = LCrossEntropy
(
Dc1

(
Gm

(
mx | cy

))
, cy
)

+LCrossEntropy (Dc1 (mx) , cx) , (10)

For Gt , we expect to enhance the influence of detailed
feature mf . The conditional enhancement loss for Gt is as
follows:

Lc2 = LCrossEntropy
(
Dc2

(
Gt
(
x | mf

))
,mf

)
+LCrossEntropy (Dc2(x),mx) , (11)

5) IDENTITY LOSS
To enhance the identity consistency of synthetic faces,
we need to determine whether the identity between profile
and generated front faces are identical. The identity loss
Lm−id for Gm, which can not only punish the differences
between profile and reconstructed frontal faces, but also force
Gm to preserve identity.

Lm−id = Emf∼Pmf
[∥∥Gm (Gm (mx | cy) | cx)− x∥∥1] (12)

For Gt , the identity consistency loss Lt−id is adopted
to maintain the identity of generated images. In addition
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to L1 loss, we also constrained identity consistency at
feature level. The FaceNet [37], which is pre-trained on
VGGFace [38], is employed to extract the identity features.
Then the mean square error (MSE) distance between test
and registered features is computed as Lt−id . All data input
to FaceNet are scaled to 160 × 160 in practice. Lt−id is as
follows:

Lt−id = Ex∼Px
1
n

∑(
Ff − Fx

)2
+Ef∼Pf

[∥∥Gf (Gf (x | mf ) | mx)− x∥∥1] , (13)

where Ff is the identity features of generated front faces and
Fx for profile faces.

6) MULTI-SCALE PIXEL-LEVEL LOSS
Inspired by CAPG-GAN [7], we apply a multi-scale pixel-
level loss Lpix for f to constrain its content consistency, accel-
erate optimization and reconstruct more detailed information.

Lpix =
1
S

S∑
S=1

1
WSHSC

WS,HS ,C∑
w,h,c=1

∣∣∣Îbs,w,h,c − Ibs,w,h,c∣∣∣ , (14)

where S is the number of scales, Ws and Hs represent the
width and height of images for each scale respectively, and
C is the number of image channel.

7) TOTAL LOSS
The total loss for Gm is shown in Equation (16):

LGm = λmLm + λrmLrm + λs(Ls + L̂s)

+ λc1Lc1 + λm−idLm−id , (15)

and the loss for Gt :

LGt = λtLt + λrtLrt + λc2Lc2 + λt−idLt−id + Lpix , (16)

where λs, λc1, λc2, λm−idt , λf−idt , λpix are hyperparameters
that control weight of each loss item. Their values are shown
in Table 4.

TABLE 4. The values of loss coefficients.

The final objective function can be formulated as (17),
where generators try to minimize the objective function and
discriminators try to maximize it. The algorithm flow of
DGPR is illustrated as Algorithm 1.

L = argmin
G

max
D

(
LGm + LGt

)
(17)

Algorithm 1Algorithm of ProposedDetailed Feature Guided
Generative Adversarial Pose Reconstruction Network
Require:

Input image x, detailed feature mf , target pose one-hot
coding cy

Ensure:
Frontal face image f
for epoch = 1 to MAXEPOCH do
mf = Gm

(
mx , cy

)
f = Gt

(
x,mf

)
Update discriminators Dm,Dt
Update generators Gm and Gt , The gradient is
∇
(
LGm

)
= ∇ (Lm) + λs∇ (Ls + Lŝ) + λc1∇ (Lc1) +

λm−idt∇ (Lm−idt)
end for
return f

IV. EXPERIMENTS
We implemented our method by PyTorch [39] and all exper-
iments were conducted on a single GeForce GTX 2080Ti
GPU with 11G memory. In the following sections, we will
introduce the dataset used in our experiments, qualitative and
quantitative analysis of DGPR compared with the state-of-
the-art methods, also the ablation study of DGPR.

A. DATASETS
To demonstrate the effect of DGPR in the task of face
frontalization, we conduct experiments on the M2FPA [40]
and CAS-PEAL [41]. M2FPA is provided by the Institute
of Automation, Chinese Academy of Sciences. It is a great
comprehensive multi-view public dataset currently that avail-
able for facial pose analysis research. M2FPA contains a
total of 397,544 pictures of 229 subjects, with 62 poses,
4 attribute changes, and 7 lighting changes. Each subject’s
62 poses were captured simultaneously, including 13 yaw
angles (−90◦ ∼ 90◦), 5 pitch angles (−30◦ ∼ 45◦) and
44 yaw and pitch angles. In our experiments, we only con-
cern about face frontalization of different poses of 13 yaw
angles, and pitch angles are ignored. Five types of glasses
and three kinds of expressions improve diversity. Several
previous methods such as DR-GAN [16], TP-GAN [6] and
CAPG-GAN [7] are provided effective benchmarks for face
frontalization and pose invariant face recognition results on
M2FPA. For a fair comparison, we evaluate DGPR onM2FPA
dataset with the official train/test split.

The CAS-PEAL [41] is a public Chinese face database
with controlled pose, expression, accessory, and lighting.
It contains 30,863 images of 1,040 subjects, and all images
are grayscale. Following previous researches, we use images
with various poses 0◦, ±15◦, ±30◦ and ±45◦. We randomly
split the dataset into train/validation/test sets with 7:1:2.

B. IMPLEMENT DETAILS
All the loss balance coefficients can be seen in Table 4.
The pose number is 13 on M2FPA and 11 on CAS-PEAL.
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FIGURE 4. Results of face frontalization on M2FPA. Every four columns are a group, the first column is
profile face, the second column is generated detailed feature (DF), the third column is generated front face,
and the fourth column is real front face. For the first group, from top to bottom, illustrates results when
input faces various from −90◦ to −15◦. For the second group, from top to bottom, is the results when input
faces various from 15◦ to 90◦. All the intervals are 15◦.

The output dimension N of MLP is 24, which is also the
parameters number of AdaIN layers. All images are resized to
128×128. Our model is trained for 30 epochs with a learning
rate of 2e-5, under ADAM [42] optimizer with batch size 16.
The average training time is 2.4 hours per epoch on M2FPA
and 30 minutes per epoch on CAS-PEAL, and the average
generation time is 0.2 seconds per face on both datasets.

C. EVALUATION METRICS
We evaluate the quantitative results of DGPRwith face recog-
nition performance and illustrate generated frontal face for
qualitative evaluation. Specifically, we use rank-1 recognition
rate as face recognition evaluation metric. For fair compari-
son, we follow the previous researches’ setting in the evalua-
tion. LightCNN [43] is used as face feature extractor. Faces of
different yaw angles are fed as input, which can be expressed
as ±15◦, ±30◦, ±45◦, ±60◦, ±75◦, ±90◦ respectively.
Rank-1 recognition rate is calculated by averaging two cor-
responding poses. For example, rank-1 value of ±15◦ is the
average of +15◦ and −15◦.

D. QUALITATIVE ANALYSIS
The experimental results on M2FPA are illustrated
in Figure 4, and results on CAS-PEAL are illustrated
in Figure 5. As is shown in Figure 4, DGPR generates detailed
features that are similar to real front faces. Facial character-
istic can also be generated accurately, such as glasses, bangs,
and eyebrows. In addition, DGPR is able to adapt to changes

FIGURE 5. Results of face frontalization on CAS-PEAL. From left to right
columns, we illustrate generated results under 0◦, 15◦, 30◦,and 45◦.

in poses and generate realistic front faces. In Figure 5, faces
can be generatedwith similar characters as input profile faces.
These demonstrate the effectiveness of our proposed model.

In order to prove that DGPR can preserve the identity of
one person from diverse poses, faces of same person from
different poses are fed into DGPR. The comparison about
generated frontal faces as shown in Figure 6. It shows that
DGPR can reconstruct photorealistic synthetic faces and pre-
serving identity consistency when poses are closer to 0◦.
While the pose is larger than 60◦, the identity consistency
between reconstructed and real images decreases slightly
compared with smaller poses. Although the contour of face
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FIGURE 6. The generated front faces from diverse poses. For each group of two rows, the first row is input profile faces, and the second is reconstructed
front faces. From left to right, the pose changes from −90◦ to 90◦ differs by 15◦.

TABLE 5. Rank-1 recognition rate (%) of different models on M2FPA. First
row indicate the profile poses. It can be seen that DGPR achieves
state-of-the-art rank-1 recognition rate.

TABLE 6. Rank-1 recognition rate (%) of different models on CAS-PEAL at
pitch 0◦.

is slightly deformed, the shape of face remains normal and
the identity still maintains a high consistency.

E. QUANTITATIVE ANALYSIS
Table 5 shows rank-1 recognition rate of generated frontal
faces on M2FPA under poses ±15◦, ±30◦, ±45◦, ±60◦,
±75◦, ±90◦. It can be seen that rank-1 recognition rate of
different poses has been improved. While profile poses are
at ±60◦, ±75◦ and ±90◦, the rank-1 recognition rate is
increased by 2%, 1% and 6% respectively, which compared
with the state-of-the-art methods. It demonstrated that DGPR
significantly explore the effect of detailed features, enrich
reconstructed frontal faces from even large poses.

On CAS-PEAL, we report results in Table 6. We com-
pared our model with state-of-the-art methods CR-GAN [44],
TP-GAN [6] and DA-GAN [18]. It can be seen that our
method outperforms state-of-the-art methods as the aver-
age rank-1 recognition rate is improved by 0.05%. To fur-
ther demonstrate the effectiveness of our model, we report
results under pose±22◦ and±67◦, which are not reported in

FIGURE 7. Rank-1 recognition rate at different training iteration on
CAS-PEAL. The rank-1 recognition rate under different poses tends to
stabilize around 7000 iterations of training.

FIGURE 8. FID and IS score at different training iteration on CAS-PEAL.

previous researches but exist in dataset. Rank-1 recogni-
tion rates are 100% and 98.54% under ±22◦ and ±67◦

respectively.
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FIGURE 9. Ablation experiment results on M2FPA dataset.

TABLE 7. Quantitative results under different posture guidances,
Compared under rank-1 recognition rate(%). DF denotes detailed features
and 68-L denotes 68 Landmarks.

To demonstrate the convergence of our model, we illus-
trate rank-1 recognition rate at different training iteration
on CAS-PEAL in Figure 7. Four lines under poses ±00◦,
±15◦, ±30◦ and ±45◦ are plotted, and the average rank-
1 accuracy is plotted as dot-line, too. It can be seen that
the model reaches convergence after training 7000 iterations.
The results demonstrate our model is well converged. The
fluctuating of curves reflect the instability of GAN training.
Furthermore, the Fréchet Inception Distance (FID) score [45]
and Inception Score (IS) [35] score at different training iter-
ation on CAS-PEAL are shown in Figure 8. The FID score
is the lower the better, and IS score is the higher the better.
The max value of IS is 2. It can be seen that FID and IS reach
stable status at around 7000 iterations.

F. ABLATION STUDY
1) VALIDITY OF DETAILED FEATURES
In order to analysis the effect of different posture guidance
on the generation procedure, we compared the front faces
generated by DGPR with 68 landmarks and detailed features
respectively, which are two kinds of posture guidance. The
quantitative comparison results are shown in The Table 7.

It can be seen that regarding detailed features as guid-
ance, resolution and identity of generated front faces signif-
icantly improved. Among all posture guidances, the model
with detailed features generated better front faces, and rank-
1 recognition rate outperforms the model with 68 landmarks.
What’s more, the rank-1 recognition rate is greatly improved
under ±90◦, which proves detailed features is valid.

TABLE 8. Ablation study of DGPR with the metric of
rank-1 reconstruction rate (%).

2) VALIDITY OF DIFFERENT COMPONENTS
In order to prove the effect of different modules in DGPR,
each module was sequentially removed to carry out recon-
struction experiments from profile faces to front faces.
w/o Pose Dismeans removing conditional enhancement loss
and corresponding pose classifier; w/o Draw means remov-
ing detailed feature convert generator Gm, then reconstruct
front faces without detailed features; w/o FaceNet means
removing feature-level identity constraint, including the iden-
tity consistency loss and corresponding embedding extracted
by pre-trained FaceNet.

As shown in Figure 9, with the absence of detailed feature
guidance or posture constraints, more obvious facial defor-
mation occurred. The deformation enlarges when pose angle
is larger. As is seen in Table 8, due to the absence of detailed
features guidance or posture constraints, facial deformation
decreases rank-1 recognition rate of frontal images recon-
structed by DGPR.

As shown in Table 9, Fréchet Inception Distance (FID)
score [45] and Inception Score (IS) [35] of reconstructed front
faces are improved after removing the constraint of iden-
tity features, while rank-1 recognition rate was significantly
improved with feature-level identity constraint. This observa-
tion suggests that the identity constrain has a slight negative
impact on image quality, but the identity consistency between
reconstructed and real images improved significantly. We set
to adjust the coefficient λm−id for identity feature consis-
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TABLE 9. Ablation study of DGPR with the metric of FID and IS.

tency loss Lm−id to reach a balance between generating more
photorealistic images and higher face recognition accuracy.
Experiments show that each component of DGPR has various
effects, removing any of them will decrease the performance.

V. CONCLUSION
This paper introduces Detailed Feature Guided Generative
Adversarial Pose Reconstruction Network (DGPR), which
explores the guidance effect of profile faces to generate front
faces. DGPR utilizes face sketches as detailed features, which
stores rich pose clues and detailed information, and guides
generators to obtain realistic frontal faces. DGPR contains a
dual generator structure: the detailed feature convert gener-
ator and the pose convert generator, which can take advan-
tage of both profile faces and detailed features. In addition,
we propose smoothing loss to reduce edge sharpness in
generated faces, conditional enhancement loss to constrain
pose consistency. The experimental results show that our
method outperforms previous methods on face recognition
rate on M2FPA and CAS-PEAL datasets. Specifically, our
model gains a great improvement for face frontalization from
extreme poses, which suggests the effect of our model.
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