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ABSTRACT Money laundering is the crucial mechanism utilized by criminals to inject proceeds of crime
into the financial system. The primary responsibility of the detection of suspicious activity related to money
laundering is with the financial institutions. Most of the current systems in these institutions are rule-based
and ineffective (over 90 % false positives). The available data science-based anti-money laundering (AML)
models to replace the existing rule-based systems work on customer relationship management (CRM)
features and time characteristics of transaction behaviour. Due to thousands of possible account features,
customer features, and their combinations, it is challenging to perform feature engineering to achieve
reasonable accuracy. Aiming to improve the detection performance of suspicious transaction monitoring
systems for AML systems, in this article, we introduce a novel feature set based on time-frequency analysis,
that uses 2-D representations of financial transactions. Random forest is utilized as a machine learning
method, and simulated annealing is adopted for hyperparameter tuning. The designed algorithm is tested
on real banking data, proving the results’ efficacy in practically relevant environments. It is shown that
the time-frequency characteristics are discriminatory features for suspicious and non-suspicious entities.
Therefore, these features substantially improve the area under curve results (over 1%) of the existing data
science-based transaction monitoring systems. Using time-frequency features alone, a false positive rate
of 14.9% has been achieved, with an F-score of 59.05%. When combined with transaction and CRM features,
the false positive rate is 11.85%, and the F-Score is improved to 74.06%.

INDEX TERMS Anomaly detection, anti-money laundering, compliance, random forest algorithm,

time-frequency analysis, transaction monitoring.

I. INTRODUCTION

Money laundering (ML) is the umbrella under which the
legitimization of the proceeds of crime is attempted while
laundered money can be both re-inserted into the legitimate
economy and re-used to fuel further criminal activities. All
major criminality such as drug and human trafficking, ter-
rorism, extortion, kidnap-for-ransom, bribery, embezzlement,
tax evasion, corruption and a multiplicity of other offenses
(also known as predicate offenses) are connected through
ML. Even though it is impossible to provide an accurate
estimate of the size of such a complex underground market,
the International Monetary Fund (IMF) indicates that every
year, up to 2 trillion USD is laundered through financial sys-
tems globally, making ML one of the world’s largest markets.
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To tackle this issue, most countries following the Finan-
cial Action Task Force (FATF) recommendations set up an
anti-money laundering (AML) structure, as shown in Fig.1.
It is the responsibility of the financial institutions to report
suspicious activities to the Financial Intelligence Unit (FIU).
The FIU collects intelligence from all different financial
institutions within and outside the jurisdiction, which are
later reported to the law enforcement agencies (LEA) as
necessary. The police, using this intelligence, builds a case to
the judicial system, and if ordered the Asset Recovery Bureau
(ARB), recovers the suspicious assets for the public, closing
the loop. As the initiator of the whole process, identifying
the suspicious activity by the financial institutions is very
critical. While technology is essential for the processing and
identification of suspicious transactions given the volume
of data that needs to be filtered, technology adoption in
an AML-context needs to be carefully balanced against the
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ASSET RECOVERY
BUREAU

FIGURE 1. The flow of suspicious activity reports through multiple
institutions in the judicial system. The detected suspicious activities of
bank customers are collected at the FIU, which is reported to the police if
necessary. If the judge decides, the ARB acts upon the recovery process of
the laundered money. The process in the jurisdiction of Malta is shown as
a representative example.

various stakeholders in the AML chain of investigation. Also,
most of the existing proposed software’ solutions’ are rule-
based, and only 25 % of respondents have already imple-
mented Artificial Intelligence (AI) and expressed their main
business drivers for machine learning in AML as anomaly
detection, segmentation, and model tuning [1]. However,
the use of Al instead of rule-based engines for new cases
detection is infrequent.

The rule-based systems have three significant problems.
First, any such software solution depends on a human work-
force with varying performance and experience. Instead of
enabling AML-analysts and FIU to make more meaningful
decisions about what cases should be pursued, they create an
unmanageable volume of data. With employees being bom-
barded by a constant stream of noise from technology-based
alerts, it is no surprise that negative repercussions are expe-
rienced within financial institutions, which also propagate
to the FIUs and the ARBs. As the number of false-positive
alerts is over 90% of all alerts, AML experts are consumed
by clearing false positives and confirming the non-suspicious
nature of cases. This contingency creates difficult work con-
ditions for many AML employees. Often, employees that
experience such a continuous stream of false positives will
be desensitized towards actual suspicious cases.

Second, most of the suspicious transactions does not even
generate and alert since the rules are exposed to criminals
from various channels. The exposure can be in the form of
insider threats, employees collaborating with money launder-
ers, reverse engineering of software path-dependencies, pub-
lished Financial Action Task Force (FATF) typologies that
are translated into threshold-based rules or contain specific
behavioural traits that can be avoided).

Third, the design of rules against new methods of launder-
ing remains a reactive and lengthy process. According to the
United Nations Office on Drugs and Crime (UNODC), just
0.2% of the activities can be detected [2]. Despite advances in
computation, ML detection remains challenging as a complex
behavioural, computational, socio-economic, and managerial
problem.
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These problems resulted in the introduction of new meth-
ods of transaction monitoring using data science and machine
learning techniques. However, most of the machine learn-
ing techniques are as successful as the quality of the
input features. There are hundreds of potential features
that can be used, such as ATM withdrawals, SWIFT trans-
actions, online transfers, age, occupation. There are also
combinations of features that can be created per chan-
nel, per time interval, per currency. The complete list
of 237 transactional candidate features (related to the sim-
ilar field of credit card fraud ) has been shown in [3].
As a result, feature engineering (feature creation and selec-
tion) for AML is an essential yet very challenging and a
time-consuming problem, as specified in [4]-[6]. It can take
many weeks, if not months, to determine a useful combi-
nation of features out of thousand potential features to be
employed.

In this study, we propose a novel and a generalized solu-
tion using time-frequency (TF) analysis as a feature extrac-
tion method, so that with a handful of features, high-level
accuracy can be achieved. Time-frequency features improve
the accuracy of machine learning results compared to using
transaction features alone. The proposed feature set can be
utilized as a standard in suspicious transaction detection in
order to shorten the feature engineering stage. There are three
key contributions in this work at different stages: feature
engineering methodology, model implementation and tests
with current real banking data. The first one is a novel
methodology for feature extraction in order to build data
science models for AML in time and frequency, significantly
reducing feature engineering workload. The second contri-
bution is implementing 2D time-frequency features in build-
ing data science models for detection, improving the model
precision. The third contribution is testing the models in real
banking data and proving the improvements in the detection
of suspicious activity.

The remainder of the paper proceeds as follows. In the
next section, we examine state of the art. In Section III,
we present the proposed approach and the time-frequency
features. Experiment details and the experimental results are
given in Sections IV and V, respectively. Finally, we discuss
the results and suggest possible future works.

Il. STATE OF THE ART

A. DATA SCIENCE APPROACHES

The suspicious activity detection rules, in essence, try to
model the knowledge of the AML subject matter experts.
One of the initial surveys of the application of data mining to
AML was given in [7]. Many approaches focus on clustering
of accounts and transactions and analyzing deviations from
clusters and within the cluster for anomalies. For example,
Financial Crimes Enforcement Network (FinCEN) has cre-
ated the FinCEN Al system (FAIS) that links and evaluates
reports of large cash transactions to identify potential money
laundering; this has been in operation at FinCEN since 1993.
The objective is to detect previously unknown, potentially
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high-value entities (transactions, subjects, accounts) for pos-
sible investigations [8].

In one of the first studies combining domain knowledge
in anti-money laundering and data mining, Zdanowicz [9]
proposed an approach for outlier detection in under- and
over-invoicing. However, global outliers correspond only to
a small part of money laundering activities. Therefore, more
specific methods have been presented in order to detect local
outliers. In [10], outliers have been detected with peer group
analysis techniques.

Studies in [11]-[13] applied a cluster-based approach
consisting of unsupervised learning techniques such as
k-means [14]. Chen et al. [15] improved existing outlier
detection results with expectation-maximization tech-
nique [16]. Unlike the general approach to cluster the cus-
tomers, Soltani et al. [17] cluster the transactions and detect
money laundering activities according to structural similarity.
In [18], the authors propose a new financial transaction
grouping method using a hidden Markov model and genetic
algorithm.

Another well-known approach utilized in the field of AML
is supervised machine learning. References [19] applied
support vector machines to suspicious activity detection.
Radial basis function neural network has been used in [20].
On the other hand, the decision tree approach has been
applied in [21]-[24]. In another recent work [25], an adap-
tive neuro-fuzzy inference system is adopted for the AML
problem.

Among supervised learning works in the AML domain,
[19], [20] have adopted transaction features such as sum
and frequency of monetary transactions and [21], [24] have
developed models with CRM features. However, there is no
example combining these two characteristics.

In terms of results, recall and false positive rate (FPR)
have been investigated in [19], [20] and they achieve recall
rate between 60% to 80% and false positive rate between 3%
to 10%. Recall and FPR depend on the examined data and
the selected threshold. In order to minimize the effect of the
selected threshold, we examine the area under curve results
as an objective evaluation metric in this paper.

The agent-based approaches are proposed in [26] for the
detection of suspicious activity by heterogeneous agents
called sentinels. In [27], an agent-oriented ontology for mon-
itoring and detecting money laundering process has been pre-
sented. In the same way, a multi-agent system architecture has
been examined for AML problem in [28]. In [29], the existing
multi-agent systems have been extended to combat both fraud
and money laundering, and some remarkable results have
been presented.

FAIS system had tried data science methods and machine
learning. However, due to the low ratio of the number of
money laundering samples to all financial transactions, there
has been a problem of insufficient labelled data for the
machines to learn and train. In order to overcome the prob-
lem of labeled sample deficiency, active learning has been
proposed [30]. Active learning (AL) is about artificial intelli-

VOLUME 9, 2021

gence asking questions. In order to train the models better
and faster, AL identifies samples that require labelling by
AML experts so that future machine-based decisions can be
re-oriented based on information that is more reflective of the
domain and the ontological nature of suspicion.

By representing money transfers as a graph, it is also
possible to adopt graph mining methods to AML. Clustering
techniques can be used to partition the large graph into the
explainable sub-graphs [31]. It is possible to identify the
suspicion of the sub-graph using methods such as the ones
described in [32]. Frequent sub-graph mining [33] inspired
by frequent itemset mining techniques are also applicable to
the AML domain. Moreover, a recent study shows the contri-
bution of using social network data over banking transactions
data to the accuracy of models [34].

Last but not least, in recent years, blockchain transactions
became a significant new area for money laundering. Bitcoin
mixer services are investigated [35] and machine learning is
adopted to detect wallets used by these services [36]. Ensem-
bling anomaly detection techniques [37], accurate results can
be achieved either in fiat currency or bitcoin transaction
networks in determining anomalous wallets. Node2vec and
random walk can be used to create new feature vectors for
nodes, improving the model detection performance [38]. In an
another recent study, different type of gradient boosting and
random forest algorithms have been applied for the detection
of anti-money laundering in cryptocurrency networks [39].

B. TIME-FREQUENCY ANALYSIS

The aforementioned methods utilize two types of features
in data science models; Customer Relationship Manage-
ment (CRM) features and transaction features in time-
domain. In this study, we apply a time-frequency spectrogram
analysis of transaction data for suspicious activity detection
related to anti-money-laundering.

Time-frequency analysis is one of the most potent tools
for time-series analysis and has a wide range of applications
in multiple domains from security to image processing. The
advantages usually arise from the capability of dividing the
signals into numerous components in time and frequency
for additional signal processing flexibility. Many techniques
have been studied in the last years typically differentiate
in the way of changing the signal from time to frequency
domain [40]. Some of the well-known methods that are uti-
lized are: Fourier transform (FT) consists in decomposing a
function into its constituent frequencies, Wigner-Ville distri-
bution, empirical mode decomposition, Gabor transform, and
Wavelet transform.

To the best of the authors’ knowledge, time-frequency
analysis has never been utilized in the context of AML.
The idea presented in this work is to transform transac-
tion data into a 2-dimensional time-frequency representation
and use statistical features of the time-frequency domain,
instead of features of just transactions in the time domain.
Time-frequency analysis can be a powerful tool for AML for
the following reasons: First, it can provide a complete picture
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of characteristics of a single entity and divergence from the
peer group; second, it can be representative of behaviour
changes from a different perspective. It is expected that the
characteristics of routine transactions are much smoother in
the time-frequency domain (respectively, suspicious transac-
tions are much sharper) compared to the time domain or fre-
quency domain investigated alone. Thus, it is also expected
that the time-frequency domain features will be discrimina-
tive for the detection of suspicious transactions.

Ill. SYSTEM MODEL

A simplified block diagram of the proposed system model
is presented in Figure 2. The CRM and transaction database
are used for feature creation. Target variable (suspicious-
ness label) is generated from previously reported suspi-
cious activities. These data sources compose the training
set. Machine learning algorithm takes the training set as the
input and creates the scores for all the cases. According to
a specified threshold, suspicious or clear decision is under-
taken. The novelty in the proposed approach is the usage of
time-frequency analysis and time-frequency features will be
detailed in the following sections.

Q

CRM Machine learning

features

.'“.,‘ Score , sBiciois
: :F'_L‘pllu

Clear

Transaction
features

Time - frequency

features 1 SAR reports

FIGURE 2. System model diagram: The machine learning model (random
forest) uses three types of features; CRM features, transaction features,
and time-frequency features. The model is trained using previously
known suspicious activity. The result of the model is a score between

0 and 1, which is converted into a decision by an optimized threshold.
The threshold reflects the risk tolerance of the financial institution.

A. TIME-FREQUENCY REPRESENTATION

To test the effectiveness of the time-frequency features,
the following model has been built. For each Akbank cus-
tomer, the transactions from each banking channel have been
modeled as a time series. The funds going in and out to any
account of the customer at time ¢ is modeled as T(n). The
incoming funds are recorded as positive and outgoing funds
as negative.

For a time-series of six months of transactions (signal),
x[n], and a time window of w, the discrete-time short Fourier
transform (STFT) is defined as

+o00
STFT (m, w) = Zx[n] x wln — m] x e, e))
—00

Next, the time-frequency domain representation is formed

by moving the three month time window one day at a time
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for the STFT as in Figure 3. For this study, a quarterly sliding
time window is utilized, where the granulization of data is
daily, i.e. daily total incoming and outgoing funds form the
signal. For future work, different granulizations and different
sizes of time windows and their combinations can be utilized.

Taking the FT of each window and combining them pro-
vides the time-frequency representation of the transactions of
a customer, as shown in Figure 4. The figure represents the
transactions of a person, who receives salaries on the 15th of
every month, pays her rent at the beginning of the month, and
spends smaller but random amounts on the remaining days.
The repetitive and uniform structure of the representation can
be clearly seen in the figure.

Feature extraction in this format is in itself a novel
approach, which can be utilized by multiple techniques in
future studies. In this work, as a first approach, we focus on
features that focus on the energy distribution characteristics
as explained below.

B. TIME FREQUENCY FEATURES
The idea proposed in this work is that the time-frequency
characteristics of customers that use their accounts for every-
day financial transactions will be more natural compared to
suspicious people. In order to test this idea, the following
11 metrics of the time-frequency domain representation are
calculated:

1) Mean: The average value of the time-frequency data

points

n=o——r Z Z x(t,f) ©)

t=1 f=—F+1

2) Variance: The variance of the time-frequency data
points

o= —0 Z Z x(t,f)—ul® 3

t=1 f=—F+1

3) Skewness: A measure of asymmetry in the distribution
as an investigation of distance from normal distribution

3
Z Z [x(z, f) ] @)

t=1 f=—F+1

4) Kurtosis: The distribution of energy in the FT to the
tails of the transformation. In other words, it measures
outliers

T F 4
1 [x(@. f) — ul
kurt = m X Z Z T 5)

=1 f=—F+1

skew =
T x 2F

5) Time Sparsity: A measure of sparseness of transactions
in the time domain

F

=y xtf) ©)

f=—F+1
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FIGURE 3. Moving time window of transactions (in USD): The bars represent the daily total incoming and
outgoing funds, the window of 3 months is slid on daily increments.

1, ifx <e
T ’ t =
2i=0 {0, otherwise
sparsity; = @)
T
6) Frequency Sparsity: A measure of sparseness of trans-

actions in the frequency domain

T
X = Zx(t,f) (8)
t=0
5 F 1, ifxf <e
f=—F+1 0, otherwise
sparsityy = )

2F

7) Time-Frequency Sparsity: A measure of sparseness of
transactions in the time-frequency domain

1, ifxr <e
T F ) [,f =
2i=0 Zf =—F+1 0, otherwise

T x 2F

sparsity; f =
(10)

8) Time Discontinuity: The discontinuity of the frequency
distribution as the time-window progress

disct=2 Z x(t,f + 1) —x@,f) (A1)

=0 f=—F+1

9) Frequency Discontinuity: The discontinuity of the
transaction distribution in consecutive frequencies

F T—1
discp = Y Y x(t+1.f)—x(t.f) (12)
f=—F+11=0

10) Time-Frequency Discontinuity: The discontinuity in
the two-dimensional representation

F-1 T-1
> Y xe+1.p)

f=—F+11=0
+x(t, f+1)—2xx(,f) (13)

discy =
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FIGURE 4. Sample normalized time-frequency representation with
90 days of time window: The time-frequency distribution of a normal
customer with expected monthly distributions of fund movements.

11) Entropy: The dispersion of the information content

F T
discy = Z Z —x(t,f) x In(x(t, f)) (14)

f=—F+1t=0

The hypothesis tested in this work is that, the funda-
mental energy distribution characteristics of time-frequency
representation of suspicious and non-suspicious entities will
be different. Using time-frequency features in AML system
improvement is the main contribution of this work, whose
effectiveness is tested in the next sections.

IV. EXPERIMENTS

A. DATA SET

Unlike most of the studies in this area, instead of using
simulated data, the model is tested with real bank data and
actual transactions. In order to build the data science model
based on various features, Akbank transaction and CRM data
for 6.680 customers (who were analyzed in May, 2020) are
collected, where among 1.787 of them was related to SAR
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(Suspicious Activity Report) activities and 4.893 of them
were not deemed suspicious. 6 months of data were analyzed.

B. MODEL TUNING

The whole study has been done on a PC having with 16 GB
RAM and i7-8700 3.2 GHz CPU. Random Forest (RF) algo-
rithm [41] with 100 trees is adopted for the sake of per-
formance and accuracy issues. RF is a machine learning
technique consisting of an ensemble of decision trees. Three
parameters of RF are selected for optimization using simu-
lated annealing (i.e. a metaheuristic technique to approximate
the global optimum):

o Minimum numbers of samples to split (min_split): the
minimum number of samples required to split an internal
node in the random forest

e Minimum number of samples to leaf (min_leaf): the
minimum number of samples required to be at a leaf
node (A split point at any depth will only be considered
if it leaves at least as many training samples as the
parameter value in each of the left and right branches.)

o Maximum depth (max_depth): the maximum depth of
the tree

To investigate the results, the six different cases are con-

sidered as features that are input to the data science model:

1) Training the model with transaction (T) features only

2) Training the model with time-frequency (TF) features
only

3) Training the model with customer properties related
(CRM) features only

4) Training the model with T + CRM features

5) Training the model with TF + CRM features

6) Training the model with T + TF + CRM

Simulated annealing for 1000 iterations has been run for
each feature set for the optimization of min-split, min-leaf and
max-depth. Area under the receiver operating characteristic
curve (AUC) has been adopted as an objective function to
maximize during the optimization. Receiver operating char-
acteristics (ROC) curve represents a true positive rate against
false positive rate. AUC corresponds the area under this curve.
Higher AUC means higher accuracy. Optimum parameter sets
corresponding to each training set are given in Table 1.

TABLE 1. The optimum parameters for different training sets of the
random forest algorithm.

Training| Optimum Optimum Optimum
Set min_leaf min_split max_depth
1 27 30 45

2 8 17 18

3 18 35 54

4 9 10 45

5 4 12 38

6 8 12 36

C. SIZE OF TIME WINDOW
To find approximately an optimum value, a series of trials
have been run setting the time window size as 15, 30, 60,
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90 and 120 days. AUC values for the six models using only
time frequency features are presented with corresponding
time window size in Table 2. Among these trials, the best
AUC value is achieved with 30 days (1-month) time window.

V. MODEL DETECTION PERFORMANCE

A. COMPARISON OF FEATURE SETS

AUC values for the six models having different feature
sets are presented with corresponding time window size
in Table 2. It can be seen that only time-frequency features
and only transaction features provide almost similar perfor-
mance (respectively 80.01% and 80.81%). On the other hand,
a training set with only CRM features gives a more accurate
model with 86.13% AUC. At first glance, we can deduce that
traditional CRM features such as age, occupation, etc. are
more discriminative.

TABLE 2. AUCs for different sizes of time window.

Size (in day) | 15 30 60 90 120 150
AUC (in %) | 80.57 |80.81 |80.34 |79.37 |77.44 |78.56

When time-frequency features are processed with CRM
features, the results (90.39% AUC) are approximately 1.4%
more accurate in terms of AUC comparing to transaction
features with CRM features (giving 88.99% AUC). Thus,
we observe that time-frequency features are more appropriate
for combining with CRM features.

However, we can note that time-frequency and transaction
features have complementary effects and AUC is improved
additional 1.1% (91.49% AUC), once all features are com-
bined. Therefore, the AML model becomes more discrimina-
tive and more efficient in the detection of suspicious transac-
tion detection.

B. 0.5 THRESHOLD CONFUSION MATRIX

Tables 3,4,5,6,7 and 8 present 0.5 threshold confusion matri-
ces of the models trained respectively with transaction fea-
tures only, time frequency only, CRM features only, transac-
tion and CRM features, time frequency and CRM features and
finally transaction, CRM and time frequency features. In the
rows and columns, we present respectively reality (ground
truth) and predictions. As aforementioned, predictions are
calculated according to a 0.5 threshold, i.e. cases having score
greater than 0.5 are considered positive (suspicious). The
ideal threshold value may vary from institution to institution
depending on the risk tolerance and the amount of workload.

TABLE 3. Confusion Matrix of model trained model with transaction
features only.

Prediction
Negative Positive
. Negative 3518 1375
Reality I —pisitive 452 1335

We can observe that the number of positive cases predicted
as positive (true positive: TP) in Table 3 is 281 more than
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TABLE 4. Confusion Matrix of model trained model with time frequency
features only.

TABLE 9. False Positive Rate, False Negative Rate, Precision, Recall and
F-Score comparison according to different training sets.

Training Set FPR |FNR |PPV | TPR |F-Score

Negative Predmtg);smve Transaction Features 28.10%| 25.30%| 49.26%| 74.70%| 59.37%
Realit Negative 4164 729 Time Frequency Features | 14.90%| 41.02%| 59.11%| 58.98%| 59.05%
Y ["Positive 733 1054 CRM Features 23.52%| 20.93%| 55.11%]| 79.07%| 64.95%
Transaction and CRM 18.76%| 19.75%]| 60.97%| 80.25%| 69.29%
Features
TABLE 5. Confusion Matrix of model trained model with CRM features Time Frequency and 11.42%| 25.85%| 70.33%| 74.15%| 72.19%
only. CRM Features

Prediction
Negative Positive
. Negative 3742 1151
Reality  —positive 374 1413

TABLE 6. Confusion Matrix of model trained model with transaction and
CRM features.

Prediction
Negative Positive
. Negative 3975 918
Reality 1 —piitive 353 1234

TABLE 7. Confusion Matrix of model trained model with time frequency
and CRM features.

Prediction
Negative Positive
. Negative 4334 559
Reality  —positive 16 1325

TABLE 8. Confusion Matrix of model trained model with transaction,
CRM and time frequency features.

Prediction
Negative Positive
. Negative 4313 580
Reality  —p; iive 305 1302

in 4 (and equally the number of negative cases predicted as
positive (false positive: FP) in Table 3 is 646 more than in 4).
On the other hand, the number of negative cases predicted
as negative (true positive: TN) in Table 3 is 646 less than
in 4 (and equally the number of positive cases predicted as
negative (false positive: FN) in Table 3 is 281 less than in 4).
Thus, we can note that the model trained with transaction
features are more likely to predict as positive, while the model
trained with time frequency features are more likely to predict
as negative.

We observe the same effects between Tables 6 and 7 com-
bined with CRM features: The number of TP in Table 6 is
more than in 7 and the number of TN in Table 6 is 359 less
than in 7.

CRM features minimize the number of FN and give the
medium number of FP when comparing with transaction and
time frequency features results, as we see in Table 5. Finally,
best results have been presented in Table 8 when combin-
ing CRM features with both time-frequency and transaction
features.
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Transaction, CRM and 11.85%| 22.10%| 70.59%| 77.90%| 74.06%

Time Frequency Features

C. FALSE POSITIVE RATE, FALSE NEGATIVE RATE,
PRECISION, RECALL AND F-SCORE

We calculate the false positive rate (FPR), false negative rate
(FNR), positive predictive value (PPV or Precision), true
positive rate (TPR or Recall) and F-Score for 0.5 threshold
as in (15), (16), (17), (18) and (19).

FP
FPR= — (15)
FP + TP
FN
FNR = —— (16)
FN + TN
TP
PPV = — (17)
TP + FP
TP
TPR = —— (18)
TP + FN
PPV - TPR
F-Score =2+ ————— (19)
PPV + TPR

The results are presented in Table 9. Our findings are

summarized below:

e The best FNR (the minimum value) and the best Recall
(the highest value) are achieved with transaction and
CRM features. This finding conforms to our assumption
(presented in Section V-B) saying that transaction fea-
tures are more likely to predict cases as positive (and
less likely to predict cases as negative). Due to low
probability to predict negative, there is also low error in
negative cases prediction.

e The best FPR (the minimum value) and the best
Precision (the highest value) are achieved with
time-frequency and CRM features. This finding is also
in line with our assumption (presented in Section V-B)
saying that time-frequency features are more likely to
predict cases as negative (and less likely to predict cases
as positive). Due to the low probability to predict posi-
tive, there is also low error in positive cases prediction.

o The best F-Score (the highest value) is achieved with
transaction, CRM and time frequency features. In other
words, positive effect of combining transaction and
time-frequency features is observed in terms of F-Score
accuracy for the 0.5 threshold.

D. TEST SET RESULTS
In order to verify generalization of the predictive
model; CRM, transaction and time-frequency data for
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4.263 customers (who were analyzed in June, 2020 and
not analyzed in May, 2020) are collected and examined as
test set. 995 of these 4.263 people were related to SAR
(Suspicious Activity Report) activities and 3.268 of them
were not deemed suspicious. The results are presented in
in Fig. 6. There are no major changes compared to the
cross-validation results (in Fig. 5). The model with only
time-frequency features and only transaction features provide
an almost similar performance in cross-validation results and
the combination of both features gives again the best AUC
score.

1.0 A

0.8 1

0.6 1

0.4 1 ROC TRX (AUC = 80.01)

ROC TF (AUC = 80.81)

—— ROC CRM (AUC = 86.13)

—— ROC TRX, CRM (AUC = 88.99)
—— ROC TF, CRM (AUC = 90.39)
—— ROC TRX, CRM, TF (AUC = 91.49)

0.2

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. ROC curves AUC (in %) comparisons for different models with
respect to the involved features (TRX: Transactions, TF: Time-Frequency,
CRM: Customer Properties).

1.0
0.8
0.6
0.4 —— ROC TRX (AUC = 78.53)
ROC TF (AUC = 77.71)
—— ROC CRM (AUC = 88.53)
0.2 —— ROC TRX, CRM (AUC = 91.11)
—— ROC TF, CRM (AUC = 91.20)
0.0 —— ROC TRX, CRM, TF (AUC = 92.39)
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6. ROC curves AUC (in %) comparisons for different models with
respect to the involved features in Test Set (TRX: Transactions, TF:
Time-Frequency, CRM: Customer Properties).

E. IMPORTANCE OF TIME-FREQUENCY FEATURES

Mutual Information (also known as Information Gain) is
generally accepted metric for feature importance in data
science solution, first defined in [42]. The mutual informa-
tion of two jointly continuous random variables X and Y is
calculated as

MIX; Y) = f f px.y(x, ) log (””—(”)> dxdy
vy Jx px (X)py (y)

where py y is the joint probability density function of X
and Y, and py and py are the marginal probability density
functions of X and Y respectively.

(20)
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In our case, X represents a feature in the training set and Y
represents its suspiciousness. The relative importance of the
features are shown in Table 10. More important features have
greater mutual information values.

TABLE 10. Comparison of mutual information of the transaction, CRM
and time frequency features.

Rank| Feature Mutual information

(10—
1 AGE 747.35
2 GENDER 671.17
3 IS-COMMERCIAL 631.07
4 RISK-GROUP 613.54
5 OUTGOING AMOUNT OF FUNDS 612.64
6 OCCUPATION 610.09
7 INCOMING AMOUNT OF FUNDS 566.34
8 CUSTOMER-AGE 341.81
9 KURT 279.49
10 | SKEW 276.27
11 ENTROPY 224.76
12 | FDISC 171.43
13 | MEAN 166.06
14 | FSPAR 154.78
15 | FTSPAR 149.48
16 | TDISC 123.29
17 | FTDISC 117.45
18 | TSPAR 76.90
19 | VAR 17.35

CRM features such as age, gender, boolean showing com-
mercial usage of account, risk group, occupation and number
of years of the customer in the bank are among the most
important features. We can deduce that the CRM features
are more discriminating features. On the other hand, these
features can be simply evaluated by analysts at first glance
and can be more commonly utilized features by analysts.
We can also consider these to be the features that most affect
analysts’ decisions, due to their simplicity.

In Table 10, we can observe that transaction features such
as incoming and outgoing amount of funds are as important as
CRM features. However, when combined with CRM features,
the contribution of the transaction features to AUC score
(presented in Section V) are less than the time frequency
features. The reason is the high correlation of incoming and
outgoing amount of funds between them (approximately 98
%). Because of the high correlation, these features cannot
have an additional effect on the accuracy. On the other hand,
time-frequency features are diverse and not all correlated.
Therefore, their utilization in the training set is more produc-
tive in terms of the AUC improvement.

The analysis shows that smoothness-based features such as
Kurtosis and Skewness are more discriminating among the
time-frequency features. These features are essential in terms
of suspicious activity detection, which is in-line with our
assumption regarding the suspicious activity characteristics
that the time frequency distributions of normal activities are
smooth.

As an example of suspicious activity, in Figure 7, an
account behaviour change is shown, where the time-frequency
distribution changes significantly and sharply. The change
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FIGURE 7. Time-frequency plots for sample clear and suspicious cases as a visual for change in account behaviour.

can be seen on the right-hand side of the figure; the frequency
characteristics differ significantly for an account whose con-
trol has been taken by illicit means.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown that adding time-frequency fea-
tures, simplifies the feature selection process and improves
the quality of the data science model. Time-frequency fea-
tures such as mean, variance, Kurtosis, and skewness have
been used for the first time in machine learning model train-
ing for suspicious transaction detection. Therefore, the fea-
ture engineering stage can be shortened by calculating the
proposed time-frequency feature set. This potentially saves
many person-months of modeling studies for the financial
institutions.

The proposed solution has been implemented in Python
and the high-level of accuracy has been proven on real
financial data. The generalized solution can easily be
adapted to detect suspicious transactions in various orga-
nizations. An analysis of actual customer data indicates
that time-frequency features can distinguish between sus-
picious and clear cases, improving AUC and the effi-
ciency of the transaction monitoring system. Among different
time-frequency characteristics, Kurtosis provided the max-
imum differentiation in the model. The gains in accuracy
and the capability of detecting money laundering cases that
were not detectable before can save financial institutions
from regularity fines and HR cost in the order of millions
of USD.

In this work, only a low complexity Fourier transform-
based approach is utilized for frequency domain analysis.
As a future work, the time-frequency analysis can be accom-
plished with other types of linear and non-linear transforms.
There are also potential gains in comparing multiple win-
dow lengths, increment sizes and making the analysis in

VOLUME 9, 2021

multiple banking channels (such as ATM, Branch, Web).
Also, the same analysis can be extended to investigate the
characteristics of networks rather than single entities. In par-
ticular, when a customer has multiple accounts in multi-
ple banks, the whole picture can only be analyzed by the
FIUs. Therefore, repeating this study with additional FIU data
would be beneficial as well. Hence, time-frequency features
have numerous potential future uses in the area of financial
behaviour analysis.
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