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ABSTRACT Online learning platforms, such as Coursera, Edx, Udemy, etc., offer thousands of courses with
different content. These courses are often of discrete content. It leads the learner not to find a learning path
in a vast volume of courses and contents, especially when they have no experience in advance. Streamlining
the order of courses to create a well-defined learning path can help e-learners achieve their learning goals
effectively and systematically. The learners usually ask the necessary skills that they expect to earn (query).
The need is to develop a recommender system that can search for suitable learning paths. This study proposes
a multi-objective optimization model as a knowledge-based recommender. Our model can generate an
appropriate learning path for learners based on their background and job goals. The recommended studying
path satisfies several learner criteria, such as the critical learning path, number of enrollments, learning
duration, popularity, rating of previous learners, and cost. We have developed Metaheuristic algorithms
includes the Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), to solve the proposed
model. Finally, we tested proposed methods with a dataset consisting of Coursera’s courses and Vietnam
work’s jobs. The test results show the effectiveness of the proposed method.

INDEX TERMS Learning path, Knowledge-based recommendation, Knowledge graph, multi-objective

optimization, compromise programming, genetic algorithm, ant colony optimization algorithm.

I. INTRODUCTION

A. RESEARCH CONTEXT

Currently, the speed of knowledge expansion is breakneck.
Therefore, learning styles also need to be adapted to increase
efficiency. Online learning and Massive Open Online Courses
(MOOCs) are revolutionizing education [1]. Many compa-
nies offered online studying platforms, such as Coursera,
Udemy, EdX, Udacity. They allow the course providers to
publish their online courses in many areas. It opens up
unprecedented learning opportunities for learners. However,
it is difficult for learners, especially those who are diffi-
cult to get experts advice, may not find a suitable learning
path among many different courses and content. Therefore,
the task is to advise learners in an appropriate direction
based on their aspirations about skills, nevertheless satisfying
learners’ available constraints. Selecting the right courses
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to compose a suitable learning path is a complicated task.
It requires considering the relationship between the courses
and the student preferences in recommendation model devel-
opment.

The recommender takes the required skills and knowledge
(learning outcomes or objectives) of the job(s) and existed
skills/’knowledge of the learner as the input. It then searches
for the learning path, which is the set of courses and their
order in the path. The recommended learning path contains
at least learning outcomes matched to the job query as the
output. The learners need evaluations on their current pro-
ficiency by experts before the pathway counseling process.
After both, the starting point (current level) and the target
(expected level) have been determined, the system can create
alearning path that meets the student’s expectations, as shown
in Figure 1. For example, to work as a java web devel-
oper, learners need to know ‘“‘object-oriented programming,”
“java programming language,” “Web design,” ‘“‘java web
framework.” A roadmap consisting of dependent courses like
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FIGURE 1. Learning path recommendation system.

“OO0P with Java,” ““Java Web application development” can
be consulted, and independent courses like ‘““front-end web
development.”

The learning path search problem involves the courses and
their dependencies, learner preferences, and recommendation
criteria to indicate the solutions. These signals tell the recom-
mender is in the forms of Knowledge-based Recommender
Systems [2]. It is not easy or suitable to apply traditional
recommender techniques such as content-based filtering or
collaborative filtering [3]. Fortunately, we can explicitly iden-
tify the good recommendation for the learning path due to a
clear understanding of affected criteria to the learner’s learn-
ing conditions. This research aims to build a recommender
engine as an optimization solver that can generate a suitable
learner route.

B. PREVIOUS RESEARCHES

Many researchers are working to build a learning path con-
sulting system for online learning. They came up with many
different strategies, but they can be categorized into two
groups: (1) data mining-based techniques and (2) knowledge
graphs. Based on data mining, the researchers often seek
to detect similarity points between factors in the system,
such as learner or material, to make recommendations. These
recommendations can be a learning path or a solution to
improve learning efficiency. Wong and Looi [4] introduced
an ant-colony algorithm to find a learning path for the learner.
They compute the similarity levels between individual alumni
and the current learner to make recommendations for the
target learner. Hsieh and Wang [5] introduced an e-learning
System that can create a relationship hierarchy of learn-
ing materials to create a learning path using data mining.
Jugo et al. [6]. developed an Intelligent Tutoring System
with four core modules for learning path recommendation.
It allows users to interact with the system without using
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Data Mining interfaces. Tam et al. [7]. introduced a learning
path recommendation system based on concept clustering
and heuristic-based search algorithm. Chen [8] constructs a
personalized e-learning system that can generate appropriate
learning paths by mining the individual learner’s pretest and
learning performance data. Tang and McCalla [9]. used the
Nearest-Neighbor search to recommend the papers for users.
Hsu [10] uses content-based filtering, collaborative filtering,
and data mining techniques to analyze the students’ reading
data for recommending the reading lessons. Many studies use
data mining, ignoring the relationships between the courses,
people and learning paths, and other learners’ interested cri-
teria. This leads the generated recommendations are often
redundant or sometimes unrelated to the needs of the learners.

Besides the data mining—based approach, another approach
uses knowledge graphs for applying these dependencies to the
learning path recommendation model. The knowledge graph
can be formed by the learning outcomes from the curriculum
as shown in Figure 2. This method pays more attention to
the dependence on learners’ level/perception. It can come up
with solutions closer to learners. The learning path consulting
process is like a decision-making process when the learners
are decision-makers with their concerns. Kurilovas et al. [11].
recommend the learning path by the sequences of learning
objects according to learners’ preferences including their pre-
requisite knowledge level, learning path, learning object, and
learning style. The proposed method is sufficient to search
for the learning paths. However, their research does not treat
the recommender as a decision-making process with many
considerations from the decision-makers, here the learners.
Wan and Niu [12]. created a recommender for learning paths
based on the graph where its vertex is knowledge units.
Shmelev et al. [13]. represent the learning path as the learning
outcomes sequence, using a genetic algorithm to generate
the paths. Zhu et al. [14]. introduced a multi-objective opti-
mization (MOP) for learning path recommendations where
they have used linear Scalarizing to approach the MOP. They
take into account many goals to construct the recommended
learning path. However, these objectives are not to fully cover
the different aspects surrounding MOOC:s such as cost, rating
of community, and popularity in recent. Shi et al. [15]. devel-
oped a recommendation model based on a multidimensional
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knowledge graph where nodes in the same dimension repre-
sented by inner-class relationships. Intra-class relationships
connect these dimensions. In comparison to previous studies,
the authors added a hierarchical structure in the interdepen-
dence of learning outcomes. However, their search problem
did not involve the relationships between learning outcomes
and courses, which will expand the search space.

The use of knowledge graphs allows thorough matching
of knowledge required with the learning path. However,
the proposed models are built on aspects that are not in
line with the MOOC Courses advisory context. Learners
who study with MOOC have several concerns, such as crit-
ical path, learning effort, and cost. The advisory systems
merely indicate the skills to be acquired, but the guide to
approaching these skills not included in the recommenda-
tion package. Previous learner assessments also played an
important role in assigning the course to the learning path.
Each learner has different learning needs. Hence providing
a useful decision-making tool that allows them to consider
various options when finding a suitable learning path in both
cases that learners may/may not indicate their preferences is
also not adequately considered. Based on summarizing the
previous study, we construct a multi-objective model as a
knowledge graph-based recommender model for MOOC’s
learning path.

The learning path recommendation is classified as both
combinatorial optimization and NP-Hard problem [16]. It is
not easy to use an exact algorithm to solve the problem, but
metaheuristic algorithms [17]. For example, Zhu et al. [14].
designed a Genetic Algorithm to solve multi-criteria opti-
mization for proposed recommender. Zhao er al. [18].
developed an Ant Colony Optimization Algorithm for Rec-
ommendation of Micro-Learning Path. Due to the different
objectives and constraints of the proposed model. It is no
possibility of applying the existing algorithms to our problem
directly. Therefore, we design the new schemes of Meta-
heuristic to construct the recommender. We also implement
algorithms to perform parallel computations on multiple pro-
cessing cores.

C. CONTRIBUTIONS

In this study, we present an approach to construct a learn-
ing path recommendation system at MOOC. This recom-
mender is essentially a multi-objective optimization model.
The model works based on the knowledge graph to show
the linkages between learning outcomes and course depen-
dencies in model designing. We use a combination of linear
scalarizing approach and compromise programming for the
proposed MOP. It allows the consultation process to become a
decision-making process. The learner is a decision-maker and
can express his or her preferences on different goals by defin-
ing the weights to determine the objectives’ impacts via the
distance function. The objective functions (including learning
critical path, learning effort, average rating by the community,
the recent number of enrollments, cost) are built around the
purpose of recommending appropriate MOOC courses for
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learners according to different learning scenarios, instead of
drawing the graph of needed learning outcomes. We designed
a Genetic Algorithm and Ant Colony Optimization algorithm
to solve the proposed model. We use data collected from
Coursera to evaluate our algorithm.

This study benefits researchers and engineers to develop
a better advisory system for studying at MOOC. When the
research results are widely deployed, it is possible to improve
learners’ learning abilities and opportunities. Play a role in
promoting the quality of human resources in society. The rest
of this paper is organized as follows. The proposed model
and algorithm are respectively described in Sections 2 and 3.
To evaluate the proposed approach, we display the experi-
ments and discussion in Section 4. Finally, section 5 offers
a conclusion.

Il. PROPOSED RECOMMENDATION MODEL

A. MULTI-OBJECTIVE OPTIMIZATION MODEL

To determine the goals, learners need to specify the jobs they
want to achieve. Each job has been tagged with required
learning outcomes—each course matched with learning out-
comes that it provides to learners and other decision criteria
when completing. The recommendation model can be formu-
lated as:

We denote C as the number of available courses.

S is the number of available learning outcomes.

P represents the set of predefined jobs (user can choose one
or more jobs).

B is the budget of the user.

R={rpslrps{€ 0,1}, p=1...P, s =1...§8}is amatrix
to represent the required learning outcomes of the jobs, where
7p,s = 1 means the learning outcome s™ required by the job
p™ and r, ; = 0 otherwise.

O = {oplo, € {0,1},p = 1...P} is a vector that
represents the registered jobs of the user, where 0, = 1 if
the learner register for job p™ and op = 0 otherwise.

V = {vlvs € {0,1},s = 1...S} defines a vector that
illustrate the learning outcomes that the user achieved before
the learning process, where v = 1 means the user already
gained learning outcome s and vy = 0 otherwise.

L={sllcs€{0,1},c=1...C,s =1...S5} describes
the adjacency matrix, where /. ; = 1 determines that course
¢ provide learning outcome s” and . ; = 0 otherwise.

H = {h.|h € R, c = 1...C} where h. denotes the
averaging rating of the community on the course c””.

0 = {qclgc € NT,c =1...C} where g is the number of
recent number of enrollment of course ¢,

P = {p:| € Rt,c = 1...C} where p, is price of course
ch,

Z = {zijlzij = {0,1},,i = 1...C,j = 1...C}
is adjacency matrix to present the knowledge graph, where
zij = 1 indicates that learning outcome i must be archived
before learning outcome j* and z;, j = 0 means they have no
dependency.

K = {kclk. € Nt ¢ = 1...C} is the advertised duration

to complete course ¢,
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Denote X as the decision variables to represent a adjacency
matrix of a directed graph for the recommended learning path.
Where X = {x,-,jlx,-,j e{0,1},i=1...C,j= 1...C}with
x;; = 1 shows that course i starts before course j” and
x; j = 0 means they have no dependency.

D is the set of vertexes of the graph represented by X.
In other words, D presents the set of course that recommend
touser. D = {d.|d. € {0,1},c = 1...C} whered, = 1

if course ¢’ is a vertex of graph represented by X, d. = 0
otherwise. 1 l
T = {1870 ¢ Nt ¢ = 1...C,} presents the

i : let
actual time user complete the courses with 7”7 "¢

the time when the learner complete course ¢

denotes

tcomplete _ -1 lf dC =0
c - complete

to >0 otherwise

The objective functions declared as follows:

o Minimizing the critical learning path for the learners
who need to complete the learning path in the shortest
time. This is targeted to the expectation of learners who
need the achievements urgently.

minimize

fi (X)

C
= max <<1 — min (1, > xc,d> *dc) * tf.amplet‘>
c=l...c d=1

+ Minimize the learning time. This aim to save total the
effort of studying.

C
minimize(fs (X) = Z d. * ko)
c=1

o Course with higher ratings have a higher chance of
being recommended. Community assessment is one of
the essential criteria to determine course quality.

Y de h,:)
Yo de

o Courses with a higher number of recent enrollments
have a higher chance of being recommended. The course
has many students demonstrating it as a quality course.
However, to avoid the domination of courses that appear
first in the search process. We only consider the number
of enrolments within a defined period.

chzl de CIc)

C
c=1 dC

maximize (f3 X) =

maximize (f4 X) =

o The learning path consists of lower-cost courses that are
gotten a higher chance of being recommended.

c
minimize (f5 X) = Z de * pc>
c=1

The recommended learning path must satisfy the below con-
straints:
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o Courses must be organized according to the dependen-
cies of the learning outcomes defined in the knowl-
edge graph. One cannot enter the course contains entry
requirements that he/she does not archive in the com-
pleted courses.

Vi=1...S,¢=1...C (COy)

a = {afla§ € {0,1},i=1...5}
e = {eflef € {0,1},i=1...5}

I; is vector row i of the matrix L.
z; is vector column i”* of matrix Z.
x; is vector column i of matrix X.
e = combine (., z;)
i=1...s

a“ = combine( combine (l;), V)
=l...c,d#c

where C = combine(A, B) iff |A| = |B] = |C| and
Ci=max(A;,B))Vi=1...|C|

o The qualifications of the registered job must be met.
After the recommended courses are completed, all of the
learning outcomes to satisfy the query must be reached.

rps < max ( max (dc * lc,s) , vs>

c=l...c
Vp=1.Ps=1...S (CO,)

e The total cost for the courses should not exceed the
budget.

C
ch *p. < B
c=1

B. APPROACHES TO MoP

There are two major approaches to the multi-objective prob-
lem [19], no-preference, and preference. One says that there
is never one best approach to all types of multi-objective
mathematical programming problems [20]. In this section,
we present the approach we use to take the problem of
single-objective optimization problem.

(CO3)

1) COMPROMISE PROGRAMMING

Compromise programming is a well-known non- preference
approach for MOP. It works based on an assumption that no
decision-maker exists. Instead of asking the decision-maker
to assign a priority to each goal, an expectation point is
chosen [20]. The mission of the model now is to find the
solutions closest to this expected point. We have been success
used compromise programming for our MOP in the team
selection problem [21] and task assignment problem [22].
For the considered problem compromise programming is
described as follows.

E = {E;|i= 1..5} denotes the expected point. Where:

E=0 Vi=1,2,5

VOLUME 9, 2021



N. T. Son et al.: Meta-Heuristic Algorithms for Learning Path Recommender at MOOC

IEEE Access

E=Y" h
Ey = chzl qc

O = {0;]i = 1..5} denotes the actual solution. Where:

0i =fi (X)

The objective functions can be rewritten as:

5
> (Ei—0)?
i=1

Vi=1...5

minimize (distance (E, O)) =

2) LINEAR SCALARIZING

Compromise programming can be seen as an equally impor-
tant goal. However, in this situation, the learners completely
determine the preference for each of their goals. So we use
linear scalarizing a preference-based method to transform the
problem on a single-objective problem, which is similar to
Zhu et al. [14]. The objective functions can be reformulated
as follows:

5
minimize (Z (w; * f; (X)))

i=1

where w; € R* is the weight parameter of the objective i’

To reuse the good characteristic of both methods. The
weight parameters are added to the dimension of decision
space in compromise programming instead of parameterizing
the objective function [23]. The distance function’s size is
influenced by spatial dimensions, to be manipulated by the
weights of each dimension:

minimize (obj = (distance (E, O)))
5
Z w; * norm (E; — 0,~)2
i=1

w; € RT now is the weighted parameter of the dimension
™ in the distance function. norm denotes the normalization
function that used to rearrange the values of the dimensions
to the same range.

IIl. PROPOSED ALGORITHMS

A. GENETIC ALGORITHM

Evolutionary algorithms (EA) are widely used as stochastic
methods [24]. The genetic algorithm (GA) is one of the most
popular in the EA family due to its speed and efficiency.
The algorithm mimics natural selection, in which the fittest
individuals are chosen for reproduction to produce the next
generation’s offspring. Here an individual represents a poten-
tial solution to the problem. The flow of the proposal is shown
in Figure 3.

The fi (X) aims to minimize the learning critical path.
This is the form of the makespan problem [25]. There are
many solutions to this problem, but the simplest one is to
consider learning path X as a graph. The two fakes nodes
added are Head and Tail (the last node) with a duration equal
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FIGURE 3. The flow of proposed Genetic algorithm.

to 0. The problem transformed to single start and ended
problem. Finally, the critical path/makespan is computed by
any traverse method such as Breadth First Search (BFS).

The genetic algorithm’s scheme can be described as fol-
lows:

o [ denotes the number of generations to stop the algo-
rithm.

« £ is the population size (number of individuals in the
same population).

« § stands as the mutation rate.

o« 08 = {Hl(g), Qz(g), . ,9£(g)} denotes the population with

£ individuals at g generation.

Where Gi(g) = {91(‘?, Gl(g), el Ol(gc)} is an individual of
the population at g generation. The element Gl(fr)l dox =
{0,1,...,C}Vindex =1...C.

The index represents the order of course that appeared in
the learning path. The course index-th is only considered
to learn after courses that appear in front of it in Ql.(g ) ,only
if it contains any dependent learning outcomes to these
courses. 0 indicates that there is no course delivered at
the slot. If the learning path contains ¥ courses, we have:

0®  _ ief{l...C} ifindex <
bindex =1 () otherwise.
o I, is the row s of L.
o A is selection rate.s
« 17 is the exchange rate of gens between Gi(g) and Qj(g)
e 1y is the column vth of R
. . ) 1if COjisvalid
o is Respect (i) = 0 otherwise Vi=1...3
o dump; =1Vi=1...5

2
©) & 5 Ei—0;
° gig fitness = \/Zi—l Wi * <dump[)
o g = 1is the current generation.
« wis rate of elites of the population.

The algorithm contains 6 steps:

1. Initialize the first population
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1.1. Randomly generate Qi(l)‘v’i =1...£

1 .
91.()]-) = rand (ls,j, Vs, rx) Vi=1...C

where: r and (ls, Jj» Vs rs) randomly returns a course.

j € (1...C)randomly.
P
ifvy=0A (Z Fsp = 1)

A is Respect (1) =1
0 otherwise

rand (ls’j, Vs, rs) =

2. Selection.
2.1 keep A * £ individual that return the best fitness for
next-generation.
22 b8 = .n}in£Dl(4g).ﬁtness
2.3 dump, = E; — Ojif g = 1Vi=1...5
3. Crossover. Create £ * (1 — A) remaining individuals for
the next generation. The following steps repeated until
population at generation (g + 1) fully constructed.

3.1 Rearrange #® in descending Qi(g) fitness order.
3.2 Declare Elite as the set contains top £sw items of 6%
Randomly choose 0% 9%® from Elite.

‘father® Y mother
3.3 Update ij-a’?her, fogther by a rate, denoted as ran.
Where: ran = rand([0, 1]) return a random proba-
bility.

3.3.1 If (ran < n) Randomly exchange a gen with value
1 of Q;ft)her and 0,(7‘15’0)”’” to each other to create two

new individuals for the next generation.
332 If (n < ran < §) perform mutation on G;Z)her or

Q,fgther (Described in step 5) to create two new

individuals for the next generation.
3.3.3 Otherwise consider Hf(agt)her and B,Efo)lher

individuals for the next generation.
3.3.4 Repair new created individuals. The Repair pro-

cess described in step 4.

as two new

4. Repair: this phase take an individual & as the input.
It contains 3 stages:

4.1 Rearrange: & to isValid(1) = 1.

4.2 Fix: generates new genes of £ to Z?:l isValid (i) = 3.
If there is not possible to fix £ (no solution) then
& = 0. Remove £ from its population.

4.3 Refine: Remove redundancies of the individual &.

5. Mutation: takes an individual £ as input.

5.1 Randomly exchange a selected course in & with its
most similar course based on learning outcome they
provide.

5.2 Repair &.

6. Repeat2,3,and 4,5 and set g = g+ 1 until b% = p8~! =
L= b5h
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B. ANT COLONY OPTIMIZATION ALGORITHM
The ant colony optimization algorithm is a technique to
solve optimization problems. Using the multi-agent popula-
tion (artificial ants) can find the right paths on the graphs.
Here, the ants are inspired by the behavior of real ants. They
communicate with each other using the pheromone [26]. The
basic flow of the ACO is illustrated in Figure 4.
1. Initial LOs goal:
1.1 Let G = {g; € {0,1},s = 1...S} is a matrix to
present the learning outcomes user need to archive
1.2 Update g; = 1 with the learning outcomes 7, s = 1
that the registered jobs of user o, = 1 required
1.3 Update g; = 1 with the learning outcomes {i} must

be archived before learning outcome g; = 1 in
knowledge graph z; j = 1
1.4 Repeat 1.3 until every learning outcomes gz = 1

required are in G
1.5 Remove learning outcomes user archived before
lifvi =0and g; =1
0 otherwise
2. Generate the ant colony and initial cost matrix and
pheromones matrix:

2.1 LetA = {apc e Nm=1...M,c =1...C}is
a matrix of learned course each ant, where a,, . > 1
mean course ¢ is the a'}! . course that m™ ant learned
and a,, . = 0 otherwise

2.2 Let Fitness = {fitness,, € RT,m = 1...M}isa
matrix to present fitness values of each ant

2.3 Let Cost = {cost. = \/ S (Ei—f(C)2 i =
1...5,¢=1...C} is a matrix to present cost of an
ant to learn ¢ course

24 Let Ph = {ph;; e RT,i=1...C,j=1...C}isa
matrix to present density of pheromone on trial i —
Jif i # jand nest — jif i = j, default will be
phij=0.1

3. Update trail and compute fitness for ant ay,:

learning g =

3.1 Let GX = G is a matrix to present the learning
outcomes the ant need to archieve left

3.2 Let LOH = {lohy € {0,1},s = 1...8} is a matrix
to present the learning outcomes ant currently have
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3.3 LetCR = {cr. € {0, 1},c = 1...C}isanadjacency

matrix of recommend courses to ant’s current course
sth

", with cr, = 1 if LOH satified learning outcome
of course ¢
3.4 Calculate probability of each course

o 1 B
p hc’ ,c " cost,

1 B
Z (ph?’,i*custi )

cri=1

cre =1:prob, =

3.5 Random rd € [0, 1) to choose course cr. = 1 with
cumulative distribution and update gx; = 0, loh; =
1, ap. = 1if course ¢’ provide learning outcome j

3.6 Repeat3.3 until gx;, =0Vs=1...§

3.7 Remove unnecessary courses from trail a,,

3.8 Compute fitness of trail

. 5 Ei—0;\°
ap : fitness,, = \/Zi=l w; * (W)
4. Compute dump value with ant m™ fitness, =

min(Fitness): dump; = E; — f(am);Vi=1...5
5. Repeat these step until fitness converge:

5.1 Recreate matrix A and repeat 3

5.2 Decrease pheromones on every trail ph; ; = (1 — p)x*
ph;Vij=1...C

53 Let INC = {incy = & m=1...M} is a
matrix to present the increased amount of pheromone
by m™ ant

5.4 Increase pheromones on trails i — j for m™ ant
phij = phij + inc,Nm = 1...M,Vi,j = 1...C
if ap;i+1=ap;&i,j>0.

C. PARALLEL SETTING FOR PROPOSED ALGORITHMS
Parallel processing is the most effective choice for tackling
costly computations in MOP, especially with the cost reduc-
tion of high-speed multi-core processors [27]. To set the
parallel running for both algorithms. We re-implement the
computation of the particular agents that run on independent
processing cores. The computations of each agent are consid-
ered tasks. Tasks are stored in a queue. Processes de-queue
elements to process until the queue is empty. Most agents are
doing the heaviest computation. Some other tasks need to be
performed sequentially because it has to wait for all agents to
finish before synthesizing information. The expected compu-
tation speed is a linear decrease in proportion to the number
of cores used. The parallel setting for GA can be implemented
by using different cores for each individual’s genes selection
process. The parallel setting for ACO is implemented by
adding the asynchronous context to the exploration of the
individual ant. The detail of these parallel schemes shown in
Appendix A and B.

IV. EXPERIMENTS

A. EXPERIMENTAL DESIGN

To conduct experiments to evaluate the proposed model and
algorithm. We crawled data of more than 169 courses from
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TABLE 1. System configuration for experiments.

Item Info
CPU Intel(R) Core(TM) i9-9900KF CPU @
3.60GHz, 12 cores.
RAM Corsair Vengeance LPX 16GB
Programming Platform Python 3
Operating System Window 10

2= S, ResT A
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FIGURE 5. Learning outcomes required by the job “Junior Web Dev
(Laravel or Nodejs)".

Coursera. We can gather the average rating for the dataset
by a web crawler. The older courses that have been pub-
lished for a long time can dominate the latest with a large
number of enrollments. We re-crawl the data after 30 days
to count the number of registrations over a recent period.
Identifying about 342 learning outcomes and the relationship
between them is arduous work. The reason is we didn’t have
an efficient mining tool to collect these data automatically.
Therefore, all of the learning outcomes are determined and
adjusted manually from the syllabus, course description, and
course tags.

The topics of collected courses revolve around the field of
software engineering. We collect 18 job calls related to soft-
ware engineering, such as business analysis, back-end Java
engineer, project manager, and the most famous recruitment
portal in Vietnam. The Job descriptions list the required skills.
However, we also need to match these requirements with the
learning outcomes archived manually. The entire e-learner is
assumed to be without any initial knowledge. We use this
data in the parameters selection section and leave the weights
for the objective functions equal. To test the model with
different weights of the criteria according to decision-maker
preferences, we clone 12 courses with better value for specific
objectives. This is due to a lack of data collection. The courses
that we have gathered are not diverse according to the criteria.
Both GA and ACO are implemented in the computer with
detailed configuration as shown in Table 1. We evaluated
both of the proposed algorithms on the tested dataset.

B. RESULTS

A series of parameters govern both GA and ACO. We exe-
cute the algorithm several times with the collected dataset
to indicate the best set of parameters shown in Table 2.
Part A of the table displays the parameters to run the GA.
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FIGURE 6. Outputs of 15 executions of GA and ACO. a) Objective values generated by different mode of GA and ACO. b) Execution time to complete
the execution of different mode GA and ACO. c) Fitness values at the last generation of GA. d) Fitness values at the last loop of ACO. e,f,gh,i)
illustrates the objective values returned by f, , f,, f5, fy, f5 to corresponding execution.

TABLE 2. Parameters to execute the algorithms.

A) OBTAINED PARAMETERS FOR GA.

Parameter Value
Number of population 8 03*C
Exchange genes rate 1) 0.6
Mutation rate & 0.3
Selection rate A 0.1
rate of elites w 0.5

B) OBTAINED PARAMETERS FOR ACO.

Parameter Value
Influence of pheromones o 1
Influence of objective 5
Vaporation rate p 0.01
pheromone strength Q 0.0005
number of ants M 200

The remaining part illustrates the parameters of the ACO.
Meta-heuristic algorithms do not guarantee to find the opti-
mal solution with different initialization values. Therefore,
we run the algorithm 15 times with other initial solutions
to find a learning path to archive the job of “Junior Web
Dev (Laravel or Nodejs)” for a newbie. Figure 5 shows the
required LO in the knowledge-graph of the tested job. It has
been chosen to illustrate algorithms’ results because there are
a few paths to meet the required learning outcomes.

The outputs of both algorithms over 15 executions for
the selected job are shown in Figure 6. Both algorithms
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are designed to prioritize the search for courses that con-
tain more learning outcomes related to queries. It can be
observed that the fitness values of both algorithms do not
change much over different executions. The objectives val-
ues (with norm(x) = x) brought between the runs of GA are
equivalent to ACO. ACO finds better critical paths (f; values)
and less learning effort (> values) than GA, while the other
indicators are similar. f5 values are exactly the same because
the collected courses are charged 45$ per month. These
results show the stability of the algorithms on the selected
sets of parameters.

The processing time of ACO (average of 361.8667 sec-
onds) is 6.68 times slower than that of GA (average
of 54.86667 seconds). The computation speed is improved
significantly when using 6 processing cores for both algo-
rithms. The computation speed increases rapidly while main-
taining the solutions’ quality. The parallel mode’s execution
time of the algorithms are improved according to the num-
ber of cores used, as shown in Figure 7. The graph is not
linear because of several steps of 2 algorithms implemented
synchronization.

Figure 8 illustrates the change (ability to converge) of
Fitness values across the loops to both GA and ACO. We can-
celed the stop condition of the algorithms so the algorithm
can run up to 200 loops. It can be seen that GA archives its
best solution after 75 loops. ACO takes 165 loops to gain the
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FIGURE 7. The processing speed of the proposed algorithm improves
proportionally with the number of processing cores used.
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FIGURE 8. Fitness values generated by GA and ACO over generations.

solution. The convergence of both algorithms can be similar
(slope of the graph than GA. This leads to its slower execution
time. We do not directly compare the values of these two
target values. Because even though they use the same norm
function mechanism. The dump; values obtained from the
first loop of each algorithm are different. Therefore, the scale
of the fitness values is also different. These ranges even vary
on different runs.

We illustrate two generated learning paths by GA and ACO
graphically in Figure 9. The start and end nodes are two arti-
ficial courses used to transform the graph into a tree (single
rood and single leaf), as mentioned in this paper discussing
the critical path computation.

The results of the algorithms vary with each goal to be
achieved. We conduct an algorithmic evaluation of 18 jobs
as the query. Their results are shown in Table 3 and Table 4
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FIGURE 9. A) learning path generated by GA. B) learning path generated
by ACO.

(The algorithms are executed in parallel mode). For most
of the jobs that contain a single path to be archived, both
algorithms provide the same solutions. However, GA was
slightly better than ACO when dealing with jobs that exist
more than one path. GA has absolute dominance in terms
of processing time. The comparison of objective values and
execution time between both algorithms in different modes
shown in Figure 10. It seems that GA’s approach of discovery
is similar to the tracking possible agent paths in ACO for
the tested dataset. When a query contains more than one job,
it also means that the search space increases rapidly. We com-
bine jobs to do queries that test both proposed algorithms in
different modes. Tables 5 shows the two algorithms’ results
when dealing with a query containing 2 to 18 jobs using
parallel mode. ACO and GA give a similar quality of the
solutions when the query’s complexity increases. Although
both algorithms having the same mechanism towards courses
covering the most LOs tend to be recommended. It leads to
GA gives similar objective values to ACO in most cases. The
processing time of GA is overwhelming compared to ACO.

This gap is even greater with more complex queries as
shown in Table 5.

To check if the two algorithms can obtain an optimal
solution when the search space is small. We run the test
on a smaller dataset. It includes 40 courses adapted for the
query of “Junior Web Dev (Laravel or Nodejs).” We com-
pare both GA, ACO with a brute force algorithm installa-
tion. Table 6 illustrates the results of both implementations.
The proposed GA and ACO also got an optimal solution.
Meantime, the time execution was much better than the
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TABLE 3. Outputs of GA for corresponding jobs.

Number of Number
Job Fitness | Objective fl 2 3 4 s Required mf Time
Value value Archived (s)
LOs
LOs
Python for Data Science | 1.7003 | 16768650 | 12.76667 | 21.36667 | 14.8 611701 | 121 16 16 3
PHP Developer 2.0209 | 16959640 12.6 239 | 267 420711 | 294 24 28 15
(Laravel)
Fresher Frontend 1.9273 | 17281381 16 19 17 98970 | 196 12 22 14
ReactJS Developer
ReactJS Developer 1.8338 | 17253893 10.5 115 | 129 126458 | 147 9 9 13
Junior Web Dev 2.1514 | 16850780 17 574 | 357 529571 | 392 37 43 15
(Laravel or Nodejs)
Backend Developer
(Golang/NodoJS) 2.133 | 16910855 18 773 | 438 469496 | 490 37 39 20
Backend Developer 106.5666
(PHP. Go) 2.1616 | 16718090 22 2| 623 662261 | 686 46 57 25
Frontend Dev
(ReactJS/JavaScript, 1.6381 | 17030443 14 348 | 263 349908 | 294 19 31 14
HTMLS5)
Web Developer
(Angular, NodeJS, 2.0018 | 16746465 17 585 | 41.1 633886 | 441 34 46 16
Python)
Jr/Sr Backend NodelJS
JavaSeriptyMySOL) 2.1201 | 16662998 21 613 | 443 717353 | 490 40 48 20
Java Core Developer
(MySOL Linax) 22361 | 16515938 66.37 175.12 | 518 864413 | 588 43 58 23
g‘zg‘c‘;gava Devi(SQL, | 9951 | 17303354 66.37 111.74 | 33.1 76997 | 392 30 49 22
é‘g’i;)evel"per (Java, 2.0073 | 16211307 18 84.05 | 599 | 1169044 | 686 31 67 27
Java Web Dev (Spring, | 515 | 17272697 125 3157 | 254 | 107654 | 294 ) 31 23
JavaScript)
Java dev 20691 | 16220460 245 7532 | 408 | 1159891 | 490 46 62 35
2:;3;; Dev (3 years 2.0704 | 16439912 22.81 70.08 | 444 940439 | 539 43 72 28
Fullstack Dev (Java, 1.774 | 16515581 13.15 4319 | 318 | 864770 | 343 21 37 21
JavaScript)
Java Developers 22361 | 16467632 2281 7108 | 448 | 912719 | 539 41 70 30
(JavaScript, Spring)
1e7 A B
— GA single —— GAsingle
1.72 ACO single 600 ACO single
GA parallel GA parallel
170 —— ACO parallel so0l ACO parallel
é 1.68 _. 400
g 1.66 E 300
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FIGURE 10. Comparison of proposed algorithms outputs on different query. A) Objective value, B) Processing time.

Exhaustive search. All algorithms are executed in parallel
mode.

Decision-makers can customize the results according to
their preferences by changing the distance function’s dimen-
sions’ weight parameters. Table 7 shows the different val-
ues of objective functions according to the different sets of
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parameters. The order of the parameters is listed in the order
of objective functions defined in section 3. The order of
the parameters is listed in the order of objective functions
defined in section 3. The range of values of the values in the
5 dimensions of space for decision making is different. So if
using a weighted value that is too small does not make a dif-
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TABLE 4. Outputs of ACO for corresponding jobs.

Number Number
Job Fitness | Objective 1 f2 f3 4 5 of of Time (s)
Value Value Required .
Archived Los
Los
Python for Data 1.899 | 16768650 | 12.76667 | 21.36667 | 14.8 | 611701 | 121 16 16 30
Science
PHP Developer 1.7885 | 16959640 12.6 239 | 267 | 420711 | 294 24 28 91
(Laravel)
Fresher Frontend 1.652 | 17324438 9.5 105 | 175 | 55913 | 196 12 12 26
React]JS Developer
ReactJS Developer 17677 | 17325321 7 8| 135 55030 | 147 9 9 22
Junior Web Dev 1.6925 | 16805179 17 46.8 | 353 | 575172 | 392 37 37 69
(Laravel or Nodejs)
Backend Developer
(Golang/NodelS) 1.6275 | 16720244 17 71.8 | 406 | 660107 | 441 37 38 99
Backend Developer
(PHP. Go) 17192 | 16071871 15 889 | 58 | 1308480 | 637 46 54 57
Frontend Dev
(ReactJS/JavaScript, 17078 | 16992984 75 163 | 263 | 387367 | 294 19 20 64
HTMLS)
Web Developer
(Angular, NodeJS, 1.6838 | 16591531 31 66.3 | 359 | 788820 | 392 34 37 78
Python)
Jr/Sr Backend NodeJS
(avaSeripyMySOL) 1.6339 | 17031970 17 46.95 | 404 | 348381 | 441 40 44 112
Java Core Developer
(MySOL Linan) 21733 | 16431509 32.29 131.09 | 56.4 | 948842 | 637 43 68 142
gi;“c‘fgava Dev(SQL, 15 o788 | 17218925 29.57 67.71 | 37.7 | 161426 | 441 30 59 120
Jségi)Devek’per (Java, 1.853 | 16195675 17.63 64.07 | 47.6 | 1184676 | 588 3] 53 125
Java Web Dev (Spring, | 5765 | 17244099 75 1507 | 254 | 136252 | 294 2 26 54
JavaScript)
Java dev 1.8122 | 16220460 245 7532 | 40.8 | 1159891 | 490 46 62 122
S;rji";g Dev (3 years 17715 | 16439912 22.81 70.08 | 44.4 | 940439 | 539 43 72 133
Fullstack Dev (Java, 1.8871 | 16515581 13.15 4319 | 318 | 864770 | 343 21 37 65
JavaScript)
Java Developers 17671 | 16467632 22.81 71.08 | 44.8 | 912719 | 539 41 70 129
(JavaScript, Spring)
A B C 1e7 D E
18.0 o - A
1215 1.650 _
3 ‘ D D 3 & 400 ACO
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g g = g 1210 g g
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FIGURE 11. Single-objective values changed over loops of the GA and ACO.

ference. The available learning paths are suitable for testing
the ““Python for Data Science” job. We added some similar
data to the original data. The additional data have similar
LOs to some available courses in the recommended learning
paths. Still, different values for each property to illustrate how
changing the weight affect the algorithm’s results.

We change the proposed objective function by these orig-
inal functions. We can identify the Pareto points to compare
with archiving solutions from the proposed approach. Fig-
ure 11 illustrates the solutions archived from 2 algorithms
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Generations

Generations Generations

through each of the original target functions. Our imple-
mented GA showed superiority when the last generation’s
results were equal to or better than ACO implementation.

Compared with previous studies, our model is complete
and more applicable for MOOC [14], [15]. Out problem
requires the mapping from learning outcome to courses
increases the problem’s difficulty by one level compared to
the previously proposed models. We consider more user’s
demands. Our mathematical model is a more detailed guide-
line to set up in different optimization solvers.
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TABLE 5. Outputs of algorithms for complex queries contains multiple jobs.

A) OUTPUTS OF GA
Number of Fitness obj f1 2 f3 4 5 Number of | Number of Time (s)
jobs in Value Required Archived
Query LOs LOs
2 1.7131 16194239 20.5 79.43334 42.2 1186112 441 39 46 14
3 1.8685 16433099 30 | 117.83334 49 947252 539 46 52 17
4 2.1441 16585418 28 | 113.66667 50.8 794933 476 46 59 17
5 2.1633 16153302 36.5 | 135.46667 63.7 1227049 686 65 72 28
6 2.207 15795550 38.6 | 187.26667 82.5 1584801 882 77 86 27
7 2.0591 15929328 36.5 | 181.36667 91.6 1451023 980 85 99 27
8 2.0268 16276260 30 | 196.66667 86.2 1104091 980 85 95 24
9 2.0384 16028844 23.1 | 187.86667 94.9 1351507 1003 86 96 43
10 2.1651 15983526 38 | 178.36667 94.2 1396825 1029 86 98 29
11 2.1564 15336514 81.37 | 380.97334 135 2043837 1444 129 137 55
12 2.2116 15151900 82.37 | 414.98334 137.6 2228451 1519 129 137 37
13 2.2159 15508918 82.37 | 422.08667 139.3 1871433 1453 130 138 42
14 2.2336 15482969 88.53 380.75 135.7 1897382 1519 130 142 37
15 2.1021 14905999 47.95 | 392.16667 159 2474352 1715 150 157 70
16 2.0951 15007044 46.5 | 405.17334 153.3 2373307 1666 152 165 47
17 2.0199 14944731 39 | 389.40667 153.4 2435620 1600 153 166 64
18 2.1171 15272292 42.5 | 441.67334 160.8 2108059 1764 153 165 54
B) OUuTPUTS OF ACO
Number of Fitness obj f1 f2 3 f4 f5 Number of | Number of | Time (s)
jobs in Value Required Archived
Query LOs LOs
2 1.6638 16198083 | 12.76667 51.26667 40.9 1182268 415 39 42 143
3 1.6908 16206523 16.5 69.76667 50.2 1173828 513 46 57 141
4 1.7416 16243752 15 65.26667 49.8 1136599 513 46 52 140
5 1.8132 16362391 18 | 104.16667 63.6 1017960 660 65 71 111
6 1.7849 16133212 17 | 129.76667 82 1247139 856 77 83 175
7 1.7617 16233987 18 | 152.76667 90.9 1146364 954 85 92 194
8 1.7085 16275662 17 | 144.76667 90.4 1104689 980 85 101 172
9 1.7486 15893252 18 | 149.36667 91 1487099 954 86 101 214
10 1.8288 16023704 17.1 | 151.36667 91.4 1356647 954 86 101 184
11 1.8827 15072862 32.29 | 318.13334 143 2307489 1542 129 155 202
12 1.8923 14930629 32.29 | 315.85667 147 2449722 1591 129 149 222
13 1.8481 15425400 32.29 | 287.18667 146.9 1954951 1591 130 150 250
14 1.8596 15073632 32.29 | 309.47667 140.8 2306719 1542 130 148 332
15 1.8225 15095160 32.29 | 349.86667 151.9 2285191 1629 150 172 430
16 1.9134 15037869 32.29 | 330.19667 151.6 2342482 1640 152 171 731
17 1.8632 15070955 32.29 | 315.77667 150.7 2309396 1666 153 165 415
18 1.9158 15054673 32.29 | 306.66667 155.1 2325678 1689 153 165 374
V. CONCLUSION path. The model is generic for learning paths and can be
This study developed a multi-objective optimization model applied in any online learning framework compared to other

as a knowledge-based recommender for MOOC’s learning proposed methods. It allows decision-maker to assign their
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TABLE 6. Obtained results after executing proposed algorithms and
exhaustive search algorithm.

Algorithm Brute Force GA ACO
Objective Value 892315.11 892315.11 892315.11
Execution Time(s) 1688 34 162

TABLE 7. Different set of parameters and corresponding objective values.

A) OBJECTIVE VALUES RETURNED BY GA

Set of
Parameters f1 [z [3 f4 fs
w; =1000; w, =1; 6464
Wy =1 w, =1: wg =1 17 60.3 36.3 47 392
w1 =15 wy =1000; 38 | 543 359 | 70| 30
wa =1, w, =1; wg =1 11
w; =1, w, =1; wy =10 5070
00:ws =11 w, =1 545 | 1243 418 | 70| 44l
wy =1, w, =1; wy =1; 1366
W, =1000; we =1 63 117 352 909 392
w; =L w, =15 ws =1; 1131
W, =1: ws =1000 80.5 168.3 36 613 392
B) OBJECTIVE VALUES RETURNED BY ACO
Set of
Parameters f1 [z [3 [4 fs
w1 =1000;w, =1; 17 463 | 353 | 92| 30
ws =1, w, =1; wg =1 51
w1 =15 wp =1000; 17 833 ] 302 | B0 4m
ws =1, w, =1, wg =1 63
w; =L, w, =1; w; =10 1206
00: w, =1; wg =1 95.03 17798 | 54.1 616 588
w; =Lw, =1, wy =1; 107.5 1919
e = 1000w, =1 | 22548 | 497 | g9 | 539
w; =1, w, =1, wy =1; 5042
w, =1: wg =1000 17 583 | 36.6 53 392

preferences to achieve different goals of the recommended
path. The model operates based on the knowledge-graph
and offers recommendations close to the user’s goal, but
the knowledge- graph has not been easily constructed. The
indicating of learning outcome inter-dependencies is only
favorable in the course of course development. In the context
of so many courses developed, there is a need to effectively
explore the learning outcomes being stored in complex struc-
tures. This can be done manually, but it certainly costs a
lot. Several researchers are looking to explore the depen-
dency of learning content in e-learning systems. Pan et al.
introduced the graph-based propagation algorithm to retrieve
the prerequisite relation between knowledge concepts [28].
Liu et al. propose an approach to concept graph learning from
different providers [29]. Cheng et al. developed a system to
construct the graph of knowledge based on deep learning
techniques [30].

We also develop versions of the GA and ACO. They
allow us to effectively solve the problem to provide the
runtime response for a single request. The experiments’
results show the propose d algorithm’s efficiency with test-
data, where GA gained a slightly better result than the
ACO. However, we need to test other research directions
to improve the quality of the proposed algorithms. Some

VOLUME 9, 2021

TABLE 8. Parallel scheme of GA.

1: | Do in sequence
2: Step 1: Initialize the first population g = 1
3: While i < £
4: Add the task of individual 8% to queue
Qinie-
5: i=i+1.
6: Do in parallel (for each core)
7: If Q;nis 1s not empty.
8: Initialize the individual 6 where:
t = dequeue(Q,,;,)
9: Step 2: Selection
10: Select £ * y best individuals to the new generation.
11: Step 3: Generate the new generation.
11: Select the parents.
12: Add the task of create individuals to queue
QCTOSS N
13: Do in parallel (for each core)
14: Do in sequence
15: If Qross 18 NOt empty
16: Crossover the parents to create
individual 6 corresponding to
t= dequeue(Qim.t).
17: Mutation individual 89*?.
18: Repair individual 69+
19: Compute fitness values of 69+
20: Step 4: Check the algorithm convergence.
21: If convergence condition satisfied.
22: Stop algorithm.
23: Otherwise, g = g + 1 comeback step 2.

TABLE 9. Parallel scheme of ACO.

1: | Do in sequence
2: Step 1: Initialize the first population g = 1
3: While i < £
4: Add the task of ant it* to queue Q ;-
5: i=i+1.
6: Do in parallel (for each core)
7: Do in sequence
8: If Q;pi¢ 1s not empty
9: t = dequeue(Q;yir)
10: Update the trail for ant tt".
11: Compute the fitness value for ant
tth,
12: Step 2: Update the pheromones.
13: Step 3: Check the algorithm convergence.
14: If convergence condition satisfied.
15: Stop algorithm
16: Otherwise, g = g + 1 comeback step 2.

potential research directions include but are not limited to
Chaotic Random Spare ACO [31], another EA approach
like Evolutionary biogeography-based [32], hybrid method
for EA [33]. Our future work is also to build a model that
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allows the personalization of learners’ learning paths based
on demand and similarity among learners, user feedback, etc.
Although the main objectives were not attached to the career
of the learning path recommendation at MOOC problem,
Shi et al. used more demographic info to support the quality
of recommendation, which is also an exciting research direc-
tion [15]. Today, many parallel computing applications use
the GPU for computation instead of CPU, like what they are
doing. We plan to develop the algorithm to run on GPU to
archive the maximum speed improvement [34].

APPENDIX
See Tables 8 and 9.
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