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ABSTRACT This study integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO)
for overcoming the weaknesses of the original TSA. The LEO strategy in TSA–LEO prevents searching
deflation in TSA and improves the convergence rate and local search efficiency of swarm agents. The
efficiency of the proposed TSA–LEO was verified on the CEC’2017 test suite, and its performance was
compared with seven metaheuristic algorithms (MAs). The comparisons revealed that LEO significantly
helps TSA by improving the quality of its solutions and accelerating the convergence rate. TSA–LEO was
further tested on a real-world problem, namely, segmentation based on the objective functions of Otsu and
Kapur. A set of well-known evaluationmetrics was used to validate the performance and segmentation quality
of the proposed TSA–LEO. The proposed TSA-LEO outperforms other MA algorithms in terms of fitness,
peak signal-to-noise ratio, structural similarity, feature similarity, and segmentation findings.

INDEX TERMS Metaheuristic algorithms, tunicate swarm algorithm (TSA), local escaping operator (LEO),
multilevel thresholding, image segmentation, Kapur’s entropy, Otsu method.

I. INTRODUCTION
Objective optimization problems, such as minimizing time
consumption, energy, cost, and error or maximizing effi-
ciency, performance, and quality of a process, are com-
monly encountered in real-world applications [1]. Recently,
several researchers have embraced a new family of opti-
mization algorithms called metaheuristic algorithms (MAs),
and numerous optimizers have been developed for complex
real-world problems. Such algorithms randomly search the
feature space to obtain an optimal solution among various
solutions, which aremainly inspired by nature. Among a large
body of nature-inspired MAs, some are popular such as moth
flame optimization (MFO) [2], whale optimization algorithm
(WOA) [3], sine cosine optimization (SCA) [4], seagull opti-
mization algorithm (SOA) [5], krill herd algorithm [6], and
barnacles mating optimizer (BMO) [7], because they are sim-
ple, efficient, and robust in finding optimal solutions. More-
over, the No-Free Lunch Theorem [8] states that no specific
optimization algorithm can accurately solve multiple opti-
mization problems. Thus, several MAs have been developed
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for use in biomedicine [9], [10], bioinformatics [11], [12],
cheminformatics [13], [14], feature selection [15], engineer-
ing problems [16]–[19], pattern recognition, text clustering
[20], [21], and wireless sensor networks [22], [23]. How-
ever, all MAs need to balance exploration and exploitation
stages; otherwise, solutions tend to become trapped in local
optima or cannot properly converge [24], [25]. Random-
ization during the solution-finding process can cause such
problems. Hybridization of multiple concepts from different
scientific fields is mandatory, especially in human-aided sys-
tems. Hybridization can combine the advantages of different
algorithms to produce enhanced versions with promising per-
formance and accuracy.

For example, the authors in [26] improved the grey wolf
optimization (GWO) algorithm for engineering design prob-
lems.The enhanced version, which is known as I-GWO,
adopts a new movement strategy called dimension-learning
hunting (DLH). DLH enhances the diversity of solutions to
balance exploration and exploitation phases and avert local
optima. Results confirmed the robustness of I-GWO on the
CEC’2017 test suit functions. Moreover, the study in [27]
boosted the WOA algorithm (one of the most well-known
optimization algorithms) with two search strategies: chaotic
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and Gaussian mutation. The two search strategies were
expected to avoid local optima by balancing the exploration
and exploitation phases. The algorithm achieved promising
performance results compared with state-of-the-art meth-
ods. Moreover, the algorithm proposed a method that uses
static single assignment (SSA) and particle swarm orga-
nization (PSO) to solve complex optimization problems.
This method prevents local optima trapping and unbalanced
exploitation in the original SSA. The proposed SSA–PSO
outperformed competing methods in a comparison test on the
CEC’2005 and CEC’2017 functions. The authors of [28]inte-
grated SCA with PSO, which overcomes the drawbacks of
SCA in the exploitation phase. The combined ASCA–PSO
achieved good performance (high accuracy and low time
complexity) on several benchmarks. The authors of [29] com-
bined SCA with operator-based linearization (OBL), increas-
ing the performance and improving solutions of SCA. The
superiority of the proposed SCA–OBL was evaluated in sev-
eral benchmark functions and engineering problems. Orthog-
onal learning strategy was hybridized with MFO to optimize
its parameters [30]. This newMFO version avoids the search-
ability of the originalMFO and enhances the diversity of solu-
tions. The algorithm explores new regions in the search for
an optimal agent with the best solution. The effectiveness of
the enhanced MFO was verified on CEC’2014 test functions
and several engineering problems. The proposed method out-
performed other optimization algorithms as proven by the
comparison result.

On the other hand, the development and application of
vision systems have accelerated in the recent era [31]–[34].
Image processing without a vision system is ill-advised,
and a proper pre-processing improves the accuracy of the
results. Segmentation pre-processing facilitates the repre-
sentation and analysis of images [35], and must be accu-
rately performed in any vision application [36]. In particular,
the image should be subdivided to extract only the regions
carrying useful information. Segmentation methods can be
parametric or non-parametric [37]. Parametric segmentation
defines each class based on the probability density function;
non-parametric segmentation uses specific standards, such
as variance, entropy, or error rate, to obtain the optimal
thresholds that effectively separate the image. One of themost
popular and promising segmentation tools, i.e., threshold-
ing, divides the image into multiple homogeneous segments.
Thresholding is also adopted in image analysis and process-
ing because it is easily understood and implemented [38].

Bi-level (BT) and multilevel (MT) thresholding techniques
can be used to select the thresholds in a grayscale image [39].
The BT technique divides the entire image into two classes
based on a single threshold state, whereas the MT technique
segments the image into several classes based on two or more
thresholds [40], [41]. Otsu’s between-class variance [42],
Kapur’s entropy [43], and Tsallis entropy [44] are used
to optimize the threshold(s). These methods have optimal
thresholds that separate an image into multiple segments,
but this can be considered a complex task, especially when

the number of thresholds increases [45]–[47]. Several opti-
mization methods have been blended with classical thresh-
olding methods to operate with the complexities of multilevel
thresholding problems. Tunicate swarm algorithm (TSA)
is a new robust search method inspired by the strange
behavior of tunicates (a marine invertebrate animal) during
foraging [48].

Tunicates adopt two main strategies while searching for
food: jet propulsion and swarm intelligence. Most optimiza-
tion algorithms obtain new solutions based on the previ-
ous solution. Two strategies in the original TSA are used
to dictate a new solution: jet propulsion and swarm intelli-
gence. These strategies are randomly applied to the current
solutions to obtain the best solution. in some optimization
cases, the original TSA determines the optimal solution from
subregions, which lowers the convergence rate and prevents
full coverage of the search space (the latter problem leads
to premature convergence of the TSA). These problems are
common in most optimization algorithms, especially in com-
plex and high-dimensional problems [49]. Local escaping
operator (LEO) is, a new mathematical approach [50] that
was developed as a local search used for generating an
efficient solution aiming to visit the unseen search regions,
and thus, escaping from the local optimal problem. More-
over, operators such as p1, f 1 and f 2 are used to balance
between the exploration and exploitation phases, shown in
Eqs. (9 and 8).

MOTIVATION AND CONTRIBUTIONS:
To mitigate TSA’s problems, this paper hybridizes the origi-
nal TSA with an efficient operator LEO to address the short-
coming that the standard TSA may exhibit, i.e. 1) evades
trapping in local optima, 2) balances between exploration
and exploitation, and 3) improves the convergence speed. The
proposed method was validated on the CEC’2017 benchmark
functions, and its performance was compared with those
of seven established optimization algorithms namely MFO,
WOA, SCA, SOA, BMO, chaotic TSA (CTSA), and the
original TSA. Then it is applied to tackle multilevel thresh-
olding image segmentation problems based on maximizing
two objective functions namely Otsu and Kapur objective
functions. Peak signal-to-noise ratio (PSNR), structural simi-
larity (SSIM), and feature similarity (FSIM) are three quality
metrics used to evaluate segmentation results in terms of
fitness. Optimization and segmentation results revealed the
robustness of the proposed TSA–LEO compared with a set of
well-known optimization algorithms. In summary, the major
contributions of the paper are summarized below:

• An efficient TSA based on LEO called TSA-LEO is
presented.

• TSA-LEO is proposed for solving optimization andmul-
tilevel thresholding image segmentation.

• The effectiveness of TSA-LEO is assessed on the
CEC’2020 suite.

• Two objective functions, Kapur and Otsu, are applied.
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• The quality of segmentation is verified in terms of the
PSNR, SSIM, FSIM.

• The proposed method is compared with state-of-the-art
algorithms.

• Extensive results show the more stable performance of
the proposed TSA-LEO.

• Significant threshold results are obtained.
The remainder of this paper is arranged as follows.

Section IIdevices the problem; Section III introduces the
proposed TSA–LEO and its main procedure; Section IV dis-
cusses and analyzes the benchmark results; and in Section V,
TSA–LEO is applied to image segmentation-based threshold-
ing. Conclusions and forthcoming works are represented in
Section VI.

II. PRELIMINARIES
A. TUNICATE SWARM ALGORITHM (TSA)
Kaur et al. [48] proposed a bio-inspired optimization algo-
rithm that simulates the natural foraging process of tunicates,
marine invertebrates that emit bright bio-luminescence. The
TSA was inspired by the strange behaviors of tunicates in
oceans, in particular, the jet-drive and swarm intelligence of
their foraging process. A mathematical model of jet propul-
sion is developed under three constraints: preventing conflict
among the exploration agents, following the positions of
the most qualified agents, and remaining near the optimal
agents.

1) PREVENTING CONFLICTS AMONG THE AGENTS
To prevent inter-agent conflicts while searching for better
positions, the new agent positions are calculated as:

EA =
EG
EM

(1)

EG = c2 + c3 − EF (2)
EF = c1 · EF . (3)

where EA is a vector of new agent positions, EG is the gravity
force, EF represents the water flow in the deep ocean, and
c1, c2 and c3 are three random numbers. The social forces
between agents are stored in a new vector EM , represented as
follows:

EM = [Pmin + c1 · Pmax − Pmin]. (4)

Here Pmin = 1 and Pmax = 4 describe the first and second
subordinates respectively, indicating the speeds of establish-
ing social interactions.

2) FOLLOWING THE POSITIONS OF THE BEST AGENT
Following the current best agent is essential for reaching the
optimal solution. Hence, after ensuring that no conflicts exist
between neighboring agents in the swarm, the best position
of the best agent is computed as,

EPD = |Xbest − rrand · EPp(x)| (5)

where EPD stores the length between the food origin and the
optimal agent, Xbest is the best position, rrand is a stochastic
value in the range [0, 1], and the vector EPp(x) contains the
positions of the tunicates during iteration x.

3) KEEPING CLOSE TO THE OPTIMAL AGENTS
To ensure that search agents still close to the best agent, their
positions are computed as follows:

EPp(x) =

{
Xbest + A · EPD, if rrand ≥ 0.5
Xbest − A · EPD, if rrand < 0.5

(6)

where EPp(x) contains the updated positions of the agents at
iteration x relative to the best scored position Xbest .

4) SWARMING BEHAVIOR
Tomodel the swarming behavior of tunicates, the positions of
the current agents are updated based on the positions of two
agents:

EPp(x + 1) =
EPp(x)+ EPp(x + 1)

2+ c1
(7)

To clarify the TSA, the main steps given below illustrate
the flow of the original TSA in detail.
Step 1: Initialize the first population of tunicates EPp.
Step 2: Set the original value for parameters and the highest

number of iterations.
Step 3:Measure the fitness value of each exploration agent.
Step 4: After calculating the fitness, the best agent is

investigated in the supplied search space.
Step 5: Update the positions of each exploration agent

using Eq7.
Step 6: Return the new updated agents to its boundaries.
Step 7: Measure the fitness cost of the updated search

agent. If there is a better solution than the past optimal
solution, then update EPp and save the best solution in Xbest .
Step 8: If the termination criterion is met, then the pro-

cesses stop. Otherwise, iterate Steps 5–8.
Step 9: Declare the best optimal solution (Xbest ), which is

achieved so far.

B. LOCAL ESCAPING OPERATOR (LEO)
The LEO proposed as a local search algorithm in [50] which
is used to enhance the ability of an optimization algorithm
namely Gradient-based optimizer (GBO) aiming to explore
new regions which are desired in complex real-world prob-
lems. The LEO enhances the quality of solutions by updating
their positions under some criteria. Specifically, it prevents
the algorithm from trapping in local optima and improves its
convergence behavior. LEO generates its alternative solutions
(EPLEO) with excellent performance by using several solutions
such as the best position of tunicates Xbest , two randomly
generated solutions Xmr1 and X

m
r2, two randomly chosen solu-

tions Xmr1 and Xmr2, and a new randomly generated solution
Xmk . Hence, the solution EPLEO can be determined based on
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Eqs. (8 and 9) which can be mathematically formulated as
follows:

if rand < pr
if rand < 0.5

EPmLEO = EP
m
n + f1 ×

(
u1 × Xbest − u2 × Xmk

)
+ f2 × ρ1 ×

(
u3 ×

(
X2mn − X1

m
n
)

+ u2 ×
(
Xmr1 − X

m
r2
))
/2 (8)

Pm+1p = PLEO Else

EPmLEO = Xbest + f1 ×
(
u1 × Xbest − u2 × Xmk

)
+ f2 × ρ1 ×

(
u3 ×

(
X2mn − X1

m
n
)

+ u2 ×
(
Xmr1 − X

m
r2
))
/2 (9)

Pm+1p = PLEO
End
End
Here EPmn is the current tunicate position, Xbest is the best

scored position, pr is the probability of performing LEO
strategy where pr = 0.3, rand represents a random value
in range ∈ [0, 1], f1 and f2 are uniformly distributed random
values ∈ [−1, 1], Xmr1 and X

m
r2 represent two random solutions

chosen from the population, X1mn and X2mn are two solutions
which are randomly generated as shown in Eq10 from the
current population.

X1mn ,X2
m
n = LB+ rand(Dim)× (UB− LB) (10)

where LB, UB are the lower and upper bounds, Dim is the
dimension of any solution. Moreover, n and m represent the
coordinates of the solution (n = 1, 2, 3, . . . , N ) and
(m = 1, 2, 3, . . . , Dim). In addition, u1, u2, and u3 are
three variables that are randomly generated as following:

u1 = L1 × 2× rand + (1− L1) (11)

u2 = L1 × rand + (1− L1) (12)

u3 = L1 × rand + (1− L1) (13)

where L1 is a binary parameter (L1 = 1 if µ1 < 0.5, and
0 otherwise), µ1 is a number in the range of [0, 1].
Moreover ρ1 is introduced to balance the exploration and

exploitation searching processes, and it can be expressed as:

ρ1 = 2× rand×α − α (14)

α =

∣∣∣∣β × sin
(
3π
2
+ sin

(
β ×

3π
2

))∣∣∣∣ (15)

β = βmin + (βmax − βmin)×

(
1−

(
t

Maxiterations

)3
)2

(16)

where βmin and βmax are set to 0.2 and 1.2 respectively,
t is the current iteration, and Maxiterations is the maximum
number of iterations. To balance the exploration and exploita-
tion processes, parameter ρ1 changes based on the sine
function α.

To determine the solution Xmk in Eq. (28), the following
scheme is suggested.

Xmk =

{
xrand if µ2 < 0.5
xmp otherwise

(17)

where xrand is a new solution that can be calculated as shown
in Eq18, xmp is a random solution selected from the popu-
lation (p ∈ [1, 2, . . . N ]), µ2 is a random number in the
range of [0,1].

xrand = Xmin + rand(0, 1)× (Xmax − Xmin) (18)

Eq17 can be simplified as follows:

Xmk = L2 × xmp + (1− L2)× xrand (19)

where L2 is a binary parameter with a value of 0 or 1. If
parameter µ1 is less than 0.5, the value of L1 is 1, otherwise,
it is 0.

III. THE PROPOSED TSA-LEO
This section illustrates the implementation of the proposed
TSA–LEO method to improve the ability of the original TSA
by allowing it to visit promising regions. LEO is specifically
used to improve the performance of the best solutions of the
original TSA. The TSA–LEO algorithm follows the main
steps of the original TSA, and employs the LEO operator
to encourage the visitation of new regions. LEO improves
the search for global optima and convergence rate of the
algorithm, dynamically evading stagnation in local optima.
In the following section, the implementation of the proposed
TSA–LEO is given in detail.

A. PRIMITIVE STEP OF TSA-LEO
The proposed TSA–LEO method, like numerous other opti-
mization algorithms, begins by randomly initializing its
parameters, EA, EG, EF , EM as shown in Eqs. 1 to 4, respectively.
Moreover, creating the initial population EPp as shown below.

EPp = LB+ rand(N ,Dim)× (UB− LB) (20)

where EPp is the initial population, and N denotes the number
of random solutions i ∈ {1, 2, . . . ,N }, each solution is
limited between the upper and lower boundaries (UB and LB)
with a dimension of Dim in the search space.

B. UPDATING SOLUTION SCENARIOS
The position updating process is conducted based on two
scenarios. First, generating a two-agent solution as shown in
Eq. 7, or based on the best position obtained so-far using
Eq. 6 and saving results. In this step, the original TSA
is executed conventionally. In the second scenario, to the
solution is updated using the LEO strategy to improve the
solution efficiency. The LEO distinction between two paths
depends on a specific condition as shown in Eqs. 8, and 9.
If rand < 0.5, the first path is selected to perform the process
of solution updating as shown in Eq8; otherwise, the second
path Eq.9 is selected to find the new solution.
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C. OPTIMIZATION SCENARIOS
This step is performed to evaluate the vector of solutions gen-
erated from the previous phase in each iteration to enhance
the quality of the further solutions. Accordingly, TSA–LEO
computes the fitness value f ( EPp) of each tunicate position in
the current population. The best-scoring solution Xbest is then
determined, saved, and extracted at the updating stage.

D. TERMINATION CRITERIA
After completing the optimization scenarios and iterating
until reaching the stopping criteria, the proposed TSA–LEO
retrieves the optimal solution according to the best fitness.
Algorithm 1 gives the pseudo code of the TSA–LEO algo-
rithm, and a detailed flowchart is shown in Fig. 1.

Algorithm 1 The Proposed TSA–LEO Algorithm
procedure TSA–LEO

Initialize the first population EPp randomly.
while x < Maxiterations do

for i = 1 to N do
Xbest ← Best(f ( EPp))
/*Jet propulsion behavior*/
Calculate the parameters EA, EG, EF , EM , and EPD

using Eqs.(1 to 5) respectively.
/*Swarm behavior*/
if rrand ≥ 0.5 then
EPp← EPp + Xbest + EA× EPD

else
EPp← EPp + Xbest − EA× EPD

end if
end for

/*Local escaping operator (LEO)*/
if rand < pr then

if rand < 0.5 then
Update EPp using Eq8

else
Update EPp using Eq9

end if
end if
Xbest ← Best(f ( EPp))
x ← x + 1

end while
return Xbest

end procedure

E. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
TSA-LEO
This subsection reports and estimates the computational com-
plexity of the proposed TSA-LEO algorithm in terms of time
and space complexities.

1) TIME COMPLEXITY
TSA-LEO starts by creating an initial population of size N
for each problem dimensionDim, such that the complexity of

initialization is O(N × Dim) time complexity. Furthermore,
TSA-LEO computes the fitness of each population, so the
complexity of this process is O(Maxiterations × N × Dim),
where Maxiterations denotes the maximum number of itera-
tions. In addition, TSA-LEO needs O(T ) time complexity to
perform its main processes, where T represents the number
of jet propulsion, swarm behaviors, and the LEO processes.
The overall time complexity of the proposed TSA-LEO can
be represented by O(Maxiterations × T × N × Dim).

2) SPACE COMPLEXITY
Space complexity defines the total amount of space occupied
by the algorithm. Now, TSA-LEO takes O(N × Dim) space
complexity.

IV. PERFORMANCE EVALUATION OF TSA-LEO
A. PARAMETER SETTINGS
To accurately evaluate the effectiveness of the proposed
TSA-LEO, the algorithm was competed against seven other
algorithms, namely, MFO [2], WOA [3], SCA [4], SOA [5],
BMO [7], CTSA, and the original TSA. Each method was
executed 30 times through (at most) 1000 iterations. The user
population size was set to 30. The parameters of each algo-
rithm were set to the values of the first-published standard
versions. Table 1 lists the parameters and setting positions of
TSA–LEO.

B. DEFINITION OF CEC’17 TEST SUITE FUNCTIONS
The CEC’17 test suite was selected as a test problem because
it has high complexity and is customized for global opti-
mization. The CEC’17 test suite contains 30 functions, but
function F2was excluded because to its instability. Therefore,
the used benchmark contained 29 test functions. The test
suite contains 29 functions and is composed of unimodal
shifted and rotated functions; multimodal shifted and rotated
functions; hybrid functions; and composition functions as
shown in [51].

Fig. 2 shows the landscapes of 16 selected functions in
two-dimensional space and provides an intuitive understand-
ing of the functional differences and nature of the problems.

C. STATISTICAL RESULTS ANALYSIS
The CEC’17 benchmark functions are employed to assess
the performance of advanced TSA–LEO. Mean and standard
deviation (STD) values of each run’s best solutions are used
to measure the algorithm efficiency. Table 2 represents the
mean and STD obtained from the proposed TSA–LEO and
other comparative algorithms for each CEC’17 function with
50-dimension; the best results (minimum values) are high-
lighted in bold. Regarding the best optimal fitness results
shown in Table2, the proposed TSA-LEO algorithm gains
the best fitness results in 20 functions (0 unimodal functions,
5 multimodal functions, 8 in hybrid functions, and 7 in com-
position functions) gaining the first rank with overall ratio
(69%) of test functions, whereas the CTSA algorithm gains
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FIGURE 1. Flowchart of the proposed TSA–LEO algorithm.

TABLE 1. Parameter settings of TSA–LEO and competing algorithms.

the best fitness of 9 functions gaining the second rank with
overall ratio (31%) of test functions, while the other compet-
ing algorithms fail to gain the best fitness in any test func-
tion. This means that the proposed TSA-LEO algorithm can
effectively solve multimodal functions (F4 to F10), hybrid
functions (F11 to F20), and composition functions (F21 to
F30). Table 3 shows the rank-sum results for fitness accord-
ing to Wilcoxon rank-sum test. After applying the rank-sum
test between the proposed TSA-LEO algorithm and each of
the other algorithms (MFO, WOA, SCA, SOA, BMO, TSA,
CTSA, and TSA-LEO) a difference between all competitors

in contrast to the proposed TSA-LEO is noticed. TSA-LEO
vs MFO has a significant difference with a ratio of (96.55%),
TSA-LEO vs WOA has a significant difference with a ratio
of (100%), TSA-LEO vs SCA has a significant difference
with a ratio of (93.10%), TSA-LEO vs SOA has a significant
difference with a ratio of (86.20%), TSA-LEO vs BMO has a
significant difference with a ratio of (100%), TSA-LEO vs
TSA has a significant difference with a ratio of (82.75%),
TSA-LEO vs CTSA has a significant difference with a ratio
of (82.75%); this means that the proposed TSA-LEO algo-
rithm has a significant development. Moreover, based on
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FIGURE 2. Two-dimensional view of some CEC’17 benchmark functions.

Friedman’s mean rank test results, the proposed TSA–LEO
ranks first compared to the other algorithms. Overall statisti-
cal results showed that in solving different advanced bench-
marks, the proposed method was more effective than other
well-known optimization methods.

D. BOXPLOT BEHAVIOR ANALYSIS
Data distribution characteristics can be displayed by boxplot
analysis. Boxplots are efficient for depicting data distribu-
tions into quartiles. The minimum and maximum edges of
the whiskers are the lowest and largest data points reached
by the algorithm. The ends of the rectangles define the
lower and upper quartile. A narrow boxplot signifies a high
agreement between data. Due to space limitations, Fig. 6
illustrates 15 functions. Figure 3 shows the analyses of
F1–F30 functions boxplot for Dim= 50. For most functions,
boxplots of the proposed TSA–LEO algorithm are narrow
compared with other algorithm distributions and thus have
the lowest values. Indeed, the proposed TSA–LEO algorithm
performs better than other algorithms for most of the test
functions.

E. CONVERGENCE BEHAVIOR ANALYSIS
Fig. 4 shows the convergence plots of MFO, WOA, SCA,
SOA, BMO, TSA, and TSA–LEO on the CEC’17 functions.

The proposed TSA–LEO achieved (near)-optimal solutions
and fast convergence on most functions; hence, it can solve
problems requiring fast computation, such as online prob-
lems. Furthermore, the algorithm exhibited stable behav-
ior, and its solutions smoothly converged in most of the
tested problems. Due to space limitations, Fig. 4 illustrates
15 functions.

F. EXPLORATION AND EXPLOITATION ANALYSIS
Fig.5 records exploration-exploitation ratios during search
maintained by the proposed TSA-LEO while solving a set
of CEC’17 test functions with dimension of 30. From Fig.5
it is noticeable that the proposed TSA-LEO starts with a
high exploration ratio and low exploitation ratio, but mostly
later transformed into exploitation strategy during most of the
iterations in most of the CEC’17 functions. This indicates
that the proposed TSA-LEO balances effectively between
exploration and exploitation phases.

G. QUALITATIVE METRICS ANALYSIS
Fig. 6 shows the collective behavior of foraging tuni-
cates. The first pillar represents a set of the CEC’17 func-
tions as shapes in two-dimensional space. The second pil-
lar illustrates the search history of the tunicates, show-
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TABLE 2. Mean and STD of the fitness values of different optimization algorithms, obtained from 30 runs of 50-dimensional CEC’17 functions.

TABLE 3. Comparison of the p-values obtained from the Wilcoxon signed-rank test between the pairs of TSA–LEO vs. MFO, TSA–LEO vs. WOA, TSA–LEO vs.
SCA, TSA–LEO vs. SOA, TSA–LEO vs. BMO, TSA–LEO vs. TSA, and TSA–LEO vs. CTSA for CEC’17 test functions in terms of Fitness results.

ing their exploitation behavior to achieve the desired
results. The third pillar displays the average fitness
over 100 iterations, explaining how diversified new agents
assist in the search of the best solution. The proposed

TSA–LEO can find the areas with the best fitness for most
functions according to the search history pillar. In terms
of average fitness history, all curves are decreasing, which
means that the population improves at each iteration.
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FIGURE 3. Boxplots analysis for the proposed TSA-LEO and the competitor algorithms on the CEC’17 test functions with Dim = 50.

This constant improvement substantiates a collaborative
searching behavior and supports the efficiency of updating
particle law. Finally, convergence curve and optimization
history revealed the progress of fitness over several itera-
tions. The decrease in optimization history indicates that the
solutions are optimized during iterations until reaching the
optimal solution.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section employs the proposed TSA–LEO to solve
thresholding-based image segmentation problems. In this
evaluation, TSA–LEO was expected to select the thresholds
that best segmented a set of benchmark images by maxi-
mizing a well-known thresholding technique, namely, Otsu’s
objective function.
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FIGURE 4. Convergence curves for the proposed TSA-LEO and the competitor algorithms on the CEC’17 test functions with Dim = 50.

A. MULTI-THRESHOLDING IMAGE SEGMENTATION
STUDIES
In this research, image thresholding shows the efficiency
of metaheuristic algorithms in the relevant method [35],
[47], [52]. In this regard, there are numerous examples of

meta-heuristic applications; however, a few prominent state-
of-the-art research works are given. To tackle the prob-
lems of multi-thresholding, Upadhyay and Chhabra [53]
used the crow search algorithm (CSA) to maximize Kapur’s
method. The proposed model was compared with a set of
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FIGURE 5. The Graphical representation of the exploration and exploitation phases for the proposed TSA-LEO over the CEC’17 functions with Dim = 50.

well-known metaheuristic algorithms, namely, PSO, DE,
GWO, MFO, and CSA. The authors chose CSA because
of its balance between exploration and exploitation, as well
as less parameters to tune. Through most commonly used
evaluation metrics, the authors contended to have achieved

comparatively better results when tested on a set of bench-
mark images using multiple threshold values. Despite the
success in this work, CSA has a slow convergence. Khairuz-
zaman and Chaudhury [54]used GWO to produce efficient
image-segmentation results while finding the optimal set of
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FIGURE 6. Qualitative metrics on F1, F4, F6, F12, F21, and F28: 2D views of the functions, search history, average fitness history,
and optimization history.
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TABLE 4. Results after applying TSA-LEO on Kapur to the set of
benchmark images.

thresholds using Otsu’s and Kapur’s functions. GWO con-
verged to better optimum solutions than bacterial foraging
optimization (BFO) and PSO; however, the proposed algo-
rithms also posed certain disadvantages: a) its efficiency
reduced when employed on noisy images and b) GWO
was slower than PSO regarding the computational time.
The research maintained a major weakness; it did not pro-
vide a comprehensive comparison with other well-known
and established metaheuristic algorithms, but merely used
PSO and BFO for comparison. To optimize threshold values
for multilevel image thresholding, a modified grasshopper
optimization algorithm (GOA) with Lévy flight was intro-
duced based on Tsallis cross-entropy as the objective func-
tion [55]. The proposed model was tested on benchmark
images and plant stomata. Compared with standard GOA,
WOA, flower pollination algorithm (FPA), PSO, and bat algo-
rithm (BA), the proposed GOA variant produced better seg-
mentation accuracy with enhanced multilevel segmentation

TABLE 5. Results after applying TSA-LEO on Kapur to the set of
benchmark images.

convergence on energy-based Tsallis entropy. One limitation
of this study is that it did not experiment with rela-
tively increased thresholds for high-dimensional optimization
problems.

The study in [56] used the EO algorithm and Kapur’s
entropy as objective function to achieve the optimal threshold
values for grayscale images. To achieve enhanced search abil-
ity, the researchers improved EO with adaptive parameters.
The proposed method was evaluated using several solution
quality metrics such as the signal-to-noise ratio, structured
similarity index, some accuracy measures like mean abso-
lute error, and the computation time for resource complex-
ity. The proposed EO outperformed WOA, BA, SCA, SSA,
harris hawk’s optimizer (HHO), CSA, and PSO techniques.
The significance of this study can be determined with the
level of thresholds used in the experiment. The researchers
used up to 50 threshold levels. However, the proposed EO
variant comparatively underperformed considering standard
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deviation values and computational time. HHO is another
recent metaheuristic technique that was implemented in a
similar domain using Otsu’s and Kapur’s objective func-
tions [57]. Comparisons of the proposed method with PSO,
DE, harmony search (HS), ABC, and SCA, show that it
produced efficient results in terms of quality, consistency,
and accuracy. However, the results of HHO were also com-
pared with two machine learning techniques, K-means and
fuzzy IterAg, revealing that these techniques performed the
least in the overall image-segmentation exercise. Another
limitation of this study is that it was not evaluated on color
images, and the number of thresholds was manually set.
Meanwhile, Díaz-Cortés et al. [58] resolved the problem
of unclear regional borders in low-resolution thermography
images in health-care using the dragonfly algorithm (DA).
In addition, the DA technique is used to find optimum thresh-
old values for energy curves in thermal images for breast
cancer diagnosis. Based on the objective functions of Otsu’s
and Kapur’s, the authors evaluated solution quality and found
that DA outperformed GA, PSO, runner-root algorithm and
krill-herd algorithm on a set of eight images retrieved from
the DA-Breast Thermography database.

To improve the optimal threshold selection in this study,
the proposed TSA-LEO algorithm was integrated with Otsu’
and Kapur’s objective functions.

B. OTSU’s OBJECTIVE FUNCTION
Otsu was selected because it is commonly used for thresh-
olding images, segmented by maximizing the between-class
variation. TSA–LEO optimizer maximizes the Otsu objective
function and determines the best-fit thresholds. The objective
function of Otsu considers L intensity levels of a gray image,
and the probability distribution is computed in Eq. 21. This
method can be used for RGB color images in which Otsu is
separately applied to each channel.

hi =
hi
NP
,

NP∑
i=1

Phi = 1 (21)

where i is an intensity level defined in the range of
(0 ≤ i ≤ L − 1). NP is the total number of pixels in an
image. hi denotes the number of occurrence of intensity i
in the image represented by the histogram. The histogram
is normalized in a probability distribution Phi. Based on the
probability distribution or threshold value (th), the classes are
computed for bi-level segmentation as follows:

C1 =
Ph1
ω0(th)

, . . . ,
Phth
ω0(th)

and C2 =
Phcth+1
ω1(th)

, . . . ,
PhL
ω1(th)

(22)

where ω0(th) and ω1(th) are cumulative probability distribu-
tions for C1 and C2, as it is shown by Eq. (23).

ω0(th) =
th∑
i=1

Phi and ω1(th) =
L∑

th+1

Phi (23)

It is mandatory to find the average intensity levels µ0 and µ1
that define the classes using Eq. (24). Once those values are
calculated, the Otsu based between-class σ 2

B is calculated
using Eq. (25).

µ0 =

th∑
i=1

iPhi
ω0(th)

and µ1 =

L∑
i=th+1

iPhi
ω1(th)

(24)

σ 2
B = σ1 + σ2 (25)

Notice that σ1 and σ2 in Eq. (25) are the variances of
C1 and C2 which are defined as follow:

σ1 = ω0(µ0 + µT )2 and σ2 = ω1(µ1 + µT )2 (26)

where µT = ω0µ0 + ω1µ1 and ω0 + ω1 = 1 based on the
values σ1 and σ2, Eq. (27) presents the objective function.
Therefore, the optimization problem is reduced to find the
intensity level that maximizes Eq. (27)

Fotsu(th) = max(σ 2
B(th)) where 0 ≤ th ≤ L − 1 (27)

where σ 2
B(th) is the Otsu’s variance for a given th value. Otsu’s

method is applied for a single component of an image, that
means for RGB images it is necessary to apply separation into
single component images. The previous illustration of such
bi-level method can be modified for multiple thresholds. The
objective function Fotsu(th) in Eq. (27) can also be modified
for multiple thresholds as follows:

Fotsu(TH ) = Max(σ 2
B(th)) where 0 ≤ th ≤ L − 1 and

i = [1, 2, 3, . . . , k] (28)

where TH = [th1, th2, . . . , thk − 1] is a vector containing
multiple thresholds, L denotes maximum grey level, whereas
the variances are computed through Eq. (29).

Nσ 2
B =

k∑
i=1

σi =

k∑
i=1

ω1(µ1 − µT )2 (29)

where i represents a specific class. ωi and µj are the proba-
bility of occurrence and the mean of a class respectively. For
multi-level thresholding, such values are obtained as:

ωk−1(th) =
L∑

i=thk+1

Phi (30)

for mean values:

µk−1 =

L∑
i=thk+1

iPhi
ω1(thk )

(31)

C. KAPUR’s OBJECTIVE FUNCTION
Another thresholding technique used to apply the concept of
segmentation is the Kapur’s method [43]. Kapur’s method
selects the optimal threshold values based on maximizing the
entropy. The mathematical model is described as follows:

Fkapur (th) = H1 + H2 (32)
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where the entropies H1 and H2 are computed as:

H1 =

th∑
i=1

Phi
ω0

ln(
Phi
ω0

) and H2 =

L∑
i=th+1

Phi
ω1

ln(
Phi
ω1

) (33)

where Phi is the probability distribution of the intensity levels
which is obtained using Eq. (13), ω0(th) and ω1(th) are prob-
abilities distributions for the classes C1 and C2. ln(.) is the
natural logarithm. Similar to the Otsu’s method, the entropy-
based approach can be modified for multi-thresholding val-
ues; for such a case, it is necessary to divide the image into
k classes using k − 1 thresholds. The objective function then
can be modified as follows:

Fkapur (TH ) =
k∑
i=1

Hi (34)

where TH = [th1, th2, . . . , thk−1] is a vector that contains
the multiple thresholds. Each entropy is computed separately
with its respective (th) value, so Eq. (34) is expanded for k
entropies as:

H c
k =

L∑
i=thk+1

Phi
ωk−1

ln(
Phi
ωk−1

) (35)

Here the values of the probability occurrence
(ωc0, ω1, . . . , ωk−1) of the k classes are obtained using
Eq. (20) and the probability distribution Phi with Eq. (13).
For the ease of understanding TSA-LEO implementation

on image segmentation, the following steps are given in brief.
1) Read the image in grayscale.
2) Obtain the histogram of the selected image.
3) Calculate the probability distribution using Eq23.
4) Initialize TSA–LEO parameters.
5) Initialize the first population of tunicates EPp with the

dimension of Dim.
6) Evaluate the initial population using Otsu (Fotsu)

Eq28 or Kapur (Fkapur ) Eq34.
7) Calculate the parameters EA, EG, EF , EM , and EPD using

Eqs.(1-5) respectively.
8) Update the positions of each agent using Eqs.(6 or 7).
9) Determine the optimal position Xbest .

10) Apply LEO strategy if rand < pr and update the value
of EPp based on Eq.8 if rand < 0.5 or 9 if rand ≥ 0.5.

11) Evaluate the new population and save best results.
12) Select tunicate with the best solution according to the

objective function.
13) If maximum iteration or the stop conditions are not met,

go to Step 7.
14) To segment the image, use tunicate with the best thresh-

old values.

D. ENVIRONMENTAL SETUP
The results of advanced TSA–LEO with the objective func-
tions of Otsu and Kapur were compared with those of MFO
[2], WOA [3], SCA [4], SOA [5], BMO [7], CTSA, and
original TSA. All algorithms were executed 35 times per

algorithm under the same stopping criteria (350 iterations at
most) with 50 search agents to evaluate their performances.
The parameters of each algorithm were maintained at their
standard versions’ values. All tested algorithms were pro-
grammed and operated in the same experimental environment
(Intel Core-I5 processor, 8 GB memory, Matlab-2013, and
Windows 8.1-64).

E. EVALUATION CRITERIA
Evaluating segmented images is essential for validating the
performance and accuracy of any algorithm. Three measures
were used to evaluate the degree of segmentation: PSNR [59],
SSIM [60], and FSIM [61]. Wilcoxon rank-sum was used to
evaluate the significance of the proposed TSA–LEO, and the
variations between the proposed method and competing algo-
rithms were assessed in Friedman’s non-parametric statistical
tests [62], [63].

1) QUALITY METRICS
The PSNR distinguishes between the qualities of the initial
and resulting images. The PSNR is defined as

PSNR = 20log10
255
RMSE

RMSE =

√∑M
i=1

∑N
j=1((I (i, j)− Seg(i, j))

2)

M × N
(36)

where RMSE is the root-mean-squared error, and I and Seg
are the initial and final images, respectively. All images are
sized M × N.

The SSIM determines the similarity between the original
and segmented images. The SSIM is defined as

SSIM (I , Seg) =
(2µ1µSeg + c1)(2σ1,Seg + c2)

(µ2
I + µ

2
Seg + c1)(σ

1
I + σ

2
Seg + c2)

(37)

where µI and µSeg are the mean intensities of the orig-
inal image I and segmented image Seg, respectively,
and σI and σSeg are their respective standard deviations.
σI ,Seg is the covariance of the original and segmented images,
and c1 and c2 are two constants.

The FSIM measures the similarities in the mapped fea-
tures. The FSIM mainly depends on the phase congru-
ency (PC) and gradient magnitude (GM). The PC is a new
measure applied to the features of an image. The GM com-
putes the image gradient, as traditionally done in digital
image processing. The similarity between the two images was
first obtained as

SPC =
2PC1PC2 + T1
PC2

1 + PC
2
2 + T1

(38)

where T1 is a positive constant that increases the stability
of SPC . PC1 and PC2 are the PCs of the original and seg-
mented images, respectively, and SG is the similarity between
G1 and G2, which is computed as:

SG =
2G1G2 + T2
G2
1 + G

2
2 + T2

(39)
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Here, G1 and G2 are the gradients of the original and
segmented images, respectively, and T2 is a positive constant
that depends on the dynamic range of GM values. From
Eqs. (38) and (39), the similarity is computed as

SL(x) = [SPC (x)]α[SG(x)]β (40)

The parameters α and β adjust the relative importances
of the PC and GM features. Note that high values of fit-
ness, PSNR, SSIM, and FSIM indicate a high-performing
algorithm .

2) NON-PARAMETRIC STATISTICAL TESTS
The Wilcoxon rank-sum test rank-sum test is a
non-parametric measure that analyzes the results of pairs
of methods. The null hypothesis implies that the ranks of
the results of the comparative methods are not significantly
different. The alternative hypothesis examines whether the
results of the comparative methods can be distinguished by
rank. The Wilcoxon rank-sum was calculated at the 5% sig-
nificance level. The significance levels (P) and hypothesis (H)
values in terms of fitness obtained with Otsu’s method are
shown in Table 19. If P > 0.05 or H = 0, then the null
hypothesis is accepted, whereas if P < 0.05 or H = 1,
the alternative hypothesis is accepted.

The Friedman mean rank test is another non-parametric
analysis that compares three or more matched groups. In the
present study, the Friedman mean rank was applied for
checking the performances of the competitive algorithms.
The Friedman statistic determines the mean ranked value.
Whether the critical values reach the assigned significance
level is evaluated using Friedman’s statistics, and whether the
null hypothesis is accepted or declined is then judged.

F. ANALYSIS OF MULTI-THRESHOLDING IMAGE
SEGMENTATION RESULTS
This section reports and discusses the experimental results
of multilevel level thresholding Otsu and Kapur objective
functions described above to tackle multilevel thresholding
image-segmentation problems.

1) MULTI-THRESHOLDING SEGMENTATION EXPERIMENTS
OF OTSU AND KAPUR METHODS IN TABLES AND FIGURES
Image-segmentation experiments were performed using Otsu
and Kapur methods as the objective functions in two separate
experiments on a set of ten benchmark images at four thresh-
olding levels (Level = 2, 3, 4, and 5). In total, 40 cases were
tested. Fig. 7 illustrates a set of benchmark images with their
respective histograms namely Cameraman, Lena, Baboon,
Hunter, Airplane, Pepper, Living room, Woman, Bridge, and
Butter-Fly. Figures (12, 13, TSA-LEO Otsu) and (12, 13,
TSA-LEO Kapur) show the segmented image results with
their respective selected thresholds over histograms obtained
from applying the proposed TSA–LEO with Otsu and Kapur
methods. In addition, Tables (14, TSA-LEO OTSU) and
(6, TSA-LEO Kapur) show the optimal thresholds obtained

from TSA–LEO and other competitors under the condi-
tion of level = 2, 3, 4, and 5 for Otsu and Kapur objec-
tive functions. Tables(15, 16, 17, 18, TSA-LEO Otsu) and
(7, 8, 9, and 10, TSA-LEO Kapur) represent the fitness,
PSNR, SSIM, and SSIM results, for Otsu and Kapur meth-
ods respectively. Moreover, Tables (19 and 19) show the
results of theWilcoxon rank-sum test of TSA–LEO and other
seven algorithmswith Otsu andKapurmethods. Table.20 also
provides convergence curves on Otsu and Kapur objective
functions for samples of test images on various thresholds for
the proposed TSA-LEO and other competitive algorithm.

FIGURE 7. Set of benchmark images and relative histograms.

2) MULTI-THRESHOLDING SEGMENTATION ANALYSIS OF
OTSU AND KAPUR METHODS
From the optimal thresholds selected on the basis of Otsu
and Kapur objective functions, we can conclude that the
Kapur segmentation process is more decentralized and has
wider coverage, such as the optimal threshold value of the
test image, namely, Cameraman at Level = 4 is 22, 59, 98,
145, 196, as shown in Table 6, and 36, 82, 122, 149, 173
shown in Table 14. Notably, the optimal thresholds for Otsu’s
objective function are closer than Kapur’s objective function,
revealing that segmentation based on Kapur’s objective func-
tion is better than Otsu’s objective function, which is also
evident from the results of the segmented images based on
Otsu and Kapur objective functions in Figures.(12, 13, 4,
and 5). In terms of quality metrics (PSNR, SSIM, and FSIM),
the quality of the segmented image based on Kapur’s is better
than Otsu’s objective function. For example, the PSNR value
of starfish in Test 9 image at Level = 4 is 1.90E + 01
in Table 8 and 1.89E + 01 in Table 16, SSIM value is
8.70E − 01 8 and 8.46E − 01 16, FSIM value is 9.00E − 01
in Table 8 and 8.86E − 01 16. The values of the Otsu-based
method are smaller than those of Kapur’s entropy-based
method, and the segmentation effect in Tables. 4,5 is clearer
than in Tables. 12,13, especially in the case with higher num-
ber of thresholds. Generally, in the given segmentation image
and the same number of threshold levels, the method based
on Kapur’s is significantly better than Otsu-based method for
the same optimization algorithm.
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TABLE 6. Optimal thresholds obtained by Kapur’s objective function.

TABLE 7. Average and STD of Kapur’s fitness obtained from all algorithms.

3) MULTI-THRESHOLDING SEGMENTATION ANALYSIS OF
TSA-LEO AND OTHER SEVEN OPTIMIZATION ALGORITHMS
Fitness results in the basis of Kapur’s objective function
shown in Table 7 confirmed the superiority of TSA–LEO
over other algorithms. TSA–LEO ranked first with 21 higher

cases (52.5%); MFO and WOA ranked second with 8 higher
fitness cases (20%); and CTSA ranked third with 7 higher
cases (17.5%). Moreover, BMO ranked fourth with only
4 higher fitness cases (10%). All the remaining algo-
rithms have no higher fitness cases. Regarding PSNR results
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TABLE 8. Average and STD of PSNR based Kapur’s objective function obtained from all algorithms.

TABLE 9. Average and STD of SSIM based Kapur’s objective function obtained from all algorithms.

shown in Table 8, the proposed TSA-LEO ranked first
with 19 higher cases (47.5%) and CTSA ranked second
with 7 higher cases (17.5%). Besides, SOA ranked third with
6 higher cases (15%). WOA ranked fourth with 5 higher
best fitness cases (12.5%). MFO and BMO ranked fifth with
3 higher cases representing (7.5%) of overall higher cases.

Finally, TSA took the last rank without any higher case.
The proposed TSA-LEO ranked first in the SSIM results
represented in Table 9, with 21 higher cases representing
(52.5%) of overall test cases. However, SOA ranked second
with 7 higher cases (17.5%). BMO gained third place with
only 5 higher cases representing (12.5%) from overall cases.
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TABLE 10. Average and STD of FSIM based Kapur’s objective function obtained from all algorithms.

TABLE 11. Comparison of the p-values obtained from the Wilcoxon signed-rank test between the pairs of TSA–LEO vs. MFO, TSA–LEO vs. WOA, TSA–LEO
vs. SCA, TSA–LEO vs. SOA, TSA–LEO vs. BMO, TSA–LEO vs. TSA, and TSA–LEO vs. CTSA for Kapur’s method in terms of Fitness results.

MFO, WOA, SCA, and CTSA ranked fourth with 3 higher
FSIM cases representing a (7.5%) of the total cases. Finally,
TSA ranked last without any higher cases. Regarding the
FSIM results shown in Table. 10, proposed TSA-LEO ranked
first with 18 higher cases (45%). MFO was ranked second

with 7 higher cases (17.5%) and WOA ranked third with
5 higher cases (12.5%). CTSA ranked fourth with 4 higher
cases (10.5%). SCA and BMO ranked fifth with only one
higher case with a percentage of (2.5%). In addition, TSA
gained no higher FSIM cases.
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TABLE 12. Segmented images after applying TSA–LEO on Otsu’s method.

Regarding the objective function of Otsu, the results of
Otsu in terms of the mean of fitness provided in Table 15
confirmed the superiority of TSA–LEO over the other algo-
rithms. Where the proposed TSA–LEO ranked first with
40 higher cases (100%), Table 16 shows the mean PSNR
results and confirms that BMO ranked first with 10 higher
cases (25%). Moreover, the proposed TSA-LEO and SCA
ranked second with 9 higher cases (22.5%). MFO ranked
third with 8 higher cases (20%) and CTSA ranked fourth with
4 higher best fitness cases (10%). The original TSA and SOA
with 3 higher cases represent (7.5%) of overall higher cases.
Finally, WOA ranked in the last place with only one higher
case (2.5%). Table 17 represents the SSIM results of the pro-
posed TSA-LEO as compared with other algorithms in terms
of SSIM mean results. Remarkably, BMO ranked first with
15 higher cases representing (37.5%) of overall test cases.
TSA-LEO ranked second with 13 higher cases (32.5%).
MFO, SCA, SOA, and CTSA ranked third with 3 higher
cases representing (7.5%) of overall cases. WOA and TSA

TABLE 13. Segmented images after applying TSA–LEO on Otsu’s method.

ranked last with only one higher case representing (2.5%)
of total cases. Table 18 provides the mean result of FSIM,
which indicates that BMO ranked first with 14 higher cases
representing (35%) of overall cases. TSA-LEO ranked second
with 9 higher cases (22.5%). SCA ranked third with overall
5 higher cases (12.5%).Moreover,WOA, SOA,CTSA ranked
fourthwith 4 higher cases representing a percentage of (10%).
Besides, TSA gained two higher FSIM cases with (5%) of
overall cases. Finally, MFO ranked last with only one higher
FSIM case representing (2.5%) of overall cases. According
to the Wilcoxon rank sum test, Tables (11 and 19) represent
P and H results of the Wilcoxon test in terms of fitness for
Kapur and Otsu objective functions, respectively. When the
number of thresholds is small (e.g., Level = 2,3), the seg-
mentation results of each algorithm are almost the same,
according to comparisons based on Kapur and For exam-
ple, when Level = 2, the optimal threshold, PSNR, SSIM,
and FSIM of the eight algorithms of Baboon are the same.
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TABLE 14. Optimal thresholds obtained by Otsu’s objective function.

TABLE 15. Average and STD of Otsu’s fitness obtained from all algorithms.

When the number of thresholds is large (e.g., Level = 4, 5),
the numerical difference of segmentation results is obvious.

For example, the PSNR values of image Test 4 at Level = 5
are different: 21.78 Table (8, MFO), 20.99 Table (8, WOA),
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TABLE 16. Average and STD of PSNR based Otsu’s objective function obtained from all algorithms.

TABLE 17. Average and STD of SSIM based Otsu’s objective function obtained from all algorithms.

21.71 Table (8, SCA), 22.22 Table (8, SOA), 21.05 Table (8,
BMO), 17.94 Table (8, TSA), 22.48 Table (8, CTSA), and
3.08E+01 Table (8, TSA-LEO); SSIM and FSIM also have

similar differences. In Kapur’s method, it is noticeable that
the value based on TSA-LEO occupies the most advantages.
However, results based on the Otsumethod are close to that of
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TABLE 18. Average and STD of FSIM based Otsu’s objective function obtained from all algorithms.

TABLE 19. Comparison of the p-values obtained from the Wilcoxon signed-rank test between the pairs of TSA–LEO vs. MFO, TSA–LEO vs. WOA, TSA–LEO
vs. SCA, TSA–LEO vs. SOA, TSA–LEO vs. BMO, TSA–LEO vs. TSA, and TSA–LEO vs. CTSA for Otsu’s method in terms of Fitness results.

Kapur’s method but ranked second in terms of fitness and all
other quality measures. Generally, the segmentation effect of

TSA-LEO reflects the superiority of the proposed TSA-LEO
especially in Kapur’s method.
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TABLE 20. The convergence curves for the proposed I–EO and the competitor algorithms for multi-threshold image segmentation problems.

VI. CONCLUSION AND FUTURE WORK
This paper introduced an enhanced variant of a metaheuris-
tic optimization algorithm, named TSA. The TSA was
hybridized with an efficient search strategy called LEO,

which improves the performance, accuracy, and conver-
gence behavior of TSA. During the solution update pro-
cess, TSA competes with LEO in the proposed TSA–LEO
method. The effectiveness of the proposed TSA–LEO was
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evaluated using the functions in the CEC’17 benchmark
test suite. The proposed method outperformed the compet-
ing methods regarding various statistical measures. More-
over, the proposed TSA–LEO can tackle multilevel threshold
problems while seeking the optimal thresholds for image
separation. Thus, the proposed TSA–LEO method is poten-
tially applicable for solving complicated real-world prob-
lems. The proposed method selects the optimal thresholds
that intensified the segmentation process in the thresholding
experiment.

In future work, we intend to 1) combine two or more
objective functions (e.g., Otsu and Kapur) in the proposed
TSA–LEO, 2) further evaluate the proposed method on dif-
ferent datasets, and 3) apply the proposed TSA–LEO to
other real-world complex problems. Promisingly, the pro-
posed approach can be considered as an efficient and effective
strategy for more complex optimization scenarios and the
intelligent optimization field’s theoretical work as well.
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