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ABSTRACT The concentration of fine particulate matter (PM2.5), which represents inhalable particles with
diameters of 2.5 micrometers and smaller, is a vital air quality index. Such particles can penetrate deep into
the human lungs and severely affect human health. This paper studies accurate PM2.5 prediction, which can
potentially contribute to reducing or avoiding the negative consequences. Our approach’s novelty is to utilize
the genetic algorithm (GA) and an encoder-decoder (E-D) model for PM2.5 prediction. The GA benefits
feature selection and remove outliers to enhance the prediction accuracy. The encoder-decoder model with
long short-term memory (LSTM), which relaxes the restrictions between the input and output of the model,
can be used to effectively predict the PM2.5 concentration. We evaluate the proposed model on air quality
datasets fromHanoi and Taiwan. The evaluation results show that our model achieves excellent performance.
Bymerely using the E-Dmodel, we can obtainmore accurate (up to 53.7%) predictions than those of previous
works. Moreover, the GA in our model has the advantage of obtaining the optimal feature combination for
predicting the PM2.5 concentration. By combining the GA-based feature selection algorithm and the E-D
model, our proposed approach further improves the accuracy by at least 13.7%.

INDEX TERMS PM 2.5, genetic algorithm, feature selection, long short-term memory, encoder-decoder
model.

I. INTRODUCTION
Industrialization and urbanization have brought considerable
convenience to human lives. However, they are generally
associatedwith severe air pollution. Accordingly, people have
raised concerns about air quality, especially near living areas.
Particulate matter 2.5 (PM2.5) is one of the most impor-
tant indexes to evaluate the severity of air quality, which is
directly related to human health. PM2.5 particles in the air can
bypass the nose and throat and penetrate deep into the lungs,
causing many diseases, such as cardiovascular disease and
respiratory disease. In [1], the authors reveal that long-term
exposure to PM2.5may lead to heart attack and stroke. There-
fore, accurate PM2.5 forecasting is crucial and may help
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governments and citizens find suitable solutions to control or
prevent negative conditions.

PM2.5 forecasting is a time series prediction problem that
is commonly solved using recurrent neural networks (RNNs),
including LSTM [2]. The LSTM-basedmodel has advantages
in air quality prediction [3]. In [4], the authors also use LSTM
but combine gas and PM2.5 concentrations to predict air
quality in Taiwan. The work in [5] exploits deep learning
to build a hybrid neural network model that can forecast
PM2.5 multiple steps ahead. In [6], Yanlin et al. present a
hybrid model that integrates graph convolutional networks
and LSTM to predict PM2.5. In [7], the authors utilize the
k-nearest neighbor algorithm to mine spatial-temporal infor-
mation. The historical information of related locations is then
used as the input of the LSTM, adaptive temporal extractor
(ASE), and artificial neural network (ANN) models. Several
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other deep learning models for predicting air quality can be
found in [8]–[11]. Despite considerable effort, air quality pre-
diction models still suffer from two issues: restrictions of the
input and output lengths and unoptimized feature selection.

The first issue indicates that the number of time steps in
a model’s output cannot exceed that of the input; i.e., the
model cannot predict the future with upcoming steps that
exceed the input data’s length. Therefore, it is essential to
remove this limitation in PM2.5 prediction. The second issue
arises from the fact that air quality data include dozens of
factors other than PM2.5, such as various concentrations,
temperature and humidity. These factors may or may not be
related to PM2.5. However, appropriate use of some of these
factors may improve the prediction accuracy. Meanwhile,
misuse may not only degrade the accuracy but also add extra
computational time. Therefore, choosing the optimal feature
combination is essential.

This paper aims to address the two issues described
above. As a solution, we propose a novel PM2.5 predic-
tion model that combines a genetic algorithm (GA) and
an encoder-decoder (E-D) model. The GA is exploited to
perform feature selection in a near-optimal manner, thereby
enriching the prediction model. Additionally, we leverage the
encoder-decoder model to build a PM2.5 prediction model
with high accuracy. As a result, the proposed model can effi-
ciently handle different sizes (in terms of the number of time
steps) of input and output. To demonstrate the effectiveness
of our proposed approach, we evaluate the GA-based feature
selection on the Hanoi [12] and Taiwan datasets [11]. The
evaluations show that the GA-based feature selection outper-
forms othermethods.We then compare ourmodel to the state-
of-the-art method ST-DNN in [11] using the Taiwan dataset.
Compared to ST-DNN, our model improves the accuracy
from 14.82% to 41.71%. By combining the GA-based feature
section algorithm and the E-D model, our proposed approach
further increases the accuracy by at least 3%.

The remainder of this paper is organized as follows.
We describe the motivations in Section II. Section III presents
our proposal. The performance of evaluation is introduced
in Section IV. Section VI introduces related works. Finally,
Section VII concludes the paper.

II. MOTIVATION
Our research is motivated by the two issues in air quality pre-
diction mentioned in the previous section. In the following,
we describe our ideas to address these problems.

A. RESTRICTION BETWEEN THE INPUT AND OUTPUT
LENGTH
In previous prediction models [3], [11], the number of
time-steps of the output cannot exceed that of the input. How-
ever, we sometimes expect the output to have more time steps
than the input. For example, we may want to use historical
data of the past 30 days to estimate the air quality of the next
60 days. A simple method to overcome this restriction is to
use iterative estimation [13], in which a forecasting model

predicts one time step ahead and then iteratively concatenates
the predicted result to the current input. The concatenation
is fed to the forecaster to obtain the multistep-ahead pre-
diction. The greatest benefit of this strategy is the ease of
training because it needs to consider only the one-step-ahead
forecasting error. Moreover, we can generate multistep sam-
ples by recursively using the prediction outcome. However,
the forecaster is fed the predicted values instead of the ground
truth; therefore, the prediction error accumulates throughout
the estimation process, eventually becoming significant.

We aim to leverage the encoder-decoder model to address
this issue. The model includes an encoder and a decoder
module that break the prediction process into two indepen-
dent steps: encoding and decoding. The former extracts the
features of the input, and the output of the encoding process
is fed into the decoder module. Then, we obtain the predicted
values as a result of the decoding step. As a result, the encoder
and decoder modules are independent. Therefore, the number
of time steps of the decoder’s output is not restricted by that
of the encoder’s input. Moreover, to capture the temporal
relation of the data, we utilize LSTM units [2], which can
learn long-term dependencies, to construct the encoder and
the decoder.

B. DIFFICULTY IN SELECTING FEATURES
In addition to PM2.5, the data used for air quality predic-
tion usually comprise many other features, which raises the
concern of choosing additional features for PM2.5 predic-
tion. If we use a random number or all the features, does
the prediction accuracy improve? To answer this question,
we conduct prediction on a dataset of air quality monitored
in the center of Hanoi, Vietnam [12]. The dataset comprises
21 features, including temperature, CO, NO, NO2, NOx, O3,
PM10, PM2.5, RH, and SO2.We use the random search algo-
rithm, which chooses ten combinations of features randomly.
We then use each combination, only PM2.5, and all features
as inputs to train an XGBoost model [14]. As in [3], [15],
we consider the mean absolute error (MAE) metric, which is
calculated as follows.

MAE =
1
n

n∑
i=1

|yi − ŷi|,

where yi is the ground truth; ŷi is the predicted values; and n
is the number of data points. The mean absolute error (MAE)
achieved by the twelve combinations are shown in Fig. 1.
Additional features do not guarantee better MAE compared
to using only PM2.5. In the case of all features being used,
the MAE value is not better than that of several random
combinations because the use of a large number of features
interferes with the prediction model, degrading the accu-
racy. Moreover, using all the features may slow the training
process. Therefore, it is essential to select features for the
prediction model.

A common method of feature selection is to use cor-
relation evaluation algorithms, such as Pearson’s [16].
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FIGURE 1. MAE achieved by XGboost with different combinations.

The algorithms first determine the correlation between fea-
tures and then select the most correlated features to include
in the predictionmodel. Another approach is to use an embed-
ded model such as Lasso [17] or random forest [18], which
have associated feature selection methods. However, these
methods require considerable time and human brainpower.
In this work, we exploit the genetic algorithm (GA), which
is a meta-heuristic inspired by the process of natural selec-
tion based on Darwin’s theory of evolution. GA efficiently
searches among all possible feature combinations to find the
optimal combination that achieves the maximum prediction
accuracy. The search process begins with a set of individuals
(i.e., the initial population), where each individual is a solu-
tion to the problem, and the goodness of each individual is
evaluated by a fitness function. By performing the GA opera-
tions on the individuals, we improve the fitness over the gen-
erations. Consequently, after several generations, we achieve
a solution whose fitness value is optimal. Although GA does
not ensure the best solution, it tends to provide a good solution
that is near the global optimal within a reasonable search time.

III. PROPOSED PREDICTION MODEL
A. OVERVIEW
Figure 2 presents an overview of our proposed method, which
includes GA-based feature selection and a prediction module
that are detailed in Section III-B and Section III-C, respec-
tively. In the left module, each individual in the initial popula-
tion represents a feature combination. The GA-based method
includes numerous iterations (i.e., generations), in each of
which genetic operations of crossover and mutation generate
new individuals. Each individual is evaluated with respect to
fitness. We define fitness as the MAE, which is the prediction
model’s output with a specified feature combination acting
as the model’s input. In each generation, the individuals
with better fitness remain; the others are removed from the
population. By repeating these processes, the fitness values
of the population are improved in each generation. Finally,
we identify the individual with the optimal fitness value.
The right module is the encoder-decoder based prediction for
PM2.5. The module includes a prediction model that uses a

FIGURE 2. Overview of the proposed model.

data set that consists of features selected by the GA-based
module as the input.

B. GA-BASED FEATURE SELECTION
Let n be the number of all features in the data set. Each
individual is a binary string of length n that encodes a feature
combination. Specifically, the k-th gene obtains the value
of either 1 or 0, which indicates whether the k-th feature is
selected (as shown in Fig. 3). A genetic algorithm adopts
the fitness value to represent how ‘‘good’’ an individual is.
In our algorithm, we define the fitness of an individual as
the mean absolute error (MAE), which is obtained by the
prediction model. For each generation, we first determine
all the newly created individuals, each of which is used to
train the prediction model. We then evaluate the model to
obtain the MAEs.

FIGURE 3. Encoding a feature combination (the white and gray cells
represent the selected feature encoded by 1 and 0, respectively).

The initial population is generated randomly. The
crossover and mutation algorithms work as follows. Let A =
{a1, a2, . . . , an} andB = {b1, b2, . . . , bn} be two parents who
will be crossed. We randomly select m genes of A and B and
swap them to produce two offspring, where m is a random
number that varies in the range from 1 to n

2 . Moreover,
to retain good features, we propose a heuristic algorithm for
selecting parents when performing the crossover as follows.
Let pc be the crossover probability and N be the population
size; then, we choose among the N individuals N × pc
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FIGURE 4. Illustration of the GA’s crossover and mutation operations.

individuals to crossover. We choose the n×pc
2 individuals

who have the best fitness values. The other n×pc
2 parents are

randomly chosen among the remaining N− n×pc
2 individuals.

For mutation, we randomly select a gene segment of a parent
and then invert the values of the genes (i.e., change bit 0 to 1,
and vice versa). To increase the diversity of the individuals,
we use two selection operators: the best individual selection
operator and the random selection operator. Specifically, 50%
of the best individuals are selected for the next evolution, and
the remaining 50% are chosen randomly. Figure 4 illustrates
the crossover and mutation operations of our algorithm.

C. ENCODER-DECODER MODEL-BASED PREDICTION
Our model obtains information from the previous l time steps
and predicts the PM2.5 values h time steps in the future. Let
ex and dx be the inputs of the encoder and decoder, and let
dy be the output of the decoder. These values are defined as
follows.

Input:

ex =
(
xki , x

k
i+1, . . . , x

k
i+l−1

)
,

dx =
(
xki+l−1, x

k
i+l, . . . , x

k
i+l+h−2

)
,

Output:

dy = (yi+l, yi+l+1, . . . , yi+l+h−1) ,

where:
• k = {0, 1} represents the {removed, selected} feature.
• i is the iteration counter, which ranges from 0 to the
length of the training set.

• l is the number of time steps in the input sequence.
• h is the number of time steps in the output sequence.
• x is the input data of the selected feature.
• y is the predicted PM2.5 value.

We leverage the encoder-decoder architecture, wherein the
encoder and decoder comprise l and h LSTM units, respec-
tively. We also use the Adam optimizer [19] to optimize
the learning rate automatically. In the following discus-
sion, we first present the LTSM unit’s details and then the
encoder-decoder model structure.

1) LONG SHORT-TERM MEMORY (LSTM)
LSTM is tremendously helpful in multistep time series fore-
casting. It performs the same task for all elements with the
output of the current step, which can be used as the input
in the upcoming step. Unlike a traditional neural network,

LSTM can store previously calculated information, thereby
gaining benefits when the processing data are in the form of a
sequence. The original NN suffers from a critical weakness:
the vanishing gradient problem, where earlier steps’ contri-
bution becomes insignificant in future steps, so the model
fails to capture long-term dependencies. LSTM addresses
the vanishing gradient problem by introducing three special
units: forget gate, update gate, and output gate. The gates
can be used to decide which information and how much of
each type of information should be remembered. The main
advantage of LSTM compared to other forms of RNNs is the
ability to learn long-term dependencies.

FIGURE 5. Structure of the LSTM unit.

Figure 5 shows the typical structure of an LSTM unit,
consisting of three main gate structures: update gate u<t>,
forget gate f <t>, and output gate o<t>. The input of an
LSTM unit comprises three elements: a cell state c<t−1> and
a hidden state a<t−1> outputted by the previous LSTM unit
and the input data of the current unit x<t>. c̃<t> is a candidate
for replacing the memory cell, which is calculated from the
current input and the previous hidden state.

The forget gate and the update gate layer are both computed
with a sigmoid function, whose input comprises the previous
hidden state and the current input. Thus, the output values of
the forget gate and the update gate are within the range (0, 1).
The value of the forget gate is applied to the previous cell state
c<t−1>, while the value of the update gate is multiplied by
the new memory c̃<t> to form the new cell state. Intuitively,
the forget gate controls to what extent previous information
is forgotten, while the update gate decides the extent of the
current input and the previous hidden state to be written onto
the new cell state. The closer the value is to 0, the more
information is forgotten and ignored, and the closer the value
is to 1, the more information is maintained and stored. o<t> is
the output gate, which determines what the next hidden state
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should be. The equations for each state are as follows:

c̃<t> = tanh(Wc[a<t−1>, x<t>]+ bc)

u<t> = σ (Wu[a<t−1>, x<t>]+ bu)

f <t> = σ (Wf [a<t−1>, x<t>]+ bf )

o<t> = σ (Wu[a<t−1>, x<t>]+ bo)

c<t> = u<t> ∗ c̃<t> + f <t> ∗ c<t−1>

a<t> = o<t> ∗ tanh(c<t>), (1)

where W corresponds to the weight matrix; b is the bias
coefficient; and σ and tanh are activation functions.

The new state c<t> is calculated from the previous state
c<t−1> and the new memory candidate c̃<t>. First, the pre-
vious cell state c<t−1> is pointwise multiplied by the forget
vector f <t>, which has the ability to drop values in the cell
state if f <t> goes to 0. Then, we add u<t> ∗ c̃<t>, which
updates the cell state to new values that the neural network
finds relevant. This process yields our new cell state calcu-
lated by f <t> ∗ c<t−1> + u<t> ∗ c̃<t>, which decides the
information to forget and update. Finally, the new hidden state
a<t> is obtained by multiplying the output gate with the tanh
of the new cell state. The new cell state and the new hidden
state are carried over to the next time step.

In summary, the greatest advantages of LSTM and using
gates are that the forget gate decides what is relevant to keep
from previous steps, the update gate decides what information
is relevant to add from the current step, and the output gate
determines what the next hidden state should be.

2) ENCODER-DECODER MODEL
The E-Dmodel was first proposed to solve a natural language
processing problem [20]. The initital input is a sequence of
words of length m (i.e., x = {x1, x2, . . . , xm}). After passing
through the model, a newly created sequence at the output
y = {y1, y2, . . . , yn} has length n, which can be the as same
as n or different. The model can adopt either RNN, GRU,
or LSTM, depending on the application. The E-D model
includes an encoder and a decoder. The encoder has a stack
of several recurrent units, each of which accepts an element
of the input sequence with an arbitrary length. It then collects
information for that element and propagates it forward. The
output is a hidden state and a cell state called the encoder
state that aims to encapsulate all input elements’ information
to support the accurate prediction by the decoder, which is
the second component. The state is then fed into the decoder
as the initial state.While the process of producing the encoder
state is the same as equation 1, the hidden state of the decoder
at the first time step is computed by:

c̃1 = tanh(Wc[aec, < GO >]+ bc)

u1 = σ (Wu[aec, < GO >]+ bu)

f 1 = σ (Wf [aec, < GO >]+ bf )

o1 = σ (Wu[aec, < GO >]+ bo)

c1 = u1 ∗ c̃1 + f 1 ∗ cec

a1 = o1 ∗ tanh(c1), (2)

where aec is the encoder state and <GO> is the decoder’s
seeding value, which is zero in our model.

Similar to the encoder, the decoder has a stack of several
recurrent units. However, each recurrent unit accepts a hidden
state from the previous unit as the input and predicts an output
of yi at time step i. The hidden state of the decoder at the n-th
time step is computed as follows:

c̃<t> = tanh(Wc[a<t−1>, p<t−1>]+ bc)

u<t> = σ (Wu[a<t−1>, p<t−1>]+ bu)

f <t> = σ (Wf [a<t−1>, p<t−1>]+ bf )

o<t> = σ (Wu[a<t−1>, p<t−1>]+ bo)

c<t> = u<t> ∗ c̃<t> + f <t> ∗ c<t−1>

a<t> = o<t> ∗ tanh(c<t>), (3)

where p<t−1> is the prediction result of the previous time
step.

After obtaining the hidden state a<t−1>, we pass it through
a regular neural network layer called the dense layer to obtain
the final prediction, which is calculated by the following
equation:

p<t−1> = Wp ∗ a<t−1> + bp, (4)

FIGURE 6. Structure of the encoder-decoder model.

Figure 6 illustrates the proposed E-D model. The encoder
has an input length of l, while the output length of the
decoder is h. xki , x

k
i+1, . . . , x

k
i+l−1 is the input data, which

consists of the historical selected features from i to (i+ l−1)
corresponding to l time steps. yi+l, yi+l+1, . . . , yi+l+h−1 are
the predicted PM2.5 values from (i + l) to (i + l + h − 1)
corresponding to h time steps. The encoder receives each
element in the input and processes them through l LSTM
units to create a final hidden state. This hidden state is then fed
into the decoder, which consists of h LSTM units, to predict
PM2.5 in h steps.
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TABLE 1. Details of missing data in the datasets.

IV. PERFORMANCE EVALUATION
A. EVALUATION SETTINGS
To ease the presentation, we name our proposed model
ED-LSTM. This section aims to answer two questions related
to prediction accuracy.

1) How much does the feature selection algorithm
improve the results compared to other selection
methods?

2) How much does our proposed prediction model gain
compared to state-of-the-art models?

Regarding the first question, we initially combine
ED-LSTM with various feature selection algorithms. Then,
we compare their performance with that of our proposed
GA-based algorithm using two datasets. The first dataset,
named Hanoi dataset [12], is the air quality collected in
Hanoi, Vietnam. The Hanoi dataset contains hourly data
from January 2016 to January 2018 for the features men-
tioned in Section II. The second dataset, named the Taiwan
dataset, contains hourly data collected from January 2014 to
September 2017 [11]. The dataset includes PM2.5 and other
indicators, such as time, ambient temperature, CO, NO,
NO2, NOx, O3, PM10, RH, and SO2. In both datasets, there
are some missing data points. The missing number of each
indicator and its percentage are shown in 1. It is necessary
to do data imputation to compensate for the missed data.
We see that the missing rates are relatively small and do not
bias any specific parameters in ED-LSTM. Hence, we lever-
age the median value to fill in the lost places. To further
confirm the method’s effectiveness, we compare it to the
one in [11] (the original one with Taiwan data set). With
such missing rates, the experiment results, with such missing
rates, the imputation methods do not impact the models’
performance. Therefore, throughout this paper, we present
the results using the median values for data imputation.

Concerning the second question, we compare ED-LSTM
with three existing works. The first one (i.e., AE-BiLSTM)
is a combination of auto-encoder and bi-LSTM neural

FIGURE 7. Impact of the number of generations.

network [21]. The second one, AC-LSTM proposed
in [22], leverages CNN and LSTM network. The last one
(i.e., ST-DNN) exploits both the spatial and temporal rela-
tionship to predict the PM 2.5 [11].

TABLE 2. Parameter settings.

Table 2 summarizes the hyperparameters in ED-LSTM.
Batchsize is the number of training samples propagated
through the network. Testsize defines the percentage of the
data set used as the test set. l and h denote the numbers of time
steps of the input and output, respectively. An epoch refers to
one cycle through the full training dataset. The earlystopping
value is the threshold for terminating the training process to
prevent overfitting. We follow the common method to adjust
the hyperparameters of deep learning models, that is, to try
various sets of parameters and choose the best one.

B. IMPACT OF THE GA’s NUMBER OF GENERATIONS
In this experiment, we study the impact of the number of
generations in our GA-based feature selection algorithm.
We consider two metrics: prediction accuracy and training
time. Figure 7 shows the MAE and the training time when
we vary the number of generations from 1 to 10. In general,
increasing the number of generations reduces the MAE but
increases the training time. Specifically, when the number of
generations increases from 1 to 3, the MAE drops severely
and remains almost stable beyond that point. Concerning
the training time, it increases significantly as the number
of generations increases from 1 to 3. The rate of increase
slows as the number of generations increases from 4 to 7
and becomes substantial beyond that point. According to
the experimental results, a moderate number of generations
from 5 to 7 should be considered to achieve high prediction
accuracy while maintaining an acceptable training time.
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C. COMPARING FEATURE SELECTION ALGORITHMS
We compare the proposed GA-based feature selection to
the following methods: using only PM2.5 data, all features,
XGBoost, and Pearson’s correlation. The XGBoost pack-
age provides a built-in function called feature_importances
that receives the input as a list of features and returns the
importance coefficient of each feature [14]. We first sort
the features in decreasing order of the coefficient. Then,
we gradually remove features with low importance from the
original feature list (i.e., the list containing all features).
For the remaining features, we train the prediction model
and evaluate the MAE. Pearson’s correlation measures the
strength of the linear relationship between two features. The
correlation ranges from −1 to 1. We choose features with
an absolute correlation value greater than 0.3, which means
they are moderately or highly correlated to PM2.5. Moreover,
we remove features whose absolute correlation with PM2.5 is
greater than 0.9 to prevent multicollinearity (i.e., the strong
correlation reduces the model’s capability to identify signifi-
cant independent variables).

FIGURE 8. Comparison of feature selection algorithms.

Figure 8 shows the MAE values for one-step ahead
prediction attained by the feature selection methods. Our
proposed GA-based method has the smallest MAE on the
Taiwan dataset and Hanoi dataset, thereby achieving the best
performance. In the GA-based method on the Hanoi dataset,
the optimal feature combination includes wind speed, temper-
ature, radiation, PM10, and PM2.5. The figure also presents
an interesting observation: using all the features results in
worse performance (i.e., higher MAE) than using only PM
2.5. Therefore, prediction based on more input features does
not guarantee a better outcome. However, the GA-based
method reduces the MAE by 6% and 16% compared to
using PM2.5 and all the features, respectively. Additionally,
the MAE attained by our method is 90% and 83% smaller
than that of XGBoost and Pearson’s correlation. For the
Taiwan dataset, the GA-based method reduces the MAE by
4%, 8%, 3%, and 4% compared to using PM2.5, all features,
XGBoost and Pearson’s correlation, respectively.

We compare the PM2.5 prediction (i.e., from one to eight
time-steps ahead) of the GA-based feature selection and all
features as input with the Hanoi dataset. The results are
shown in Fig. 9. In all cases, the results with the features

selected by GA have more accurate peaks. It again proves the
effectiveness of the GA-based feature selection method.

D. COMPARING PREDICTION MODELS
This section compares our ED-LSTM to AE-BiLSTM [21],
AC-LSTM [22], and ST-DNN [11]. Since all three mod-
els’ source codes are not publicly available, we have ini-
tially reimplemented them. We have successfully recreated
AE-LSTM and AC-LSTM based on the papers’ instructions.
However, we cannot get ST-DNN in the same way due to
the lack of details. Instead, we have copied the numerical
results directly from the ST-DNN original paper. We perform
two experiments for the comparison. In the first one, we use
the Hanoi dataset to evaluate our model, AE-LSTM, and
AC-LSTM. In the second one, to guarantee a fair comparison
between ED-LSTM and ST-DNN, we use the Taiwan dataset
and the features suggested by ST-DNN’s paper [11]. The
data is prepared as follows. We partition the data into a
training set (from Jan. 2014 to Sep. 2016) and a testing set
(from Oct. 2016 to Sep. 2017) with a ratio of 2 : 1. The
experiment is conducted by receiving the historical data of
the past 48 hours and predicting the value of PM2.5 in the
next (1, 2, . . . , 6) hours.

TABLE 3. ED-SLTM, AE-BiLSTM, and AC-LSTM use all features (Hanoi
dataset) .

TABLE 4. ED-SLTM, AE-BiLSTM, and AC-LSTM use the selected features by
GA (Hanoi dataset) .

1) COMPARING ED-SLTM, AE-BiLSTM, AND AC-LSTM
We evaluate ED-LSTM, AE-BiLSTM, and AC-LSTM with
the Hanoi dataset and show the MAE and computation time
in Tables 3 and 4. The average computation time of a model,
defined as the model’s average time to perform one predic-
tion, is measured as follows. We track the moment when
feeding data to a model and the moment of receiving the
prediction result. The duration between two moments is
the measured time. Table 3 shows the results when using
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FIGURE 9. Comparison of GA-based feature selection and using all the features for the Hanoi dataset.

all the features as the input, while Table 4 depicts the
results when using the features selected by our GA-based
algorithm.

First, we can see that ED-LSTM achieves the highest
prediction accuracy regarding both two feature sets. When
using all features, ED-LSTM reduces the MAE by 46%,
and 6.4% compared to AE-BiLSTM and AC-LSTM, respec-
tively. With the features selected by the GA-based algorithm,
the ED-LSTM model further reduces the MAE by smaller
than 53.7%, and 20.1% on average compared to AE-BiLSTM
and AC-LSTM. As shown in Tables 3 and 4, with each fea-
ture selection, AE-BiLSTM attains the lowest computation
time, while ED-LSTM and AC-LSTM achieve similar per-
formance. We can see that although the computation time of
ED-LSTM is higher than AE-BiLSTM, their gap is relatively
small. Within the scope of PM 2.5 prediction (e.g., data
sampling, PM variation), the ED-LSTM’s computation time
is acceptable for real-time prediction.

Second, we cross-compare the performance between two
types of feature selections in the three models. From the
results in Tables 3 and 4, each model’s MAE achieved using
the features selected by the GA-based algorithm is smaller
than that attained by using all features as the input. To be
more specified, by using the GA-based, our ED-LSTMmodel
reduces the MAE by 14.7% on average and 18.3% in the
best case. The AE-BiLSTM and AC-LSTM models improve
the MAE by 21.3% and 12.4% on average by leveraging the
features selected by the GA-based algorithm. These results
prove that the features selected by our proposed GA-based
algorithm are not only effective for ED-LSTM but also the
other prediction models.

We visualize the prediction results on the Hanoi dataset
with different time-step values ahead in Fig. 11 and 12.
In all cases, our proposed ED-LSTM model outperforms the
AE-BiLSTM model. This is reflected by the fact that the
ED-LSTM model’s prediction results are much closer to the
ground truth than the AE-BiLSTM model. In comparison
between the ED-LSTM model and AC-LSTM model, it can
be seen that the ED-LSTM model captures more peaks than
the AC-LSTMmodel. By comparing between Fig. 11 and 12,
we can see that the prediction results with the selected fea-
tures from GA are closer to the ground-truth than the results
when using all features. This result again proves the data
shown in Tables 3 and 4, in which the MAE value of GA is
always better than that obtained when using all the attributes.

To further demonstrate the effectiveness of the proposed
model, we input the features selected by our GA-based
algorithm into in the encoder-decoder model to predict
PM2.5 one-month ahead. Because we have hourly data,
we calculate the mean value of each day from 24-hour data.
We fix the input length to 70 and vary the length of the output
from 1 to 31 to see how the output length affects the model’s
accuracy. Figure 10 shows that the model produces low and
stable MAEs as the number of time steps in the output varies.
Furthermore, the last three test cases in the chart achieve the
lowest MAE.

2) COMPARING ED-LSTM AND ST-DNN
In this section, we compare the performance of our pro-
posed model with the ST-DNN model. Note that due to the
impossibility of reproducing the ST-DNN results, we have
copied the results from Fig. 23 in the ST-DNN paper [11]
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FIGURE 10. MAE of the proposed model with different output lengths.

TABLE 5. Comparing the MAE of the proposed ED-LSTM model and the
ST-DNN model (using the features proposed by [11]).

to the third column. The results are collected and shown
in Table 5. ST-DNN (A+L+C) indicates the best combina-
tion of adaptive artificial neural networks (A), long short-term
memory (L), and convolutional neural network (C) in
ST-DNN. Our model outperforms ST-DNN under all experi-
mental settings. The fourth column shows the performance
gap between our proposed approach and ST-DNN, rang-
ing from 14.82% to 41.89%. Interestingly, the performance
gap tends to increase as we increase the time steps of the
output.

To illustrate the accuracy of our prediction model, we visu-
alize the details of the prediction results in Table 5 and
Fig. 13. The figure includes six subfigures, each of which
presents the prediction over time with a different number of
time steps ahead. Moreover, we plot the ground truth in the
subfigures for comparison. When the number of the output
timesteps is small (i.e., Figures 13(a) and 13(b)), the predicted
data accurately match the ground truth data. Even the peak
points are successfully predicted. In the other figures, as the
number of time steps ahead increases, the prediction becomes
slightly less accurate than that in Fig. 13(a).

In summary, ED-LSTMoutperforms the existingmodels in
terms of prediction accuracy. The improvement comes from
two reasons. The first one is introducing theGA-based feature
selection algorithm, which helps determine the optimal fea-
ture combination. The second one is that the combination of
encoder-decoder and LSTM network helps extract meaning-
ful information from the input. On the other hand, ED-LSTM
has a slightly higher computation time than the model with
the lowest value. However, ED-LSTM’s computation time is
still sufficient for real-time prediction of PM2.5.

V. DISCUSSION
According to our GA-based feature selection methods,
the feature combination that produces the best performance
for predicting PM2.5 is {wind speed, temperature, radiation,
PM10}. Therefore, these features have the greatest effect on
PM2.5. Indeed, we have measured the correlation between
PM2.5 and all the features using three methods: Spearman’s
correlation (SC), Pearson correlation (PC), and mutual infor-
mation score (MIC). Table 6 represents the absolute values of
SC, PC andMIC. Thewind speed, temperature, radiation, and
PM10 show high correlations with PM2.5, which is reflected
by the high absolute values of SC, PC, and MIC.

TABLE 6. Correlation of features.

Our findings are consistent with the results of previous
studies. In [23], the authors showed that temperature is pos-
itively correlated with PM2.5, and a threshold decides the
correlation between wind speed and PM2.5. Specifically,
when the wind speed is less than 3 m/s, it is negatively
correlated with PM2.5, and beyond that point, it is posi-
tively correlated with PM2.5. The work in [24] also found
that PM2.5 is affected the most by wind speed and temper-
ature. The relationship between radiation and temperature
with PM2.5 is studied in [25]. The authors in [25] showed
that increasing temperature and decreasing radiation lead to
increases in PM2.5. [26]–[28] have shown the that PM10 is
strongly related to PM2.5.

In summary, our GA-based feature selection method has
selected the optimal feature combination for predicting
PM2.5. The optimal combination includes features that have
a considerable effect on PM2.5.

VI. RELATED WORKS
This section briefly reviews work related to PM2.5/air quality
prediction models and GA-related methods. Kök et al. [3]
predicted air quality using a deep learningmodel that includes
three parts. In the first part, the training data are fed into
an LSTM layer with an input sequence length of 8 and
output length of 1. Second, the predicted data are labeled
according to the daily air quality index (AQI) values. Finally,
a decision unit is developed to map the observed data and
predicted alarm situations. The model succeeds in employing
LSTM with high accuracy, but the input and output are not
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FIGURE 11. Comparison between models using Hanoi dataset with all features.

FIGURE 12. Comparison between models using Hanoi dataset with features selected by GA.

flexible. Several other models, such as ST-DNN [11], deep air
learning (DAL) [10], and GC-DCRNN [15], exploit spatial
data to formulate the relationships between spatial-temporal

data. However, ST-DNN and GC-DCRNN do not identify
the factors that affect air quality. Additionally, the models
have a high time cost because of the preprocessing. The DAL
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FIGURE 13. Comparison between models using Taiwan dataset with features selected by [11].

model performs feature selection during the training process
by inserting a layer between the input layer and the second
layer of the neural network. DAL, however, aims to discover
the importance of different input features to the predictions,
not to increase the prediction accuracy. The authors reveal the
main relevant factors to the variation in air quality and provide
proof to support air pollution prevention and control.

In [29], the authors use a sequence-to-sequence model to
predict PM2.5. They feed all air pollutants into the model
without concern for their appropriation. The main problem is
that predicting all air pollutants will results in an ‘‘accumula-
tion of errors.’’ For example, when each feature’s prediction
results are inaccurate, it will negatively affect PM2.5 fore-
casting. Even if a feature does not affect PM2.5, it will cause
the outcomes to be more inaccurate. In [21], the dataset
consists of five features other than PM2.5; therefore, there are
5! = 120 feature combinations. However, the authors do not
describe how to select the optimal combination. In the exper-
iments, the authors present results for seven combinations
without explaining why these combinations are selected.
L. Yan et al. use the E-D model to predict PM2.5 in [30].
The authors use all other features, including themonthly aver-
age PM2.5 concentration, daily average PM2.5 concentra-
tion, PM10 concentration, AQI, SO2, CO, NO2, O3, average
temperature, humidity, pressure, and wind speed per hour
per day. As there is no consideration of the optimal feature
selection, the use of all features may complicate the model
and degrade the prediction accuracy. In [31], the authors
divide the features into groups and feed each group into a
separate encoder. This approach has two serious problems.

First, similar to other existing works, the use of all features,
including features not related to PM2.5, degrades the predic-
tion accuracy. Second, as they use a separate encoder for each
feature group, the number of encoders is equal to the number
of feature groups. Consequently, the model becomes complex
when the number of features is extensive. Bo Zhang et al.
in [21] conduct two training phases to predict PM2.5. In the
former phase, the authors use an auto-encoder model to
extract the relationship between multiple climate variables
and the PM2.5 concentration. This phase is also responsible
for compressing the input data to reduce the complexity.
The output of the first phase is then fed into the second
phase, which uses a Bi-LSTM network to predict the future
PM2.5 based on the historical data. In [22], the authors take
advantage of three types of data, including recent air pollu-
tants, meteorology, and adjacent station’s PM2.5. The authors
first utilize a one-dimensional convolutional neural network
to extract the air quality data’s spatiotemporal correlation.
The extracted feature vector is then fed into an LSTM layer
with an attention mechanism to predict future air quality. In
summary, the existing works use various variants of the ED
model to performPM2.5 prediction, but none consider feature
selection.

The choice of hyperparameters generally has a signifi-
cant impact on the performance of a deep-learning model.
A nonexhaustive list of parameters includes the number
of hidden layers, the number of neurons in each layer,
the weights, and the learning rate. In previous works, these
hyperparameters are typically chosen based on trial and eval-
uation, which is time consuming and does not guarantee
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optimal performance. A feasible approach to address this
problem is to exploit search techniques to find the opti-
mal settings. In such a context, the genetic algorithm (GA),
which is a meta-heuristic search and optimization method,
shows potential. In [32], the authors use GA to determine
the optimal structure of a deep belief network for detecting
different types of attacks in IoT networks. They then pro-
pose a GA-based approach to adaptively adjust the number
of hidden layers and the number of neurons in each layer
according to the attack type. Bouktif et al. in [33] exploit a
GA to determine the optimal time lag and number of layers
of an LSTM model for predicting the future electric load.
In [34], the authors propose a deep long short-term mem-
ory (DLSTM) model to predict petroleum production. A GA
is used to infer the optimal selection of the model hyperpa-
rameters, such as the number of epochs, the number of hidden
neurons, and the lag. W. Liu et al. leverage support vector
machine (SVM) for PM 2.5 prediction in [35]. They use
the genetic algorithm (GA) and particle swarm optimization
(PSO) to optimize the model’s parameters, thereby improv-
ing the prediction accuracy. In [36], the authors propose
a PM2.5 prediction model that utilizes multiple resolution
data as input. An ensemble approach is leveraged to combine
information retrieved from the low- and high-resolution data.
The authors use the nondominated sorting genetic algorithm
(NSGA-II) to optimize the ensemble weights. These works
differ from our approach in that they leverage a GA to tune
the parameters, not to optimize the input feature combination.
Indeed, the models proposed in [35] and [36] take all the
features as the input.

In this research, we apply a GA for air quality predic-
tion model feature selection. The integration substantially
improves the accuracy of PM2.5 prediction. Another distinct
characteristic of our model is the ability to predict multiple
steps ahead, as desired.

VII. CONCLUSION
In this paper, we have presented a novel prediction model for
PM2.5 that combines PM2.5 with other air quality-related
features. Our model utilizes a GA-based feature selection
algorithm and an ED-LSTM prediction model. While the
GA-based algorithm efficiently determines the near-optimal
feature combination, the ED-LSTM model leverages LSTM
units to loosen the restriction on the length of the input
and output data. The experimental results indicate that our
ED-LSTM model can improve the MAE up to 53.7% com-
pared to that of state-of-the-art PM2.5 prediction models.
Moreover, our proposed approach that includes the GA-based
feature selection algorithm further improves the prediction
accuracy by at least 13.7%.
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