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ABSTRACT Polarization modulation imaging technology plays an important role in microscopic
super-resolution imaging. However, the specimen medium contains retardancy, while charge-coupled
devices may provide discrete under-sampling, and the coupled wavefronts consisting of the polarization state
of the light and the anisotropic distribution of the specimen can lead to vectorial phase fitting degradation.
Considering that the point spread function (PSF) of the main degradation parts can be regarded as an
asymmetric generalized Gaussian distribution with uncertain parameters, an adaptive image reconstruction
method is proposed based on variable exponential function regularization. The proposedmethod concentrates
on the diversity of the PSF and uses a variable exponent regularization to improve flexibility of the kernel.
Moreover, it can balance image edge preservation and provide staircase artifact suppression, which reduces
the over- and under-reconstruction of the microscopic images effectively. By optimizing the Split–Bregman
algorithm, we create an efficient method that minimizes the iterative loss function under the premise of
achieving high estimation accuracy. Compared with other methods, the experimental results reveal better
effectiveness and robustness of the proposed method, with improvements of 18% in the peak signal-to-noise
ratio, 21% in the structural similarity index measurement, and 337% in the mean structural similarity index
measurement.

INDEX TERMS Image reconstruction, variable exponential function regularization, optimized Split–
Bregman, polarization imaging.

I. INTRODUCTION
Super-resolution, wide-field imaging and spectroscopy are
widely used to characterize subwavelength nanoparti-
cles [1], [2]. Wide-field optical polarization modulation
imaging modulates the parameters characterizing the vector
state of the light wave, such as the polarization state, the direc-
tion of the wave vector, and the phase of the wave surface of
the incident light. Then, the variation of the near-field param-
eters can be retrieved according toMaxwell equation from the
obtained image sequence. Finally, a far-field super-resolution
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image that overcomes the diffraction limit can be retrieved
and reconstructed.

Nevertheless, as degradation imposed by the experimental
setup, it is impossible to obtain a perfectly sharp image of the
specimen. The specimenmedium contains retardancy [3], [4],
and charge-coupled devices (CCDs) can lead to discrete
under-sampling [5], [6], while the coupled wavefronts con-
sisting of the polarization state of the light and the anisotropic
distribution of the specimen can result in vectorial phase fit-
ting degradation [7], [8]. Since the uncertain estimation of the
degradation imaging system, it is very difficult to accurately
determine the point-spread function (PSF). Indeed, accurate
estimation of the PSF using sharp images is a premise for
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ensuring the quality of image reconstruction [9], [10]. In this
work, we focus on the effect of the absence of prior informa-
tion and degradation parameters on the reconstruction, and
study various methods to balance image-detail enhancement
and noise suppression.

Regularization is one of themost effectivemethods to over-
come the limitations of image reconstruction [11]. To intro-
duce additional constraints to ill-posed problems, the reg-
ularization model and the selected kernels are particularly
important. Typical regularization models can be separated
into two categories. The first consists of studies based on
Total Variation (TV) regularization. For example, Daniele
and Paolo [12] provided both analyses and experiments to
get a clearer picture of blind deconvolution. Chen et al. [13]
proposed a combinational regularization model for synthetic
aperture radar image despeckling. Du et al. [14] proposed a
joint weighted nuclear norm and TV regularization method
to decrease the noise of the hyperspectral imaging data.
The second category contains studies based on Tikhonov
regularization. For example, Chen et al. [15] focused on a
Tikhonov regularizationmethod for inverse mixed variational
inequalities. Zhai et al. [16] proposed a regularization matrix
construction approach based on the minimum mean square
error. Lu et al. [17] proposed a fusion method based on
Tikhonov regularization and detailed reconstruction. All the
studies mentioned here have demonstrated certain advantages
in terms of accuracy, robustness, and/or compactness. How-
ever, these approaches also have some drawbacks. TV regu-
larization smooths the wings of the PSF yet fails to keep the
edges, while Tikhonov regularization strengthens PSF edges,
it still forms a ‘staircase artifacts’ in the wings.

Recently, deep learning has also been widely used in
degraded image reconstruction. Rivenson et al. [18] proposed
a neural network to reconstruct the phase and amplitude
images of various samples via a hologram. Xu et al. [19]
developed a trilateral weighted sparse coding scheme for
robust real-world image denoising. Yue et al. [20] pro-
posed a novel unified framework to simultaneously deal with
noise removal and generation. Cai and Wei [21] proposed
a novel deep generative model equipped with a brand new
style extractor which can extract style features from ground
truth values. These networks were confirmed to be effec-
tive for image reconstruction. As the network required a
large number of specimens as a training set, currently there
is no public dataset of wide-field subwavelength nanopar-
ticles that satisfies this requirement. Moreover, nanoparti-
cle super-resolution reconstruction is more complicated than
image reconstruction under natural light, which increases the
computational complexity. As the parameters of the degra-
dation model are unknown, the reconstruction method based
on deep learning is worse than what can be achieved with
conventional methods [19], [20]. Although inpainting can
provide a good visualization effect on image reconstruction,
it is not suitable for revealing the microscopic properties of
nanoparticles.

An early study [22] considered the degradation using a
degenerate Gaussian model in which the relevant parameters
were unknown. In our previous work [23], we demonstrated
that the model of [22] follows an asymmetric generalized
Gaussian distribution (AGGD). Nevertheless, the parameters
of themodel cannot be explicitly ascertained, which are easily
affected by minor changes in the imaging process and instru-
mentation. Thus, we cannot use a constraint with a certain
norm, such as the L1 norm (TV regularization) and L2 norm
(Tikhonov regularization). Indeed, on the one hand, wide-
field polarization imaging systems are affected by out-of-
focus specimens in the optical axis. Image quality is degraded
by the superposition of the clear image presented by the
in-focus specimen and the unclear interference image of the
out-of-focus specimen. On the other hand, traditional image
reconstruction methods are all performed under a certain
PSF. However, in actual systems, image degradation caused
by multiple factors makes the PSF variable. Except for the
degradation of the PSF, the noise of microscopic polarization
imaging is related to the statistical properties of photons,
which can be described by a Poisson distribution. The interac-
tion between Poisson noise and degradation models leads to
image degeneration, which makes PSF estimation extremely
complex. Improper reconstruction enhances the degeneration
of the image, or causes halo and artifacts [24]–[26]. It can
interfere with further observations of the microscopic details
of the particle or limit the accuracy of the obtained measure-
ments.

Moreover, regularization and deep learning are mainly
aimed at Gaussian degradation model to realize image recon-
struction, but often fail to fit the AGGD model accu-
rately. Improper reconstruction can also lead to severe
over-reconstruction and under-reconstruction [27], [28].
Over-reconstruction will oversharp the particle bound-
ary and singularities formed by degradation, resulting in
high variance and low deviation of optimization results.
Under-reconstruction will excessively blur the particle
boundary and the background, resulting in low variance and
high deviation of the optimization results. The improper
reconstruction of optical field retrieval [7], [8] appears seri-
ous distortion in the particle boundary region, such as halo
and artifacts. Polarization parameters cannot be properly
restored.

In this paper, we propose a novel method based on vari-
able exponential function regularization [29] to appropri-
ately reconstruct the optical field retrieval imaging. The
main advantage of our method is that it can adaptively
determine the norm according to the degradation model and
the characteristics of the image. This allows for a more
flexible and effect approach to PSF estimation and recon-
struction, and can effectively restrain the shortcomings of
TV regularization and Tikhonov regularization. The proposed
method does not rely on the initial value and is suitable for
the reconstruction of mixed degradation model. Under the
condition that the degraded prior knowledge is known, our
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FIGURE 1. General outline of wide-field polarization imaging, and the processing methods adopted in the proposed method.

FIGURE 2. Image and the corresponding PSF degraded by the factors coupled with the polarized light and the anisotropic
specimen medium. (a), (e) Original image and the corresponding PSF, (b), (f) degraded image and the corresponding PSF with
AGGD degradative model, (c), (g) degraded image and the corresponding PSF with polarization angular errors, and (d),
(h) degraded image and the corresponding PSF with AGGD degradative model and polarization angular errors.

previous research [29] has been validated in remote-sensing
images. It demonstrates that the proposed method provides
better support for image reconstruction, and efficaciously
compensates for image degradation.

We have structured the remainder of the paper as fol-
lows. Section 2 presents an analysis of the degradation
of wide-field polarization imaging and the design of our
method. Section 3 analyses the simulated and experimental
results of the proposed method compared with those obtained
with other methods. Finally, the conclusions are provided in
Section 4.

II. MATERIALS AND METHODS
A. DEGRADATION ANALYSIS OF WIDE-FIELD
POLARIZATION IMAGING
As mentioned in Section 1, the PSF can be affected
by multiple degradative factors in polarization imaging,
thereby making it quite complex. Figure 1 depicts an
outline of wide-field polarization imaging, and the pro-
cessing approach used in the proposed method. Based on
different amplitudes or wavefronts, the Stokes parameters
can be retrieved using appropriate analyses for different
sensors.
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Let us first consider the noiseless case. Due to light trans-
mission in the experimental setup, the air extinction, ther-
mal lens radiation, and blackbody radiation all impact and
degrade the polarized light wavefront. Similarly, the impurity
and retardation properties of the specimen deteriorate the
wavefront of the anisotropic specimenmedium. Since the dis-
tribution and corresponding parameters of the variations are
unknown, it directly results in uncertainties of the degradation
model’s parameters.

Figure 2 shows the image and the corresponding PSF
generated by the finite-difference time-domain (FDTD)
method degraded by the degradative factorsmentioned above.
Fig. 2(a) presents the original image, while Fig. 2(b) is a
blurred image with AGGDmodel, where the shape parameter
is 3.37 and the values of the left and right variances are
38.87 and 68.94, respectively. Fig. 2(c) shows a blurred image
with an angular error of 90 degrees. Fig. 2(d) depicts a blurred
image with AGGD model and angular errors, the parameters
of which are the same as in Figs. 2(b) and 2(c), respectively.
As can be seen in the figures, the image quality and PSFs have
deteriorated to some extent.

Due to the rotation errors and static errors of the polarizer,
the Stokes parameters have associated errors. The problem
becomes more complicated when the AGGD degradation
with uncertain parameters and Poisson noise are considered.
Our current study attempts to maintain a balance between
noise suppression and detailed retention during image recon-
struction. To optimize the parameter estimation process,
we use a regularization kernel to constrain the ill-posed prob-
lem in the appropriate solution space.We also propose the use
of the variable exponential function regularization method,
which is combined with the advantages of TV regularization
and Tikhonov regularization to precisely estimate the PSF.
The process allows us to implement self-adaptable parameter
estimation and PSF estimation. It can balance coefficient
sparsity and edge preservation, and further improve the qual-
ity of image reconstruction.

B. MATHEMATICAL NOTATIONS AND MATRIX
DIMENSION
The mathematical notations and their meanings used in this
paper are shown in Table 1. Unless otherwise specified,
the matrix dimensions presented in this paper are all n × n
where n = 1000, and the initial value is zero matrix.

C. LIGHT FIELD RETRIEVAL OF POLARIZATION
MODULATION IMAGING
Since the incident light of the experimental setup is per-
pendicularly incident into the specimen, the light intensity
perceived by CCD can be read as follow

I =
I0
2

[
1+ sin 2

(π
2
− ρ

)
sin δ

]
. (1)

Then, the Stokes parameters are retrieved by a mutual
relationship between Jones andMuller model which are given

TABLE 1. Mathematical notations.

as follow [7]

S0 = Idp(1+ sin δ)

S1 = Idp(1+ sin δ) cos 2ρ

S2 = 2
√
Idp(1+ sin δ) cos 2ρ

S3 = 2
√
Idp(1+ sin δ) sin 2ρ. (2)
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FIGURE 3. (a) Two Gaussian distribution functions, f1 and f2, and their over-reconstruction and under-reconstruction.
(b) Right-skewed AGGD composed of L1 and R2, and (c) left-skewed AGGD composed of L2 and R1. The AGGD degradative
model can be composed by L1 and R2, or L2 and R1, where the variances of left and right sides must not be the same.

FIGURE 4. Experimental setup of the wide-field polarization modulation
imaging system.

Due to the influence of AGGD degradation model,
the polarization angle and polarization phase difference have
errors. The proposed method compensates the degradation
model by optimizing the PSF of the image. This optimizes
the polarization parameters and conduces to obtain accurate
light field information.

The polarization parameter imaging of the polarization
modulation imaging retrieval used in this paper refers to
the images of polarization angle and polarization phase dif-
ference. The polarization parameters range from 0 to 2π .

Polarization parameter imaging can be calculated by Stokes
parameters.

D. AGGD MODEL
An AGGD degradative model can be given by (3), as shown
at the bottom of the next page.
0 (a) is a Gamma function which is defined as 0 (a) =∫
∞

0 ta−1e−tdt, a > 0.
The parameters sAGGD, σl and σr are defined as follows

sAGGD = ρ−1 (R)

σl = δl

√
0 (3/α)
0 (1/α)

,

δl =

√√√√√ 1
Nl − 1

Nl∑
k=1,xk<µAGGD

x2k

σr = δr

√
0 (3/α)
0 (1/α)

,

δr =

√√√√√ 1
Nr − 1

Nr∑
k=1,xk≥µAGGD

x2k , (4)

where

R = r

(
r3 + 1

)
(r + 1)(

r2 + 1
)2 , r =

δl

δr
.
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FIGURE 5. Comparison of the proposed method and the over- and under-reconstruction. (a), (e) original and zoomed-in
images, (b), (f) image obtained with the proposed method and zoomed-in images, (c), (g) image obtained with
over-reconstruction and zoomed-in images, and (d), (h) image obtained with under-reconstruction and zoomed-in
images, where the red box represents the same position of (e), (f), (g), and (h).

As σl 6= σr in the degradation model of the PSF, the
skewness can be given by

S =
(
σ 4
r − σ

4
l

)
0 (4/sAGGD)

√
(σr + σl) 0 (1/sAGGD)(
σ 3
r + σ

3
l

)3
0 (3/sAGGD)3

.

(5)

If S < 0, the data are right-skewed, otherwise they are left-
skewed.

Generally, TV regularization, Tikhonov regularization,
inverse filtering, and Wiener filtering are effective on Gaus-
sian model. As AGGD has asymmetry on the left and right
sides, it can result in severe over- or under-reconstruction.
Fig. 3(a) shows two Gaussian distributions and their over-
reconstruction and under-reconstruction, where f 1 ∼ N (0, 2)
and f 2 ∼ N (0, 1). L1 and R1 are the left and right side of
f1, and L2 and R2 are the left and right side of f2. A1 is
the difference between L1 and L2, and A2 is the difference
between R1 and R2.

Assume the AGGD is composed of L1 and R2, as shown
in Fig. 3(b), and the fitting curve is f1. The fitting curve
can fit L1 well, but it has serious over-reconstruction when
using R1 to fit R2. Similarly, when f2 is used as the fitting
curve, under-reconstruction occurs when L1 is fitted. The
same situation is presented in Fig. 3(c). Thus, it is impossible
to fit the AGGD with a symmetric structure as done in these
conventional methods. As the PSF obtained after reasonable

reconstruction is important in image reconstruction or anal-
ysis [7], we propose the use of variable exponential function
regularization.

E. SPLIT–BREGMAN ALGORITHM
Assume G (·) is a convex function. Let us first consider the
unconstrained optimization problem

minG (u)+
1
2µ
‖Au− b‖22 . (6)

When m is much less than n, it is difficult to solve the above
problem.

To solve this problem, we first introduce the Bregman
distance. The Bregman distance between u and v is defined
as follows

Dp
G (u, v) = G (u)− G (v)− 〈p,u− v〉 , (7)

whereDp
G (u, v) ≥ 0. For any pointw on the line connecting u

and v,Dp
G (u, v) ≥ D

p
G (w, v). Assuming that u is the optimal

solution and v is the iterative solution, Dp
G (u, v) can be used

to describe whether the iterative solution is or is not infinitely
close to the optimal solution.

Now, let us go back to image reconstruction. The loss
function can be given by

min
u,d
|d| + G (u) , s.t. d = 8(u) . (8)

fAGGD =


sAGGD

(σl + σr ) 0 (1/sAGGD)
exp−

(
−(x − µAGGD)

σl

)α
, x < µAGGD

sAGGD
(σl + σr ) 0 (1/sAGGD)

exp−
(
−(x − µAGGD)

σr

)α
, x ≥ µAGGD,

(3)
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FIGURE 6. The light intensity profile of the particle along the tangent direction corresponding to Figs. 5(e-h). (a) light
intensity change of all pixel points of origin image; (b) light intensity change of all pixel points of the reconstruction
result of the proposed method; (c) light intensity change of particle pixel points of the reconstruction result of
over-reconstruction; (d) light intensity change of particle pixel points of the reconstruction result of
under-reconstruction.

We can transform (8) into an unconstrained optimization
problem as follows

min
u,d
|d | + G (u)+

µ

2
‖d −8(u)‖22 , (9)

Let F1 (u,d) = |d| + G (u) and F2 (u,d) = d − 8(u).
Then, the iteration can be written as(

uk+1,dk+1
)
= min

u,d
Dp
G

(
u,uk ,d,dk

)
+ · · · +

µ

2
‖d −8(u)‖22

= min
u,d

F1 (u,d)−
〈
pku,u− uk

〉
− · · · −

〈
pkd,d− dk

〉
+
µ

2
‖F2 (u,d)‖22

pk+1u = pkd − µ (∇8)
T
(
8uk+1 − dk+1

)
pk+1d = pkd − µ

(
dk+1 −8uk+1

)
, (10)

When Dp
G

(
uk ,uk−1

)
≤ ε, the iteration comes to an end,

where ε is a positive constant.

F. VARIABLE EXPONENTIAL FUNCTION REGULARIZATION
Based on the theory of linear systems, the degenerative model
of an optical system can be described as follows

D = K ∗ U+ E. (11)

Estimating the PSF of a degraded image is a classical ill-
posed problem.

To properly consider the complexity of the PSF, we pro-
pose a variable exponential function regularization kernel to

FIGURE 7. Original image with a polarizer angle of 0 degrees generated
by the FDTD simulation without errors.

ensure the existence of solutions, which can be defined as
follows

R (H) =
∫
|∇H|p(|∇T|)dσ, (12)

where ∇H =
(
hx ,hy

)
.

The adaptive optimization index of the estimated PSF is
defined as follows

p (m) = 1+
1

1+ nm2 . (13)

When n is large, the regularization mode is mainly TV
regularization. Similarly, when n is small, Tikhonov reg-
ularization plays a leading role. Comparably, when in
marginal areas, m is large, the value of p (m) tends to 1.
Meanwhile, in wings where m is small, p (m) tends to 2.
The proposed method can adaptively reconstruct an image
by controlling p (m). For wide-field polarization imaging,
the proposed method strengthens the particle boundaries via
Tikhonov regularization, and smooths the region via TV
regularization.
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FIGURE 8. Comparison of the reconstructed results of the degraded image from the proposed method, Perrone’s TV regularization, Lu’s
Tikhonov regularization, inverse filtering and Wiener filtering. Reconstructed results of the degraded image with mixed AGGD degradation
with different parameters are shown in (a1–a6) where the shape parameter is 10 and the left and right variances are 3.21 and 38.4;
(b1–b6) where the shape parameter is 10 and the left and right variances are 10.96 and 43.02; (c1–c6) where the shape parameter is
10 and the left and right variances are 19.76 and 50.59; (d1–d6) where the shape parameter is 5.62 and the left and right variances are
29.28 and 59.47; and (e1–e6) where the shape parameter is 3.36 and the left and right variances are 38.89 and 69.01. The parameter of
additive Poisson noise is 10, 20, 30, 40, and 50 in panels (a1, b1, c1, d1, and e1), respectively. Next, (a1, b1, c1, d1, and e1) show the
degraded image without processing, and the reconstructed results obtained with (a2, b2, c2, d2, and e2) the proposed method, (a3, b3,
c3, d3, and e3) Perrone’s TV regularization, (a4, b4, c4, d4, and e4) Lu’s Tikhonov regularization, (a5, b5, c5, d5, and e5) inverse filtering,
and (a6, b6, c6, d6, and e6) Wiener filtering.
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FIGURE 9. Objective assessment values of the images analyzed in Fig. 6. (a) Mean, (b) variance, (c) MSE, (d)
PSNR, (e) SSIM, (f) MSSIM, and (g) entropy. The indices 1–5 of the x -coordinate represent the corresponding
images in Figs. 6 (a–e), respectively.

The loss function J (H,U) can be given by

min
H,U

J (H,U)

= min
H,U

[
α3 ‖H× U− D‖22 + α1R (H)+ α2

∫
|∇U| dσ

]
,

(14)

where U ≥ 0. The previous work of our research group [29]
demonstrated the existence and convergence of the solu-
tion to this loss function. Since the loss function of the
proposed method is convex, it approximates the optimal
solution point by point from the top according to the
strong duality [30], and the optimal duality distance is zero.
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FIGURE 10. Comparison of the reconstructed results of the degraded image obtained with the proposed method, DPPSR, and
DeblurGAN-v2. Reconstructed results of the degraded image with mixed AGGD degradation with different parameters are shown in
(a1–a4), where the shape parameter is 10 and the left and right variances are 3.21 and 38.4; (b1–b4) where the shape parameter is
10 and the left and right variances are 10.96 and 43.02; (c1–c4) where the shape parameter is 10 and the left and right variances are
19.76 and 50.59; (d1–d4) where the shape parameter is 5.62 and the left and right variances are 29.28 and 59.47; and (e1–e4) where the
shape parameter is 3.36 and the left and right variances are 38.89 and 69.01. The parameter of additive Poisson noise is 10, 20, 30, 40,
and 50 in panels (a1, b1, c1, d1, and e1), respectively. Next, (a1, b1, c1, d1, and e1) show the degraded image without processing, and the
reconstructed results obtained with (a2, b2, c2, d2, and e2) the proposed method, (a3, b3, c3, d3, and e3) DPPSR, and (a4, b4, c4, d4, and
e4) DeblurGAN-v2.

We can get an optimal solution in closed sets, and selection
of the initial values is robust.

Note that an L2 norm exists in J (H,U), which means
that this problem can be regarded as convex optimiza-
tion. To obtain a solution to (14), the Split–Bregman algo-
rithm [31], [32] is used to optimize the loss function.
Equation (14) can be transformed as follows

min
H,U

J (H,U)

= min
H,U

α3 ‖HU− D‖22 + α1
∑
|a1|p(|∇T|)

+ · · · + α2
∑
|a2| + β1 ‖a1 −∇H‖22

+ · · · + β2 ‖a2 −∇U‖22

 , (15)

where a1 = ∇H, a2 = ∇U, |a| =
√
a21 + a22,∇U =(

ux ,uy
)
.

According to the Split–Bregman algorithm, the optimiza-
tion iteration mode of (15) is given by

(
H(i+1),U(i+1), a(i+1)1 , a(i+1)2

)

= argmin
H,U,a1,a2


α3 ‖HU− D‖22 + α1

∑
|a1|p(|∇T|)

+...+ α2
∑
|a2| + β1

∥∥∥a1 −∇H− s(i)1
∥∥∥2
2

+...+ β2

∥∥∥a2 −∇U− s(i)2
∥∥∥2
2

 ,
(16)

where s(i+1)1 = s(i)1 + ∇H
(i+1) − a(i+1)1 , s(i+1)2 = s(i)2 +

∇U(i+1) − a(i+1)2 , and i is the number of iteration steps.
Next, let us first fix a1, s1, and U, for the subproblem

of H, which we can obtain via the variational principle
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FIGURE 11. Objective assessment values of the images analyzed in Fig. 9. (a) Mean, (b) variance, (c) MSE,
(d) PSNR, (e) SSIM, (f) MSSIM, and (g) entropy. The indices 1–5 of the x -coordinate represent the corresponding
images in Figs. 9 (a–e), respectively.

as follow

H(i+1)

= argmin
H

[
α3

∥∥∥U(i)H− D
∥∥∥2
2
+ β1

∥∥∥a(i)1 −∇H− s(i)1
∥∥∥2
2

]
(17)

When H holds for (18), the iterative process comes to an
end

α3

(
U(i)

)T (
U(i)H(i+1) − D

)
− β11H(i+1)

+div
(
a(i)1 − s(i)1

)
= 0. (18)
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FIGURE 12. Polarization modulation imaging results of the PSF of a polystyrene sphere. (a) Non-optimized PSF,
(b), (c) non-optimized PSF of the two polarization imaging results, (d) optimized PSF, and (e), (f) optimized PSF
of the two polarization imaging results.

FIGURE 13. Results of the proposed method of one polarization image of the polystyrene sphere compared
with the original image. (a), (c), (e) original and zoomed-in images, and (b), (d), (f) image obtained with the
proposed method and zoomed-in images, where the red box represents the same position of (c) and (d), and
the green box represents the same position of (e) and (f).

Then, we fix H(i+1), s1, and U, for sub-problem a1, which
we can find via the variational principle as follow

a(i+1)1 = argmin
a1

[
α1
∑
|a1|p(|∇T|) + β1 ‖a1

−∇H(i+1) − s(i)1
∥∥∥2
2

]
. (19)

Sequentially, we can infer from the Euler–Lagrangian
algorithm [33], [34] that

α1p (|∇T|) |a1|p(|∇T|)−
1
2 a1 + 2β1

[
a1

−∇H(i+1) − s(i)1
]
= 0. (20)

Now, let a1 = (a11, a12) and s1 = (s11, s12). Then (20) can
be transformed as follows

(c+ 2β1) a11 − 2β1h(i+1)x − 2β1s
(i)
11 = 0

(c+ 2β1) a12 − 2β1h(i+1)y − 2β1s
(i)
12 = 0, (21)

where

c = α1p (|∇T|)
(
a211 + a212

) p(|∇T|)
2 −1

. (22)

A Newton method [35], [36] is used to optimize the solu-
tion in this paper. The relationship between a11 and a12 can
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FIGURE 14. Results of the other polarization image of a polystyrene sphere obtained with our method compared
with the original image. (a), (c), (e) Original and zoomed-in images, and (b), (d), (f) optimization results of the
proposed method and zoomed-in images, where the red box represents the same position of (c) and (d), and the
green box represents the same position of (e) and (f).

FIGURE 15. Comparison of imaging results of the polystyrene sphere obtained with the proposed method, Perrone’s TV
regularization, Lu’s Tikhonov regularization, inverse filtering, and Wiener filtering. (a–f) Results of one polarization image, (g–l)
results of the other polarization image. (a), (g) Original images, (b), (h) results of our method, (c), (i) results of Perrone’s TV
regularization, (d), (j) results of Lu’s Tikhonov regularization, (e), (k) results of inverse filtering, and (f), (l) results of Wiener
filtering.

be defined as follows

a11 =
h(i+1)x + s(i)11
h(i+1)y + s(i)12

a12. (23)

Then, we update s1 as

s(i+1)1 = s(i)1 +∇H
(i+1)
− a(i+1)1 . (24)
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Algorithm 1 Variable Exponential Function Regularization
Input: The degraded image, D;
Output: The reconstructed image, the real part of D′;

1: Initial R (H) =
∫
|∇H|p(|∇T|)dσ , where p (m) =

1+ 1
1+nm2 , H = 0, T = 0, m = 0, n = 0, and U = 0.
2: Set

min
H,U

J (H,U) = min
H,U

[
α3 ‖H× U− D‖22 + α1R (H)
+...+ α2

∫
|∇U| dσ

]
3: Iterate step 2 by Split-Bregman algorithm
4: Return D′.

Finally, we fix a1, s1, and H, and compute a2, s2, and U.
After obtaining the PSF, a high-resolution image can be

reconstructed according to a fast Fourier transform, which
can be expressed as

D′ =
{
F−1

[
α3

β2
(|F (H)|)2

]}[ α3
β2

(∣∣∣F−1(H)∣∣∣)F(U)−F(H)]
,

(25)

where the real part of D′ is the reconstructed image.
Algorithm 1 and Algorithm 2 are pseudocodes of the pro-

posed method and Split–Bregman algorithm, respectively.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
The designed wide-field polarization modulation imaging
system is shown in Fig. 4. A mercury lamp was used as the
light source (LS). Linearly polarized light with an equidistant
angle of 18 degrees was obtained using rotating polarized
plates, which had an angle precision of 0.05 degrees at equal
intervals. An objective lens was used as an optic, which
had a magnification factor of 100 and a numerical aperture
of 0.90. The specimens used in this paper are polystyrene
nanoparticles and silicon nanoparticles, with a radii of 530 nm
and 500 nm, respectively. Reflected light and backscattered
light from the specimen were incorporated by the CCD
(PiA2400-17gm, Basler) via an analyzer system composed
of a quarter-wave plate (QWP) and an analyzer. Two images
of the polarization parameters were obtained via the retrieval
of the light-field information obtained by the CCD.

B. RESULTS OF OVER- AND UNDER-RECONSTRUCTION
To explicitly describe the over- and under-reconstruction,
we made a phase angle retrieval results of light field from
polarization modulated imaging of the actual image of silicon
sphere. Figure 5 shows a comparison of the proposed method
and the over- and under-reconstruction. Figs. 5(a-d) represent
the results of actual image, the proposed method, over-
reconstruction, and under-reconstruction, where Figs. 5(e-h)
are a single particle selected from the same red location of
Figs. 5(a-d). As can be seen from Fig. 5, over-reconstruction
retains a large amount of noise information, while

Algorithm 2 Split-Bregman Algorithm
Input: The degraded image, D;
Output: The optimal result, D′;

1: Initial H = 0, U = 0, a1 = 0, a2 = 0, T = 0,
s1 = 0, s2 = 0

1: Set

(
H(i+1),U(i+1)

,..., a(i+1)1 , a(i+1)2

)

= argmin
H,U,a1,a2



α3 ‖HU− D‖22
+...+ α1

∑
|a1|p(|∇T|)

+...+ α2
∑
|a2|

+...+ β1

∥∥∥a1 −∇H− s(i)1
∥∥∥2
2

+...+ β2

∥∥∥a2 −∇U− s(i)2
∥∥∥2
2


3: Fix a1, s1, and U, compute

H(i+1)

= argmin
H

[
α3

∥∥∥U(i)H− D
∥∥∥2
2
+ β1

∥∥∥a(i)1 −∇H− s(i)1
∥∥∥2
2

]
4: Until

α3

(
U(i)

)T (
U(i)H(i+1) − D

)
− β11H(i+1)

+div
(
a(i)1 − s(i)1

)
= 0

5: Fix H(i+1), s1, and U, compute

a(i+1)1

= argmin
a1

[
α1
∑
|a1|p(|∇T|)+β1

∥∥∥a1−∇H(i+1) − s(i)1
∥∥∥2
2

]
6: Until

α1p (|∇T|) |a1|p(|∇T|)−
1
2 a1

+2β1
[
a1 −∇H(i+1) − s(i)1

]
= 0

7: Update s1, compute

s(i+1)1 = s(i)1 +∇H
(i+1)
− a(i+1)1

8: Fix a1, s1, and H, compute a2, s2, and U
9: Return D′.

under-reconstruction smooths the particle boundary. The
proposed method can sharpen the particle boundary while
smoothing the noise information by proper reconstruction.

Figure 6 shows the light intensity profile corresponding to
the position of the red line in Figs. 5(e-h). It can be seen that
over-reconstruction sharpens the boundary of all the singular
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FIGURE 16. Polarization modulated imaging results of the PSF of a silicon sphere. (a) Non-optimized PSF, (b), (c)
non-optimized PSF of the two polarization imaging results, (d) optimized PSF, and (e), (f) optimized PSF of the two
polarization imaging results.

FIGURE 17. Results of the proposed method of one polarization image of the silicon sphere compared with the
original image. (a), (c), (e) Original image and zoomed-in images, and (b), (d), (f) image obtained with the proposed
method and zoomed-in images, where the red box represents the same position of (c) and (d), and the green box
represents the same position of (e) and (f).

regions, while under-reconstruction smooths all the regions,
which leads to a severe distortion of the reconstruction results.
The proposed method can sharpen the particle boundary
while smoothing the noise information.

C. RESULTS OF THE FDTD SIMULATION
Generally, it is impossible to obtain a perfectly clear image
of a specimen in actual systems. Instead an image gener-
ated by the FDTD simulation was degraded to verify the

effectiveness of the proposed method. Figure 7 exhibits
an original polarization image of the silicon sphere with
a polarizer angle of 0 degrees without errors, where the
simulated sphere has a radius of 50 nm, and the field-
of-view is 1000 nm × 1000 nm. Figure 8 shows a compari-
son of the reconstructed results of the degraded image with
different AGGD degradations and Poisson noise obtained
with the proposed method, Perrone’s TV regularization,
Lu’s Tikhonov regularization, inverse filtering, and Wiener
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FIGURE 18. Results of the other polarization image of the silicon sphere obtained with our method compared with
the original image. (a), (c), (e) Original image and zoomed-in images, and (b), (d), (f) the optimization results
obtained with the proposed method and zoomed-in images, where the red box represents the same position of
(c) and (d), and the green box represents the same position of (e) and (f).

FIGURE 19. Comparison of reconstruction results of the silicon sphere obtained with the proposed method, Perrone’s TV
regularization, Lu’s Tikhonov regularization, inverse filtering, and Wiener filtering. (a–f) Results of one polarization image, and (g–l)
results of the other polarization image. (a), (g) Original images, (b), (h) results of our method, (c), (i) results of Perrone’s TV
regularization, (d), (j) results of Lu’s Tikhonov regularization, (e), (k) results of inverse filtering, and (f), (l) results of Wiener filtering.

filtering. Perrone’s TV regularization and Lu’s Tikhonov reg-
ularization are representative methods, which have a good
effect on image reconstruction. Fig. 8(a1) is a blurred image

with AGGD degradation, whose shape parameter is 10 and
the left and right variances are 3.21 and 38.4, respectively.
In Fig. 8(b1), the shape parameter is 10 and the left and right
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FIGURE 20. Comparison of imaging results of the polystyrene sphere obtained with the proposed method, DPPSR and DeblurGAN-v2.
(a–d) Results of one polarization image, (e–h) results of the other polarization image. (a), (e) Original images, (b), (f) results of our
method, (c), (g) results of DPPSR, and (d), (h) results of DeblurGAN-v2.

FIGURE 21. Comparison of imaging results of the silicon sphere obtained with the proposed method, DPPSR and DeblurGAN-v2. (a-d)
Results of one polarization image, (e-h) results of the other polarization image. (a), (e) Original images, (b), (f) results of our method,
(c), (g) results of DPPSR, and (d), (h) results of DeblurGAN-v2.

variances are 10.96 and 43.02, respectively. In Fig. 8(c1),
the shape parameter is 10 and the left and right variances are
19.76 and 50.59, respectively. In Fig. 8(d1), the shape param-
eter is 5.62 and the left and right variances are 29.28 and
59.47, respectively. In Fig. 8(e1), the shape parameter is
3.36 and the left and right variances are 38.89 and 69.01,
respectively. The parameter of additive Poisson noise is 10,
20, 30, 40, and 50 in Figs. 8(a1, b1, c1, d1, and e1), respec-
tively. The mixed AGGD degradation is composed of AGGD
degradation and Poisson noise.

From Fig. 8, we can infer that the proposed method is
more effective in denoising than the comparison methods.
It is more effective in dealing with mixed AGGD degradation
with low variances. When the degradation is weak, images
have less high-frequency information, and it is found that the
methods compared here are all effective for image denoising

and recovery. Nevertheless, when the degradation is gradually
enhanced, high frequency information affects the calculation
of the image gradient. Although the proposedmethod can also
smooth the image in this case, the reconstructed image still
contains some degradation.

Figure 9 presents objective assessment values of the images
shown in Fig. 8. We chose some commonly used image
quality assessment indices to quantify the differences of
these methods, including the mean square error (MSE),
peak signal-to-noise ratio (PSNR), structural similarity index
measurement (SSIM), and the mean structural similarity
index measurement (MSSIM). Here, ‘Err’ is the degraded
image without processing, ‘Inv’ means inverse filtering, and
‘Wien’ represents Wiener filtering. ‘Entropy’ represents the
degree of dispersion of the image information. The proposed
method has advantages in almost all cases from Fig. 9, and
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FIGURE 22. Waterfall diagrams of the difference between the comparison methods and the proposed method corresponding
to Fig. 6. (a1, b1, c1, d1, and e1) show the degraded image without processing, and the reconstructed results obtained with
(a2, b2, c2, d2, and e2) the proposed method, (a3, b3, c3, d3, and e3) Perrone’s TV regularization, (a4, b4, c4, d4, and e4) Lu’s
Tikhonov regularization, (a5, b5, c5, d5, and e5) inverse filtering, and (a6, b6, c6, d6, and e6) Wiener filtering.
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FIGURE 22. (Continued) Waterfall diagrams of the difference between the comparison methods and the
proposed method corresponding to Fig. 6. (a1, b1, c1, d1, and e1) show the degraded image without
processing, and the reconstructed results obtained with (a2, b2, c2, d2, and e2) the proposed method, (a3,
b3, c3, d3, and e3) Perrone’s TV regularization, (a4, b4, c4, d4, and e4) Lu’s Tikhonov regularization, (a5,
b5, c5, d5, and e5) inverse filtering, and (a6, b6, c6, d6, and e6) Wiener filtering.

is the most effective method in reducing image degenera-
tion. The proposed method has highly ordered pixel distri-
bution, as demonstrated by its denoising capability in terms
of smoothing wings and sharpening edges, thereby resulting
in low entropy.

We also compared our method with DPPSR [37] and
DeblurGAN-v2 [38]. Since there is no qualified data set,
we used the pre-training network to obtain the results directly.
Figure 10 shows a comparison of the reconstructed results
of the degraded image with different AGGD degradation
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FIGURE 22. (Continued) Waterfall diagrams of the difference between the comparison methods and the
proposed method corresponding to Fig. 6. (a1, b1, c1, d1, and e1) show the degraded image without processing,
and the reconstructed results obtained with (a2, b2, c2, d2, and e2) the proposed method, (a3, b3, c3, d3, and
e3) Perrone’s TV regularization, (a4, b4, c4, d4, and e4) Lu’s Tikhonov regularization, (a5, b5, c5, d5, and e5)
inverse filtering, and (a6, b6, c6, d6, and e6) Wiener filtering.

values and Poisson noise obtained with the proposed method,
DPPSR, and DeblurGAN-v2. Figure 11 shows the corre-
sponding objective assessment values of the results in Fig. 10.
From Figs. 10-11, compared with DPPSR and DeblurGAN-
v2, the reconstructed result obtained with our method is
superior. It is worth noting that when comparing different
deep learning methods, due to the unknown parameters of the
degradation model and the insufficient training set, it may be
not possible to fit the network accurately.

See Appendix for more comparison.

D. RESULTS OF THE ESTIMATED POLARIZATION
IMAGING PSF
Figure 12 depicts a comparison of the PSF estimation results
of the original image and the polarization parameter image
obtained by the retrieval of light field of a polystyrene
sphere. Fig. 12(a) presents the PSF model of the unpro-
cessed image of the polystyrene sphere, while Figs. 12(b–c)
display the PSF models of the two polarization imaging
results, and Figs. 12(d-f) show the optimized PSF models
obtained with the proposed method. A comparison between
Figs. 12(a) and 12(d) illustrates that our method can adap-
tively reduce the amount of degradation in the PSF wings.
Similarly, a comparison between Figs. 12(b–c) and 12(e–f)
shows that our method can improve the image quality while
ensuring retrieval accuracy.

We use the optimized estimation of the PSF of the
polystyrene sphere presented in this paper to reconstruct
the polarization imaging results, where Fig. 13 shows a
result for one polarization image, and Fig. 14 depicts
the result of another one. All the experimental figures,
which present only one nanoparticle, have a size of
100 × 100 pixels, where a single pixel represents 34.5 nm.
Compared with the original image, the resolution and
image quality of the optimized image have been further
improved. The reconstructed image obtained via the pro-
posed method contains less degradation, has a smoother
non-boundary particle region, and a sharper particle boundary
region.

Next, Fig. 15 shows a comparison of imaging results
obtained with our method, Perrone’s TV regularization, Lu’s
Tikhonov regularization, inverse filtering, and Wiener filter-
ing. From Fig. 15, it can be seen that compared with other
methods, the imaging quality of ours is superior.

We also verified the results of our method using an image
of a silicon sphere. Figure 16 shows a comparison of the
PSF estimation results of an unprocessed image and polariza-
tion images. Further comparisons between the image recon-
structed by the proposed method and the original image are
shown in Figs. 17-19. It can be deduced from these images
that the resolution and image quality of the optimized image
have been further improved.
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FIGURE 23. Waterfall diagrams of the differences between the comparison methods and the proposed method corresponding
to Fig. 9. (a1, b1, c1, d1, and e1) show the degraded image without processing, and the reconstructed results obtained with
(a2, b2, c2, d2, and e2) the proposed method, (a3, b3, c3, d3, and e3) DPPSR, and (a4, b4, c4, d4, and e4) DeblurGAN-v2.
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FIGURE 23. (Continued) Waterfall diagrams of the differences between the comparison methods and the
proposed method corresponding to Fig. 9. (a1, b1, c1, d1, and e1) show the degraded image without processing,
and the reconstructed results obtained with (a2, b2, c2, d2, and e2) the proposed method, (a3, b3, c3, d3, and
e3) DPPSR, and (a4, b4, c4, d4, and e4) DeblurGAN-v2.

Finally, Figs. 20–21 show comparisons of the recon-
structed results of the spheres obtained with the proposed
method, DPPSR and DeblurGAN-v2. From Figs. 20–21,
compared with DPPSR and DeblurGAN-v2, the recon-
structed result of ours is superior.

IV. CONCLUSION
In this paper, we proposed a novel method based on variable
exponential function regularization to solve the lack of prior
knowledge and the unknown parameters needed to estimate
PSF degradation models. The main advantage of our method
is that it can adaptively determine the norm according to
AGGD degradation with uncertain parameters, which allows
for a more flexible and effective approach to PSF estimation
and reconstruction.Moreover, the proposedmethod can adap-
tively determine the norm according to image characteristics,
thus effectively restraining the shortcomings of TV regular-
ization and Tikhonov regularization. The results of actual
specimens showed that, compared with traditional methods,
the proposed method results in improvements of 18% in the

PSNR, 21% in the SSIM, and 337% in the MSSIM. We are
committed to balancing image accuracy and PSNR in the
future.

APPENDIX
To effectively describe the differences of the conventional
methods with ours, we constructed the waterfall diagram
shown in Fig. 22, which corresponds to the images shown
in Fig. 6. It can be deduced that our method has the best
performance in reducing global noise than the comparison
approaches, particularly in the particle region.

Next, in Figs. 22 (a3, b3, c3, d3, and e3) and (a4, b4, c4,
d4, and e4), the error matrices of Perrone’s TV regulariza-
tion and Lu’s Tikhonov regularization have an approximate
mean value of 100. From Fig. 9, the objective assessments
of these two methods manifest as over-reconstruction and
under-reconstruction. Inverse filtering and Wiener filtering
had better results than TV regularization and Tikhonov
regularization, as seen in Figs. 8, 9, and 22, but there exists
an approximate mean value of 100 of global noise in Fig. 22.
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The results indicate that although inverse filtering andWiener
filtering have better fitting effects than TV regularization and
Tikhonov regularization, they are unable to accurately fit an
AGGD. The mean global noise achieved with our method is
below 100 and there are lower amounts of noise in the particle
region. Indeed, in terms of the values of the objective indices,
especially SSIM and MSSIM, our approach is superior to
the other methods. Our method can limit the amount of
over-reconstruction and under-reconstruction, and can better
fit the AGGD.

In the same way, Fig. 23 shows that our method is superior
to the comparative deep learning method.
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