IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 3, 2021, accepted March 21, 2021, date of publication April 8, 2021, date of current version April 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071777

Incremental Association Rule Mining With a Fast
Incremental Updating Frequent Pattern

Growth Algorithm

WANNASIRI THURACHON ™~ AND WORAPOJ KREESURADE)

Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Corresponding author: Worapoj Kreesuradej (worapoj @it.kmitl.ac.th)

This work was supported by the Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Thailand.

ABSTRACT One of the most challenging tasks in association rule mining is that when a new incremental
database is added to an original database, some existing frequent itemsets may become infrequent itemsets
and vice versa. As a result, some previous association rules may become invalid and some new association
rules may emerge. We designed a new, more efficient approach for incremental association rule mining
using a Fast Incremental Updating Frequent Pattern growth algorithm (FIUFP-Growth), a new Incremental
Conditional Pattern tree (ICP-tree), and a compact sub-tree suitable for incremental mining of frequent
itemsets. This algorithm retrieves previous frequent itemsets that have already been mined from the original
database and their support counts then use them to efficiently mine frequent itemsets from the updated
database and ICP-tree, reducing the number of rescans of the original database. Our algorithm reduced
usages of resource and time for unnecessary sub-tree construction compared to individual FP-Growth,
FUFP-tree maintenance, Pre-FUFP, and FCFPIM algorithms. From the results, at 3% minimum support
threshold, the average execution time for pattern growth mining of our algorithm performs 46% faster than
FP-Growth, FUFP-tree, Pre-FUFP, and FCFPIM. This approach to incremental association rule mining and
our experimental findings may directly benefit designers and developers of computer business intelligence
methods.

INDEX TERMS Association rule mining, data mining, FP-tree, FP-growth, FPISC-tree, frequent itemset

mining, incremental association rule mining.

I. INTRODUCTION

Association rule mining [1] is a well-known and widely used
technique in data mining [2]; it has been used to mine patterns
or relationships between sets of data in a large database.
It has been widely applied in medicine, education, and busi-
ness [3]-[7]. In general, association rule mining consists of
two major sub-tasks [8]: first, frequent itemset generation,
finding frequent itemsets, that satisfy a minimum support
threshold, and second, association rule generation, from the
derived frequent itemsets, that satisfy a minimum confidence
threshold in the form of A = B. Most researchers have
focused on improving the efficiency of frequent itemset min-
ing, because it usually requires considerable resources and
compute time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junchi Yan

During the past decade, many researchers have devel-
oped algorithms for finding frequent itemset. A conventional
algorithm for finding frequent itemset is the Apriori algo-
rithm [10]: it generates many candidate itemsets and requires
multiple database scans, resulting in significant wasted
resources and compute time. The FP-Growth algorithm [11]
has been used to solve this problem, without candidate
itemsets generation, reducing the number of database scans.
Therefore, the FP-Growth algorithm is more efficient than
Apriori. Nevertheless, it still wastes some resources and
compute time for constructing multiple sub-trees. The Eclat
algorithm [17] used a vertical data format for frequent itemset
mining: it processes transaction data in a vertical data format,
item-TIDi.e. {item: set of TIDs}, where item is an item name,
and TID refers to a set of transaction numbers for transactions
containing the item.

Frequent itemset mining algorithms can be classified
into three groups [9]: 1) Apriori-based algorithms that

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

55726

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0002-7729-0283
https://orcid.org/0000-0002-6275-1921
https://orcid.org/0000-0001-9639-7679

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

generate candidate item for finding frequent itemset [10],
2) FP-Growth-based algorithms that construct frequent pat-
tern tree (FP-tree) and find frequent itemsets from the
FP-tree [11]-[16], and 3) algorithms that use vertical data
format [17]. Still, there are other new algorithms such as
Partition algorithm for association rule mining that partitions
database transactions into clusters [36].

A main challenging problem in association rule mining
had always been the problem that existing frequent item-
sets and association rules might become invalid, as new
transaction data or an incremental database was added to
the original database, and some new frequent itemsets and
association rules might have to be generated. The initial
solution, for solving such a problem, is to mine all fre-
quent itemsets and generate association rules from the full
updated database, i.e., the incremental database plus the
original database. However, this approach is inefficient and
wastes resources and compute time. To deal with this prob-
lem, several algorithms have been developed, which may
divide into majorly two categories [18]: Apriori-based algo-
rithms [19]-[25] and FP-Growth-based algorithms [26]-[30].
Here, we focused on FP-Growth-based algorithms. The key
problem of incremental association rule mining based on
FP-Growth-based algorithms [31] is that the current FP-tree
cannot be directly applied to an incremental database. Thus,
FP-Growth-based algorithms generally focus on modifying
FP-tree structure to avoid the overhead from database scans.
Using one of these algorithms is more effective than rescan-
ning the full updated database. However, this approach still
wastes resources and compute time in constructing multiple
conditional pattern trees or sub-trees, because it still uses the
traditional FP-Growth algorithm to mine frequent itemsets
from the updated FP-tree.

To improve the efficiency of the incremental frequent item-
set mining, we developed a new approach for incremental
association rule mining, a fast incremental updating frequent
pattern growth algorithm (FIUFP-Growth), and designed a
new type of sub-tree, incremental conditional pattern tree
(ICP-tree), suitable for incremental frequent itemsets mining
as well. The main idea was to retrieve previously discovered
frequent itemsets from the original database and use them in
mining all frequent itemsets from the updated FPISC-tree:
this reduced the number of scans of the conditional pat-
tern bases in the original path, when they were unnecessary
and improved the efficiency in updating frequent itemsets,
by reducing the construction of conditional pattern trees or
sub-trees. It also reduced the sub-tree sizes, by constructing
them only from conditional pattern bases of the new path.
We discuss ICP-tree in detail in Section I'V.

This paper is organized as follows: Section II briefly
reviews related work; Section III introduces the background
of incremental association rule mining; Section IV intro-
duces our approach and shows an example that describes
our approach; Section V presents and discusses experimental
results; Section VI concludes; Section VII acknowledgment.

VOLUME 9, 2021

Il. RELATED WORK

Association rule mining was first introduced by
Agrawal et al. [1] in 1993. They presented an efficient
method for discovery of significant relationships, between
items in retail transactions. A year later, a well-accepted and
simple algorithm called Apriori algorithm [10] was proposed
for finding frequent itemsets and association rules. This
algorithm generated and tested candidate itemsets, level by
level, whether they were frequent or infrequent itemsets.
However, a limitation to this idea was the generation of many
candidate itemsets, which required multiple database scans,
considerable storage space and compute time.

To avoid this problem, FP-Growth algorithm [11] and a
compact data structure - a frequent pattern tree or FP-tree -
that collected all frequent items from a transaction, was devel-
oped by Han et al. in 2000. With this technique, a database
needed to be scanned only twice—the first time, for find-
ing frequent itemsets, and, the second time, for constructing
the FP-tree. The algorithm recursively constructed FP-trees
to find all frequent itemsets, without generating candidate
itemsets. However, in finding frequent itemsets, the algorithm
needed to construct multiple conditional pattern trees, which
still required significant resources and compute time.

In a dynamic database, when an incremental database was
added to the original database, some previous association
rules became invalid and some new association rules were
generated. The basic and simple approach to solving this
problem was to rescan the whole updated database to redis-
cover all frequent itemsets and association rules. However,
this is time-consuming and inefficient and several efficient
algorithms for dealing with the incremental association rule
mining problem have been described, for example, Apriori-
based algorithms, that include FUP [19], NBd [20], pre-
large [21], probability-based algorithms [22]-[25].

The first algorithm that handled new transactions and
updated association rules effectively was Cheung er al.’s
Fast Update Algorithm (FUP) [19]: it focused on reducing
unnecessary database scans, by partitioning itemsets, calcu-
lated from the incremental database, into four cases, based
on previously found frequent itemsets or infrequent itemsets,
from the original database. The algorithm needed to rescan
the original database, only in one necessary case, saving some
resources and time needed for the three unnecessary cases.
The algorithm handled the incremental database that has been
added more efficiently than the basic approaches.

A negative border algorithm (NBd), based on the FUP
algorithm, reduced the number of original database scans.
This algorithm stored both frequent and infrequent itemsets
(border itemsets) of the original database, as well as their
support counts, but used space to do so and many border
itemsets could use significant storage space [20].

To deal with this problem, Hong et al’s ‘Pre-large’ algo-
rithm reduced the number of borders itemsets stored, and
lower and upper support thresholds were introduced. As the
algorithm runs, the itemsets with support counts, between the

55727

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

thresholds, were stored. These itemsets were called ‘pre-large
itemsets’, i.e. infrequent itemsets that were expected to
become frequent itemsets after the database was updated.
The itemsets with support counts below the lower support
threshold were not stored. Thus, the border itemset count was
reduced [21].

FP-Growth is more efficient than Apriori algorithm [11],
and many researchers have used FP-Growth-based algo-
rithms for better management of frequent itemsets search
in a dynamic database. Several previous works have used
FP-Growth-based algorithms [26]-[30], [37]. We devel-
oped our new algorithm, starting with an FP-Growth-based
algorithm.

Koh and Shieh’s Adjusted FP-tree for Incremental Mining
algorithm (AFPIM) [26] handled the incremental association
rule mining problem, when new transactions were inserted
into the original database and some existing transactions in
the original database were deleted or modified. An updated
FP-tree structure was computed by adjusting a previously
constructed FP-tree structure from the original database,
using the concepts of Pre-large algorithms. It does not need to
rescan the original database in most cases. Updated frequent
itemsets are mined from an updated FP-tree by applying the
original FP-Growth algorithm.

Hong et al. developed a Fast Updated FP-tree (FUFP-tree)
algorithm to effectively manage new transactions and
improve the efficiency of construction and adjustment of the
FP-tree structure, by reducing the number of rescans of the
original database, after an incremental database was added.
Their FUFP-tree added a bi-directional link for handling node
insertion and deletion from the tree. The FUFP-tree algo-
rithm improved the FUFP-tree structure, after an incremental
database was added, similarly to the FUP algorithm [27].

A year later, Hong et al. demonstrated an improved
FUFP-tree structure, that efficiently handled mining of incre-
mental association rules, when transactions were deleted
from the database: it reduced execution time, when trans-
actions were deleted. After the FUFP-tree was updated,
the algorithm continued to find all frequent itemsets from
the updated FUFP tree by using the original FP-Growth
algorithm [28].

Lin et al.’s Pre-FUFP maintenance algorithm [29] modified
the construction and modification of the FUFP-tree based on
the ‘pre-large’ concept: it defined upper and lower support
thresholds. As a result, if the number of incremental trans-
actions was less than a safety number, f, of new transactions,
the original database did not need to be rescanned. The safety
number was defined:

| Su—Spd
f_\; I_Su J (1)

where S, and S; are the upper and lower support thresholds;
and d is transaction count in the original database [29].

Sun et al. [37] proposed a solution for incremental frequent
itemsets mining using a Full Compression Frequent Pattern
Tree (FCFP-Tree) and a related algorithm called FCFPIM.

55728

The main advantage of FCFP-Tree is that it stores both
frequent and infrequent items in compressed form to avoid
repeated scans of the original. The original database will not
be scanned to improve the structure of the new FCFP-tree
when an incremental database is added. In addition, this
algorithm works well in cases where the minimum support
value is low because the size of the generated tree is no larger
than that of the FP-tree that store the frequent itemset reposit.
The main disadvantage that the strength of FCFPIM of which
FCFP-tree stores both frequent and infrequent items is also its
Achilles heels—the process of creating an FCFP-tree from a
large original database will take a long time and use more
memory than the processes of any other algorithms [ref].
However, incremental database updates will be much faster
than a complete scan, so users will benefit from the most
current data available anytime.

In addition, another Incremental association rule are in
case of updating and deleting transactions in the original
database [38]-[40].

Even though FP-Growth-based algorithms focus on updat-
ing the FP-tree structure which is better than rescanning
the whole updated database, they still waste resources and
time, for constructing multiple sub-trees, because they used
the original FP-Growth algorithm to find frequent itemsets
from the updated FP-tree. Those algorithms efficiently mined
incremental association rules, by only adjusting the FP-tree
structure, but they still used basic FP-Growth to mine all
frequent itemsets from the updated FP-tree.

We introduced a new approach, our Fast Incremen-
tal Updating Frequent Pattern Growth Algorithm (FIUFP-
Growth) for efficiently mining frequent itemsets from an
updated FPISC-tree that we have described in [32]. This
approach includes an introduction of a new incremental con-
ditional pattern tree (ICP tree) to store and represent fre-
quent itemsets along with their support counts in the updated
and incremental databases, enabling more efficient handling
of incremental frequent itemsets when new transactions are
added. For solving an incremental association mining prob-
lem, FIUFP-Growth not only improves FP-tree structure but
also improves the mining process of frequent itemsets from
the updated FP-tree.

lll. BACKGROUND

In this section, we briefly present the FUFP-tree maintenance
algorithm [27], developed to deal with problems in incremen-
tal association rule mining based on the FP-Growth-based
algorithm.

A. FUFP-TREE MAINTENANCE ALGORITHM

The FUFP-tree maintenance algorithm used an FUFP-tree to
handle new transactions: the bi-directional link (mentioned
already in Section II) made it easier to remove or delete items
from the FUFP-tree. When constructing an FUFP-tree, the
database was scanned only twice: The first scan found fre-
quent items and sorted them in descending order, according
to their support count, then created a header table according

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

TABLE 1. The original database.

TID Item Ordered frequent items
1 a,b,c.d,f b,a,c,d,f
2 b,c,f b,c,f
3 ab,d,e b,a,d.e
4 ab,e b,a,e
5 ab,c,d b,a,c,d
6 ab,d.e b,a,d,e
7 b,c b,c
8 a,b,d b,a,d
9 a,b,c b,a,c
10 a,f a,f
TABLE 2. The incremental database.
TID Item
1 ab,c,d,e
2 b.c,d,e
3 a,b,c.e,d
4 ae,d
5 ab,c,e.d

to the sorted frequent patterns. The second scan constructed
an FUFP-tree from transactions, that only had items that
matched frequent items in the header table. The items were
sorted in descending order of support value, then a node was
added to represent each item in the FUFP-tree to complete
each transaction. As an example, Table 1 presents an origi-
nal database, and Table 2 presents an incremental database.
Fig. 1 presents an FUFP-tree constructed from the original
database.

{null}
Header Table
Item Count Link
& 9 ®---|----------- b:9
e Ll (a1
c 5 &--—f--» c:3 ¢--4-X-----+
d 5 @iz
e 3 e-__
f 3 &=

f:1

FIGURE 1. FUFP-tree constructed from an original database.

When a new database was added, as shown in Table 2,
the FUFP-tree maintenance algorithm found items and their
support count from new transactions. Then, it divided the
items into four cases, based on FUP concept [19].

Case 1: The item is a frequent item in both the original
and the incremental database. In this case, the item always
becomes a frequent item in the updated database, and its
support count in the updated database can be computed by
adding the support counts in the original and the incremental

VOLUME 9, 2021

database. Then, the support count is updated in the header
table and FUFP-tree.

Case 2:The item is a frequent item in the original database
but an infrequent item in the incremental database. The item
may or may not become a frequent item in the updated
database, but its support count in the updated database can
be computed as described in Case 1. When the item becomes
a frequent item in the updated database, its support count
is updated in the header table and FUFP-tree. On the other
hand, if the item becomes an infrequent item in the updated
database, the item is removed from the header table and its
nodes are removed from the FUFP-tree.

Case 3: The item is an infrequent item in the original
database but a frequent item in the incremental database.
In this case, a scan of the original database is needed to find its
support count in the original database, and the support count
in the updated database is computed by adding this support
count to the count in the incremental database. When the item
becomes a frequent item in the updated database, it is placed
at the end of the header table and its nodes are added to the
leaf node of a path in the FUFP-tree. On the other hand, when
the item becomes an infrequent item in the updated database,
it does not affect the header table or FUFP-tree.

Case 4: The item is an infrequent item in both original
and incremental databases. In this case, the item remains an
infrequent in the updated database. Thus, it does not affect
the header table or the FUFP-tree.

For all cases, the algorithm updated the support count for
each item in the updated database and compared it to the min-
imum support threshold. If the item is an infrequent item in
both original and updated databases and if its support count in
the updated database is less than the threshold, the FUFP-tree
and header table were not modified. However, if the item
was a frequent item in the original database, but became
infrequent item in the updated database, the item in the header
table and its nodes in the FUFP-tree were deleted. Moreover,
if the support count for the item in the updated database
exceeded the threshold, some modifications were made to
the FUFP-tree and header table. If the item was a frequent
item in the original database and remained a frequent item
in the updated database, its support count in the FUFP-tree
and header table was updated. In addition, if the item was an
infrequent in the original database but became frequent in the
updated database, the item and its support count were added
to the header table and its nodes were added to the FUFP-tree.
The updated FUFP-tree is shown as Fig. 2.

FUFP-tree algorithm utilizes the procedural steps in the
embedded FP-growth algorithm to mine all frequent patterns.
Therefore, multiple sub-trees are still needed to be created
and cycled through which require a lot of computational time.

B. FREQUENT ITEMSET MINING BY FP-GROWTH

A frequent pattern growth mining [11] mines all frequent
itemsets directly from a derived FP-tree without candidate
itemset generation. It uses a divide-and-conquer strategy to
mine frequent itemsets, in which the conditional pattern base

55729

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

Header Table

Item Count Link

b 13 e--
a 12 e+
c 9 e--
d 10 e--
e 8 e-_

FIGURE 2. Updated FUFP-tree.

TABLE 3. Frequent itemsets mined with FP-growth algorithm.

Item Frequent itemset

‘e’ (‘e’): 8, (‘de’): 7, (‘bde’): 6, (‘abde’): 5, (‘ade’): 6,
(‘be’): 7, (‘abe’): 6, (‘ae’): T

‘a (‘d’): 10, (‘cd’): 6, (‘bed’): 6, (‘acd’): 5, (‘abed’): 5,
(‘bd’): 9, (‘abd’):8, (‘ad’):9

‘«’ (¢): 9, (‘bc’): 9, (‘ac’): 6, (‘bac’): 6

‘a’ (‘a’): 12, (‘ba’): 10

‘b (‘b°): 13

and conditional pattern tree, of each item, are generated level
by level. From a conditional pattern base, a conditional pat-
tern tree or sub-tree is derived. Then, the sub-tree is scanned
to generate frequent itemsets, associated with an item in the
header table, and the frequent itemsets are extracted. The
algorithm recursively creates additional conditional pattern
bases of sub-items from this sub-tree. In each recursive call,
a new conditional pattern base and sub-tree are constructed
and more frequent itemsets are mined by concatenating an
item in the header table to the lists of frequent itemsets
generated from the sub-tree.

We introduce an example to illustrate the steps in fre-
quent itemset mining from an updated FUFP-tree, in Fig. 2.
We assume that the minimum support threshold was set at
30%, then the support count in the original database is 3,
while that in the updated database is 5.

The header table initially contains ‘b’, ‘a’, ‘c’, ‘d’ and ‘e’.
The algorithm started to mine the frequent itemsets by con-
sidering the item at the bottom of the header table first,
i.e. item ‘e’. Finally, nine conditional pattern trees or sub-
trees were constructed for mining frequent itemsets in this
example. The conditional pattern tree (sub-tree) for item ‘e’
is shown in Fig. 3, for item ‘d’ in Fig. 4. and for items ‘c’ and
‘a’ in Fig. 5. All frequent itemsets from the updated database
are shown in Table 3.

IV. OUR APPROACH

In this section, we introduce our new approach for improv-
ing the efficiency of frequent itemset mining called Fast
Incremental-Updating Frequent Pattern growth algorithm

55730

(FIUFP-Growth). We also present a new FPISC-tree [32],
a more efficient data structure for incremental association
rules mining. Our algorithm is based on an FP-Growth algo-
rithm. Improvements to FP-Growth-based algorithms by oth-
ers changed the FP-tree structure, but they still used the
FP-growth algorithm to discover all frequent itemsets from
the updated FP-tree. Hence, they still wasted resources and
time for constructing multiple sub-trees. In contrast, our
new algorithm, not only improves the FP-tree structure, but
also efficiently mines all frequent itemsets from the updated
FP-tree. Moreover, we also designed a new conditional pat-
tern tree (or sub-tree) to represent only frequent items from
the incremental database, along with their support counts,
called incremental conditional pattern tree (ICP-tree). As a
result, there are fewer ICP-tree nodes than in the original and
the incremental databases combined.

We describe our previously described FPISC-tree [32] in
sub-section A, then the new FIUFP-Growth algorithm in
sub-section B.

A. FPISC-TREE

As described previously [32], in a conventional FP-tree, each
node has three key attributes: item name, support count,
and node link. We added an incremental count so that each
node of an FPISC-tree has four main attributes: item name,
support count, node link, and incremental count. This count
is the support count of an item that appears in the incre-
mental database. In the FPISC-tree construction step, this
attribute was initialized to 0, but in updating the FPISC-
tree, this count increased if the item in the node appears in
the new transaction, otherwise it was not changed. It was
also useful for identifying whether a node is from the incre-
mental database, the original database or both. This attribute
enables the algorithm to separate conditional pattern bases
into two groups: 1) conditional pattern bases, derived from the
original database, and 2) conditional pattern bases, derived
from the incremental database. In addition, the algorithm
reduced the number of rescans of conditional pattern bases
from the FPISC-tree. As shown in Fig. 6, the FPISC-tree was
constructed from the original database, by scanning the origi-
nal database only twice. Subsequently, when the incremental
database was added to the original database, the FPISC-tree
was updated. The incremental count of each item in the node
increased, if the item appeared in the incremental database as
well- see Fig. 7.

B. OUR FAST INCREMENTAL UPDATING FP-GROWTH
ALGORITHM

Here, we describe an FIUFP-Growth algorithm for mining
frequent itemsets from an updated FPISC-tree. We used pre-
viously discovered frequent itemsets and their support counts,
based on the FUP concept, from the original database, in fre-
quent itemsets mining, from the updated FPISC-tree. Further-
more, our algorithm constructs a conditional pattern tree or
sub-tree from only the conditional pattern base of the incre-
mental database. Unlike the FP-Growth algorithm, that first

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

Header Table

{
Item Count Link /

Header Table
Item Count Link /

(©

FIGURE 3. Conditional pattern tree (sub-tree) for item ‘e’

Header Table

Item Count Link

{de}

Item Count Link /

b 9 e--»

b 6

Header Table Header Table
Item Count Link

(@)

FIGURE 4. Conditional pattern tree (sub-tree) for item ‘d.

{c}

Header Table

Item Count Link

/
b 9 '""

(b)

(b)
{be}
Header Table
Item Count Link /
(d
{bd}
Header Table

Item Count Link

©

Header Table ta}

Item Count Link

b

10 .-_-.

FIGURE 5. Conditional pattern trees (sub-trees) for item ‘c’ and ‘a.

constructs a sub-tree then generates frequent patterns, when
the (k + 1)th item was added to an existing k item itemset,
mining associated with the considered item, the conditional
pattern base for the incremental database, that has already
been constructed was used to construct the sub-tree, avoiding
the need to construct unnecessary conditional pattern trees or
sub-trees. The symbols used are defined below.

1) NOTATION
DB original database
db+ incremental database
|[DB| number of transactions in DB

VOLUME 9, 2021

|db+-|

UDB
min_sup
newFIS
originalFIS

condNewPath

condOrgPath

(b)

number of transactions in db+

updated database, i.e. |DB|+|db+|
minimum support threshold

set of new, emerged frequent items

set of original frequent itemsets in the
original database

set of prefix paths or the conditional pat-
tern based of the incremental database
in the FPISC-tree, where addedCount >
updatedCount

set of prefix paths or the conditional pat-
tern based of the original database in the

55731

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

Header Table {null}
Item Count Link

b 9 e--

a 8 .-

c 5 e-4

d 5 g

e 3 —

f 3 e-

FIGURE 6. FPISC-tree constructed from the original database.

{null}

Header Table
Item Count Link

b 13 & -
a 12 %
c 9 &
d 10 *°
e 8 .-

1)

FIGURE 7. Updated FPISC-tree.

FPISC-tree where addedCount = 0 v
updatedCount > addedCount

updatedFIS set of frequent itemsets in UDB
frequentList set of items that are frequent items
infrequentList set of infrequent items

ist set of items that become frequent items
j t of items that b freq t
after the database was updated.

root_item set of items that contains the items and
its sub-items in each iteration of frequent
pattern mining

rescanOriginal set of items left over from the step in

case#1 and processed in case#3

Bm pattern associated with itemset, m

BmDB previously discovered frequent pattern
associated with itemset, m, in the orig-
inal database

2) FIUFP-GROWTH ALGORITHM (FAST INCREMENTAL
UPDATING FREQUENT PATTERN GROWTH)

FIUFP-Growth can be split into two algorithms: 1) the main
algorithm in Algorithm 1; and 2) an incremental pattern
growth algorithm in Algorithm 2. FIUFP-Growth starts to

55732

Algorithm 1 Main Algorithm

Input: updated FPISC-tree, header_table, newFIS, min_sup,
originalFIS.
Output: updatedFlIS.

Step 1:

1) for each item 7 in header_table

Step 2:

2) if item i in newFIS then

3) newFIS = call FP-Growth algorithm
(updated FPISC-tree, header_table, i, min_sup)

4) updatedFIS = updatecdFIS U newFIS

5) else

Step 3

6) k=2

7) insert item i into root_item

8) generate condNewPath and condOrgPath

Step 4

9) for each item [in condNewPath

10 if l.supCount >= |_|db+| * min_sup]

11) insert [into freqeuntList

12) else

13) insert [into infrequentList

14) end for

Step 5

15) newFIS = call Incremental Pattern Growth
Algorithm (freqeuntList, infrequentList,
root_item, originalFIS, fList, k, condNewPath,
condOriginalPath, sub_item)

16) updatedFIS=updatedFIS U nesFIS

17) root_item.remove(’i’)

18) end for

19) return updatedFIS

mine frequent itemsets from an updated FPISC-tree, as shown
in Fig. 7, considering only the items derived from condNew-
Path for the incremental database, and then separates them
into four cases as in the FUP algorithm.

The steps of the main algorithm are some as pseudo code
in Algorithm 1, are expanded below.

Step 1: In line (1) in Fig. 8, for each item i, starting from
the bottom to the top of the header table, check
whether the item i is an emerged frequent item and
appears in the set of newFrequentltem or not.

Step 2: if the item i is in newFrequentltem, then in
line (2)-(5), all frequent items associated with the
item 7 are mined out by the traditional FP-Growth
algorithm; else go to Step 3-11.

Step 3: In line (6)-(7), the algorithm first inserts the item
i into a set of root_item and set the initial value
k = 2, then in line (8), it generates a con-
ditional pattern base for the original database
(condOrgPath) and the incremental database
(condNewPath) by following the node-link of
item i. A condNewPath is generated when added-
Count equal to count or addedCount > (0 and

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

Header Table
Item Count Link

d 5 ®-~-7°-

(a)

Header Table
Item Count Link

d 4 e--
a 3 *° -
(b)

FIGURE 8. Incremental conditional pattern tree (ICP-tree) constructed for item ‘e

Algorithm 2 Incremental Pattern Growth Algorithm

Input: freqeuntList, infrequentList, root_item,
originalFIS, fList, k, condNewPath, condOrgPath,

sub_item
Output: newFIS
Step 6:
1) //Case#l:
2) for each item m in frequentList
Step 7:
3) generate new pattern S, = (m U root_item)
4) if B,y == Bups|Pmpp € originalFIS
5) Bm.supCount= B,,pp.supCount

+ m.supCount
6) if B,,.supCount> [|UDB| * min_sup] then
7) newFIS = newFIS U,
8) remove B,,pp from original FIS
9) insert item m into fList
10) else
11) insert item m into rescanOriginal
12) end for
Step 8:
13) //Case#2:
14) for each item n in infrequentList
15) generate new pattern 8, = (n U root_item)
16) if 8, == B.ps|BupB € originalFIS
17) Bn.supCount= B,pp.
supCount + n.supCount

18) if 8,,.supCount> [|UDB| % min_sup] then
19) newFIS= newFIS UB,
20) remove Bupp from originalFIS 21)
insert item n into fList
22) end for

addedCount is equal to count or addedCount >
0 and condOrgPath is generated when addedCount
> 0.

Step 4: Inline (9)-(14), the algorithm counts the frequency
of occurrences of each item / only in condNew-
Path and check whether each item [.supCount is
greater than or equal to the support threshold in the
incremental database. If so, it inserts the item / and
its supCount into a set of freqeuntList. Otherwise,
it inserts the item into a set of infrequentList.

VOLUME 9, 2021

Algorithm 2 (Continued.) Incremental Pattern Growth
Algorithm

Step 9:
23) //Case#3:
24) for each item p in rescanOriginal
25) p.supCount g = count item p in {Top |
Top € condOrgPath}
26) p.supCount ;pp = p.supCount pg
+ p.supCount
27) if p.supCount ;pg > [|UDB| * min_sup] then
Step 10:
28) generate new pattern
Bp = (p U root_item)
29) newFIS = newFIS UB,
30) insert item p into fList
31) end for
Step 11:

32) if |fList| > 1 then

33) ks=k+1

Step 12:

34) ICP_Tree, sub_header_table, sub_fList = call
FP_treeConstruction (root_item,ks,
kfList, condNewPath)

Step 13:

35) for each item 'i in sub_header_table

36) sub_orgCondPath = condOrgPath

37) insert item '’ into sub_item and root_item

38) generate sub_condNewPath from ICP_Tree

39) generate sub_freqeuntList and
sub_infrequentList

40) insert item i’ into root_item

41) newFIS=call Incremental Pattern Growth
Algorithm(sub_frequentList,
sub_infrequentList, root_item, originalFIS,
ks, sub_condNewPath, sub_orgCondPath,
sub_item)

42) a.remove('i’)

43) remove i’ from sub_item and root_item

44) end for

Step 14:

45) return newFIS

Step 5: In line (15)-(18), the algorithm starts to mine fre-
quent itemsets by recursively calling incremental
pattern growth algorithm.

55733

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

55734

The procedural steps of the FIUFP-Growth algo-

rithm shown in Algorithm 2 are as follows.

For case#1, in line (1)-(2) the algorithm first gen-

erates a pattern f,, by joining each item m in the

freqeuntList with all items in root_item.

In line (3), the algorithm checks whether or not the

pattern S, is a frequent pattern (8,,pp) in the set of

originalFIS. If so, go to sub-step 7-1; otherwise,

go to sub-step 7-2.
sub-step 7-1: in line (5)-(9), the algorithm updates
the support count of frequent pat-
tern (B,,pp) by adding B,,.supCount
to Bmpp.supCount, then it verifies
if B,.supCount is greater than or
equal to the support threshold for the
updated database; if so, the pattern
B is added to the set of newFIS,
Bmpp is deleted from originalFIS,
and item m and its support count are
inserted into an fList set.
in line (10)-(11), the algorithm
inserts item m and its support count
into a rescanOriginal set because
this pattern B, is a frequent pat-
tern in the incremental database but
an infrequent pattern in the original
database. Hence, this pattern falls

under case#3 (step 9-10).
For case#2, the algorithm generates pattern 8, by

joining each item 7 in infrequentList with all items
in the root_item and then checks whether or not 8,
is a frequent pattern (8,pp) in the originalFIS set.
If so, go to sub-step 8-1; otherwise, do nothing.
sub-step 8-1: in line (16)-(22), the algorithm
updates the support count for S,
by adding B,.supCount to B,pp.sup
Count. After that, the algorithm ver-
ifies if B,.supCount is greater than
or equal to the support threshold for
the updated database; if so, pattern
B, is added to the newF1IS set; pattern
Bupp is deleted from originalFIS;
and item m and its support count are
inserted into the fList set. Otherwise,
the algorithm does nothing.
For case#3, in line (23)-(31), the algorithm con-
siders each item in the rescanOriginal set and then
counting it in each path in the condOrgPath under
the condition that each path must be a super-set of
sub_item.
Pattern g, is generated by joining each item p
in the set of rescanOriginal to all items in the
root_item set. Then, the algorithm updates the sup-
port count of pattern B, by adding B,,.supCount to
supCount from condOrgPath. After that, the algo-
rithm verifies if B,.supCount is greater than or

sub-step 7-2:

TABLE 4. All Frequent itemsets mined out from the original database.

Item Frequent itemset

W

S 0 QN
I~~~ ~ ~ ~

equal to the support threshold for the updated
database; if so, go to sub-step 10-1. Otherwise,
do nothing.

sub-step 10-1: pattern S, is added to the new-
FIS set, and item p and its support
count in the incremental database is
inserted into the fList.

In line (32)-(43), the algorithm checks whether it
will continue to mine (k + 1)item-long frequent
itemsets ending with item i or not. If the number of
all items in the fList set is greater than 1, continues
to mine such frequent itemsets in step 12-14.

In line (34), the algorithm constructs an incre-
ment FP-tree (ICP-tree) from only the incremental
database (condNewPath) by utilizing the frequent
items in the fList set, sorted in descending order
according to its incremental support count.

Next, in line (35)-(40), the algorithm continues
to discover frequent itemsets starting from item
'{' from the bottom of the sub_headertable by
recursively calling the incremental pattern growth
algorithm until the number of all items in the fList
set is less than or equal to 1.

Finally, all (k + I1)-frequent itemsets are mined
out.

Step 11:

Step 12:

Step 13:

Step 14:

C. EXAMPLE OF STEPS OF FIUFP-GROWTH

An example to illustrate our approach follows. The FPISC-
tree used is shown in Fig. 6. Frequent itemsets that were
mined from the original database are shown in Table 4. When
an incremental database was added, the FPISC-tree was
improved based on FUFP-tree maintenance [32] as shown
in Fig. 7. The minimum support was set at 30%; the support
count in the original database was 3; the support count in
the incremental database was 2, and the support count in the
updated database was 5.

To compare performance of our algorithm with FP-Growth,
FUFP-tree maintenance, Pre-FUFP, and FCFPIM algo-
rithms on this newly added transaction problem, we set our
algorithm to mine all frequent itemsets from the original
FPISC-tree by using the FP-Growth algorithm, in a sim-
ilar way to the basic FP-Growth, FUFP-tree algorithm or
Pre-FUFP algorithm. However, the FP-Growth, FUFP-tree
maintenance, Pre-FUFP, and FCFPIM algorithms still used
the FP-Growth algorithm for mining all frequent itemsets
from the updated FP-tree. Instead, our method found frequent

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

itemsets from the updated FPISC-tree. Similar to FP-Growth,
we started to mine frequent itemsets, associated with item ‘e’
at the bottom of the header table. Numbers for the steps refer
to steps in the pseudo code in Algorithms 1 and 2.

Step 1: FIUFP-Growth algorithm starts to mine frequent
itemsets associated with item ‘e’.

Step 2: Item ‘e’ is not a new frequent item or newFrequen-
tltem, then go to Step 3-11.

Step 3: The algorithm generates a conditional pattern base
for the incremental database (condNewPath) and
the original database (condOrgPath). Three paths
ending with node ‘e’ are found in condNew-
Path including [‘b’,'a’,c’,*d’]:3, ‘b’,'c’,’d’]:1,
and [‘a’,‘d’]:1, and two paths in the condOrgPath
including [‘b’,a’,*d’]:2, and [‘D’,‘a’]:.

Step 4: The algorithm counts each item only from the
condNewPath and then put them into either the fre-
quentList or infrequentList by comparing the sup-
port count for each item with the support threshold
of the incremental database which is 2; hence, the
frequentListis now{’a’:4,b’:4,°d’:5, ¢’:4} and the
infrequentList is{}.

Step 5: The algorithm starts to categorize the frequentList
and infrequentList, that is{’a’:4,b’:4,d’:5,c’:4}
and{ }, into four cases.

Step 6: For case#l, the algorithm generates patterns by
concatenating each item in the freqeuntList with
the root-item ‘e’. In this case, item ‘a’:4 is pro-
cessed first, then a pattern (‘ae’) is generated, fol-
lowed by pattern (‘be’), ‘ce’), and ‘de’).

Step 7: Pattern ‘ae’):4, and ‘be’):4 are available in the set
of frequent itemsets in the original database as
shown in Table 4, sogo to sub-step 7-1. Unlike pat-
terns (‘ae’) and ‘be’), both (‘de’):5 and ‘ce’):4 are
not available in the set of frequent itemsets in
the original database. Hence, do sub-step 7-2,
ie., put them into a set of rescan_original
for mining frequent itemsets in the step 9
(case#3).

sub-step 7-1: The updated support count for pat-
tern (‘ae’) is thus 3+ = 7, and the
count for pattern ‘be’) is 3 + 4 =
7. The counts of both patterns are
also greater than the updated sup-
port threshold, hence they become
frequent patterns. The algorithm col-
lects (‘ae’):7, and (‘be’):7 into the
newFIS.

sub-step 7-2: rescan_original = {(‘d’):5, (‘¢’):}.

Step 8: For case#2, the algorithm considers each item in
the frequentList set, but there are no items in fre-
quentList, hence there are no items that satisfy the
condition for this case.

Step 9: For case#3, the algorithm considers each item in
the rescanOriginal set, that is, {(‘d’):5, (‘¢’):}.

VOLUME 9, 2021

Item*®’ is considered first. In order to update the
support count of patterns‘de’, its original support
count must be obtained by rescanning and count-
ing item in the condOrgPath ([‘D’,‘a’,’d’]:2, and
[‘D’,a’]:1.). The support count of item ‘d’ turns
out to be 2. Hence, the updated support count for
item ‘d’ is 2 + 5 = 7, which is also greater than
the updated support threshold.

Step 10: The algorithm generates pattern (de).

sub-step 10-1: Appends (‘de’):5 to the newFIS.
Item d is inserted into fList{‘a’:4,
‘b’:4, ‘d’:}. On the other hand, the
updated support count for item ‘c’,
0 +4 = 4, which is less than
5; hence, the algorithm ignores this
item.

Step 11: Then, the set of new 2-item-long frequent item-
sets associated with item ‘e’ is {(‘ae’): 7, (‘be’):
7,(°de’): 7}, and the sorted fList with frequent items
and their support count in the incremental database
is{‘d’:5, ‘a’:4, ‘b’:4}. The number of all items in
fList is greater than 1; hence, the process for mining
3-item-long frequent pattern associated with item
‘e’ is performed.

Step 12: The algorithm constructs an incremental con-
ditional pattern tree, or ICP-tree from only
the incremental database, or conditional pat-
tern based from the incremental database (cond-
NewPath): [‘b’,'a’,*c’,d’]:3, [‘b’,°c’,d’]:1, and
[‘a’,’d’]:1, by utilizing the frequent items in
the sorted fList:{‘d’:5, ‘a’:4, ‘b’:} as shown
in Fig. 8 (a) to 8 (c).

Step 13: Next, the algorithm continues to discover frequent
itemsets starting from item ‘b’ from the bottom
of the sub_headertable: {‘b’:4, ‘a’:4, ‘d’:5} by
recursively calling the incremental pattern growth
algorithm in step 3-12 until the number of all items
in fList is less than or equal to.

Step 14: Finally, when the iteration process of mining fre-
quent pattern ending with item ‘e’ is completed,
all frequent itemsets associated with item ‘e’
are as follows: (‘e’):8, (‘ae’):7, (‘be’):7, (‘de’):7,
(‘ab’):6, (‘db’):6, (‘dabe’):5, and (‘da’):6.

The example, presented above, is an example of only
(k = 2) item frequent itemsets mining, associated with
item ‘e’. However, when frequent itemsets mining with ‘e’
ended, all conditional pattern trees were also constructed
from only the conditional pattern base of the incremental
database, as shown in Fig. 9. The list of frequent itemsets,
associated with each item, in the header table, is shown
in Table 5.

This example shows that the number of constructed
ICP-trees, as shown in Fig. 8 and Fig. 9, was reduced, com-
pared to the pattern growth mining described in Section III:
our improved technique constructed sub-trees, only from

55735

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

Header Table
Item Count Link

Header Table
Item Count Link

{ed}

Header Table
Item Count Link

b 4 &

/
.
0—--» a 3 *--

4 -

(b) (c)

FIGURE 9. Incremental conditional pattern tree (ICP-tree) constructed for item ‘d’ and ‘c.!

TABLE 5. Frequent itemsets mining by the proposed algorithm.

Item Frequent itemset

‘e’ (‘e’):8, (‘ae’):7, (‘be’):7, (‘de’).7, (‘abe’):6, (‘dbe’):6,
(‘dabe’):5, (‘dae’):6

‘d’ (‘d’):10, (‘bd’):9, (‘ad’):9, (‘cd’):6, (‘bed’):6,
(‘acd’):5, (‘bacd’):5, (‘abd’):8

‘c’ (‘e’):9, (‘bc):9, (‘ac’):6, (‘bac’):6

‘@ (‘a’):12, (‘ba’):10

‘b (‘b°):13

the incremental database, and not from the whole updated
database.

D. COMPLEXITY ANALYSIS

Regarding time complexity, the time complexity of our
previously developed algorithm was ¢ (mj,mp,n) €
O {(m1 + mp) (nlogn + n)} , where m; was the number of
conditional pattern bases of the original path; my was the
number of conditional pattern bases of the incremental
path; and n was the number of items in the header table.
On the other hand, since our algorithm construct ICP-tree
or sub-tree only from conditional pattern bases of the
incremental database, its time complexity was ¢ (mo, n) €
O{(my) (nlogn + n)}, less than that of the previously
algorithm.

Regarding space complexity, the space complexity of
our previously proposed algorithm was s(my,mp) €
O (m; + my), and our proposed algorithm was s (mp) €
O (my), the value of the parameter m» (number of conditional
pattern bases of the incremental path) in the complexity for-
mula of our algorithm was smaller than those of our previ-
ously algorithm.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluated and compared the performances of our pro-
posed algorithm with FP-Growth [11], FUFP-tree mainte-
nance [27], Pre-FUFP [28], and FCFPIM [37] algorithms,
in terms of execution time and number of generated sub-trees
in the process of finding all frequent itemsets from the
updated tree. All evaluated algorithms were coded in Python
3.60 and ran on Intel Xeon PC (2.93 GHz, 4 GB main
memory, Microsoft Windows 10). A test dataset was gener-
ated by synthesis [1] with the following parameters: I = 10,

55736

represent the average maximum size of frequent items per
transaction; T = 15, the average maximum length of transac-
tions; and D = 100, represented the number of transactions.
The synthetic dataset was called I110T15D100K and con-
tained 100,000 original transactions. Incremental databases
appended to the original database had 3%, 10%, 20% and
30% of the size of the original database. The minimum
support thresholds tested were 0.03, 0.05, and 0.1. In gen-
eral, newly added transactions may or may not have the
same patterns as those in the original database. Therefore,
to evaluate the performance of the FIUFP-Growth algo-
rithm fairly, we used two kinds of incremental databases:
one with the same pattern as in the original database with
0% weight (see Tables 6 to 9) and another with 30%
adjusting weight for increasing the difference between the
patterns of newly added transactions. The reason for choos-
ing an incremental database with 30% weight adjustment
for testing was that this kind of weight was acceptable for
incremental association rule mining. To put it as another
disadvantage, when the weight too high, it is faster to rescan
the whole database. Strong results are such as the follow-
ing. Our algorithm was still effective, adequately fast, even
when the patterns in the new database differed by more
than 30% from those in the original database. In addition,
the number of generated sub-trees in frequent itemset find-
ing step was less than those generated by the other tested
algorithms.

Three different types of execution time were recorded:
time spent to update the tree structure, time taken to find all
frequent itemsets from the updated tree, and the total time
spent processing the incremental database. The results show
that our algorithms executed faster than all the other four
algorithms because our algorithm performed the incremental
association rule mining problem by both updating tree struc-
ture and finding frequent itemset from the updated tree. All of
the other four algorithms used traditional FP-growth to find
all frequent itemsets from the updated tree, but our algorithm
found all frequent itemsets by retrieving frequent itemsets
directly from the original database without any rescanning.
This kind of retrieval reduced the time to scan the conditional
pattern bases of the original database. Moreover, the time
to generate and scan the ICP-trees in our algorithm was
also less than the time to generate sub-trees by the other

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

TABLE 6. Experimental results with incremental data of 30,000 transactions having the same statistical characteristics as those in the original database.

Algorithm Minimum support Number of Exepution time for Execution time 'for pattern E).cecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)

FP-Growth 6393 1467.4849 17.1004 1484.5853
FUFP-tree 6393 582.6920 17.4675 600.1596
Pre-FUFP 3% 6393 583.8167 17.3503 600.1670
FCFPIM 6393 616.2953 17.7487 633.8783
FIUFP-Growth 1927 580.8402 10.6399 591.4801
FP-Growth 4218 1352.1719 9.7728 1361.9447
FUFP-tree 4218 533.6483 9.9213 543.5695
Pre-FUFP 5% 4218 533.3829 9.7571 543.1399
FCFPIM 4218 621.2854 10.1555 631.4409
FIUFP-Growth 1284 531.7657 6.6871 538.4528
FP-Growth 135 760.7754 3.8591 764.6345
FUFP-tree 135 295.8533 3.8669 299.7202
Pre-FUFP 10% 135 295.1034 3.9294 299.0328
FCFPIM 135 621.2697 4.0211 625.2819
FIUFP-Growth 14 293.5253 2.8748 296.4002

TABLE 7. Experimental results with incremental data of 20,000 transactions having the same statistical characteristics as those in the original database.

Algorithm Minimum support Number of Exepution time for Execution time 'for pattern E).cecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)
FP-Growth 6429 1245.1403 17.3972 1262.5375
FUFP-tree 6429 380.8471 16.6160 397.4631
Pre-FUFP 3%, 6429 377.8473 16.6082 394.4555
FCFPIM 6429 412.0218 16.7957 428.8175
FIUFP-Growth 1938 377.9098 10.6555 388.5653
FP-Growth 5% 4219 1154.0216 9.0462 1163.0679
FUFP-tree 4219 347.0215 93196 356.3411
Pre-FUFP 4219 347.1387 94681 356.6068
FCFPIM 4220 411.5280 9.2650 420.7930
FIUFP-Growth 1284 346.3418 6.2261 352.5679
FP-Growth 137 652.9625 3.6013 656.5639
FUFP-tree 137 194.4467 3.6716 198.1183
Pre-FUFP 10% 137 195.4857 3.6950 199.1807
FCFPIM 146 408.3781 3.7184 412.0966
FIUFP-Growth 15 194.9154 2.6482 197.5637

algorithms because the ICP-trees were constructed from a
smaller incremental database.

Regarding execution time for updating tree structure,
the results show clearly that FP-Growth took the longest
time to update because FP-growth had to rebuild the tree
from a whole updated database. The FCFPIM algorithm took
more time to update the tree than our algorithm did and took
even more time when the number of minimum supports was
large, most probably due to the small number of frequent
itemsets and the substantial number of infrequent itemsets.
In general, FUFP, Pre-FUFP, and our algorithm performed
similarly well because they were based on the same FP-Tree
principles. Table 6—13 shows that our algorithm generated

VOLUME 9, 2021

fewer sub-trees than FP-Growth, FUFP-tree, Pre-FUFP, and
FCFPIM did. Unlike the other four algorithms that used the
original FP-growth to find all frequent itemsets from a fully
updated tree, our algorithm found frequent itemsets from
conditional pattern bases without constructing a conditional
pattern tree. If necessary, our algorithm would construct an
ICP-tree for finding the next k-frequent itemsets. Further-
more, the execution time for finding frequent itemsets from
the ICP-tree was shorter than those required by the other
four algorithms employing a conventional tree because the
frequent itemsets in the original database could already be
retrieved directly without any rescanning, eliminating the
need to scan the conditional pattern base of the original

55737

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

TABLE 8. Experimental results with incremental data of 10,000 transactions having the same statistical characteristics as those in the original database.

Algorithm Minimum support Number of Exepution time for Execution time 'for pattern E).cecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)
FP-Growth 6429 1101.0096 15.1474 1116.1570
FUEP-tree 6429 178.8619 15.0770 193.9389
Pre-FUFP 3% 6429 181.2055 15.1865 196.3919
FCFPIM 6406 191.0958 15.4052 206.5010
FIUFP-Growth 1938 178.6041 8.8744 187.4785
FP-Growth 4219 1008.9848 8.4291 1017.4139
FUFP-tree 4219 163.9333 8.4369 172.3702
Pre-FUFP 5% 4219 164.2302 8.4135 172.6436
FCFPIM 4219 190.7525 8.4837 202.4548
FIUFP-Growth 1284 164.1208 5.4606 169.5813
FP-Growth 137 559.3206 3.3435 562.6641
FUFP-tree 137 92.5713 3.4764 96.0477
Pre-FUFP 10% 137 93.5400 3.5701 97.1101
FCFPIM 135 190.7525 3.4685 194.2210
FIUFP-Growth 15 92.5635 2.5232 95.0868

TABLE 9. Experimental results with incremental data of 3,000 transactions having the same statistical characteristics as those in the original database.

Algorithm Minimum support Number of Exepution time for Execution time 'for pattern E).cecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)

FP-Growth 6425 971.0499 14.5849 985.6348
FUEP-tree 6425 52.8399 14.4677 67.3076
Pre-FUFP 3% 6425 51.4884 14.5458 66.0342
FCFPIM 6425 55.4805 14.5458 70.0263
FIUFP-Growth 1917 52.4415 7.7338 60.1752
FP-Growth 4219 894.6802 7.8979 902.5781
FUEP-tree 4219 474731 7.9135 55.3866
Pre-FUFP 5% 4219 48.1449 7.9448 56.0896
FCFPIM 4219 55.0492 8.0775 63.1268
FIUFP-Growth 1284 49.1604 4.9372 54.0976
FP-Growth 137 508.8007 3.1560 511.9567
FUEP-tree 137 26.9355 3.1560 30.0915
Pre-FUFP 10% 137 27.0371 3.1482 30.1853
FCFPIM 137 54.0462 3.1841 57.2303
FIUFP-Growth 15 26.9668 2.2108 29.1775

database. Notice, also, that our algorithm was faster at pattern
growth mining from the updated tree than the other four
algorithms.

The time required for updating tree and mining frequent
itemsets by our algorithm at 3% minimum support threshold
was only ~88 % of that required by FP-Growth, ~11 %
of that required by FUFP-tree, ~9% of that required by
Pre-FUFP, ~9 %, and ~14% of that required by FCFPIM.
Moreover, the execution time for mining frequent itemsets
from the updated tree required by our algorithm was only
~46 % of the average execution time required by FP-Growth,
FUFP-tree, Pre-FUFP, and FCFPIM. These results are con-
sistent with the complexity analysis, explained in Section IV.
According to the complexity analysis, the time complexity

55738

of our algorithm was lower than those of the compared algo-
rithms from not having an m; parameter—the number of con-
ditional pattern bases of the original path—in its complexity
equation. Moreover, our algorithm was still effective even
when the minimum support threshold was very low and when
the frequent itemset patterns in the incremental database
differed considerably from the patterns in the original
database.

Regarding space complexity, from the results, shown in
table 6-13, it is clear that the number of sub-trees generated
by our algorithm was fewer than those generated by the
other four algorithms. According to the complexity analysis
(Section IV), the space complexity of our algorithm was
lower than those of the compared algorithms because it did

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

IEEE Access

TABLE 10. Experimental results with incremental data of 30,000 transactions having 30% difference in statistical characteristics from those in the original

database.

Algorithm Minimum support Number of Exe-cution time for Execution tim.e -for pattern E).(ecution

sub-trees modified FP-tree (s) growth mining (s.) time (s.)
FP-Growth 6416 1497.373 17.8049 1515.1779
FUFP-tree 6416 565.0763 17.4441 582.5205
Pre-FUFP 39, 6416 575.5087 17.5859 593.0946
FCFPIM 6416 569.7536 17.41004 587.1637
FIUFP-Growth 1937 564.7480 10.5070 575.2550
FP-Growth 4218 1322.1640 9.6789 1331.8425
FUFP-tree 4218 514.6269 9.6321 524.2590
Pre-FUFP 5% 4218 516.5638 9.7255 526.2892
FCFPIM 4218 511.3982 9.6282 521.0263
FIUFP-Growth 1284 512.0562 6.6480 518.7042
FP-Growth 132 706.7766 3.8435 710.6201
FUFP-tree 132 281.4872 3.7263 285.2135
Pre-FUFP 10% 132 280.2373 3.8279 284.0651
FCFPIM 132 657.8687 3.9059 661.7747
FIUFP-Growth 13 280.1281 2.7888 282.9169

TABLE 11. Experimental results with incremental data of 20,000 transactions having 30% difference in statistical characteristics from those in the original

database.
Algorithm Minimum support Number of Exef:ution time for Execution tim_e _for pattern Egecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)

FP-Growth 6198 1298.1351 16.3269 1314.4620
FUFP-tree 6198 371.0275 16.4363 387.4638
Pre-FUFP 39 6198 370.3333 16.3661 386.6994
FCFPIM 6198 419.6389 16.7838 436.4228
FIUFP-Growth 1872 370.3481 7.2416 377.5897
FP-Growth 4215 1191.6394 9.1741 1200.8135
FUFP-tree 4215 332.8350 9.3743 342.2093
Pre-FUFP 59, 4215 332.8666 9.3822 342.2487
FCFPIM 4215 417.2838 9.4837 426.7675
FIUFP-Growth 1283 329.2340 6.1167 335.3508
FP-Growth 135 684.3487 3.7189 688.0676
FUFP-tree 135 185.4630 3.5466 189.0096
Pre-FUFP 10% 135 184.1820 3.5856 187.7677
FCFPIM 135 409.4874 3.8747 413.3622
FIUFP-Growth 14 184.5335 2.5702 187.1037

not have an m; parameter in its complexity equation. The
space complexity of our algorithm was lower than those of the
other four algorithms. Procedurally, the other four algorithms
used FP-Growth for finding frequent itemsets, and in each
iteration of the frequent itemset finding process, created a
sub-tree. In contrast, our algorithm did not create a sub-tree
in each iteration of the frequent itemset finding process
(see step-11 pseudocode of our algorithm in Section IV).
Moreover, our proposed ICP-tree was constructed only from
the conditional pattern bases of the incremental database,
while the generated sub-trees by the other four algorithms
were constructed from the conditional pattern bases of the
whole updated database, original plus incremental, hence the

VOLUME 9, 2021

space required to generate all ICP-trees were smaller than
the space required to generate all sub-trees by the other
four algorithms. To summarize, the other four algorithms
generated a larger number of sub-trees than our algorithm
did, hence, in principle, they would require more execution
time and storage space to generate them than our algorithm
would.

Experimentally, the outcomes of evaluation runs of all
tested algorithms, in terms of execution time and storage
space needed for all generated trees, indicate that our algo-
rithm was more efficient because it executed successful runs
in shorter time and generated fewer trees to be stored than the
other four algorithms.

55739

IEEE Access

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth

TABLE 12. Experimental results with incremental data of 10,000 transactions having 30% difference in statistical characteristics from those in the original

database.
Algorithm Minimum support Number of Exe'cution time for Execution tim_e _for pattern E;ecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)
FP-Growth 6387 1095.4737 15.1004 1110.5742
FUFP-tree 6387 179.2447 152177 194.4623
Pre-FUFP 3% 6387 179.3384 15.1630 194.5014
FCFPIM 6387 200.6580 15.6551 2163132
FIUFP-Growth 1927 177.1823 7.7963 184.9786
FP-Growth 4221 1010.2240 8.3509 1018.5749
FUFP-tree 4221 157.8009 8.3979 166.1988
Pre-FUFP 5% 4221 157.0979 8.3822 165.4801
FCFPIM 4221 2007674 8.6400 209.4074
FIUFP-Growth 1285 156.7698 5.1325 161.9022
FP-Growth 135 579.8718 3.2966 583.1684
FUFP-tree 10% 135 88.7982 3.4607 92.2589
Pre-FUFP 135 87.9701 3.4764 91.4464
FCFPIM 135 195.4553 3.4990 198.9550
FIUFP-Growth 14 88.1107 24217 90.5324

TABLE 13. Experimental results with incremental data of 3,000 transactions having 30% difference in statistical characteristics from those in the original

database.
Algorithm Minimum support Number of Exe_cution time for Execution tim_e _for pattern E;ecution
sub-trees modified FP-tree (s) growth mining (s.) time (s.)
FP-Growth 6367 981.6775 14.6161 996.2936
FUFP-tree 6367 51.3556 14.6631 66.0186
Pre-FUFP 39, 6367 50.7618 143115 65.0733
FCFPIM 6367 56.4804 14.4990 70.9794
FIUFP-Growth 1904 49.6370 7.8510 57.4879
FP-Growth 4221 902.7050 8.0351 910.7401
FUFP-tree 4221 47.2231 7.8901 55.1131
Pre-FUFP 5% 4221 47.4105 79136 55.3241
FCFPIM 4221 54.6993 7.9994 62.6988
FIUFP-Growth 1285 46.0903 4.7028 50.7931
FP-Growth 137 516.1131 3.3201 519.4332
FUFP-tree 137 28.1522 3.3436 31.4958
Pre-FUFP 10% 137 27.3622 3.2967 30.6589
FCFPIM 137 54.6681 3.3435 58.0016
FIUFP-Growth 15 26.3262 2.1874 28.5135

VI. CONCLUSION

We improved the efficiency of incremental frequent pattern
mining with our fast incremental updating frequent pattern
growth algorithm (FIUFP) and designed a new incremental
conditional pattern tree (ICP-tree) suitable for incremental
mining of frequent itemsets. The basic idea was to use
frequent itemsets, that were already mined from the original
database and their support counts, to support the frequent
itemset mining from the updated FPISC-tree. Our new algo-
rithm and tree was faster and used less space, because it
constructed a smaller number of sub-trees than FP-Growth,
FUFP-tree maintenance, Pre-FUFP and FCFPIM. From the
results, at 3% minimum support threshold, the average execu-
tion time for pattern growth mining of our algorithm performs
~46% faster than FP-Growth, FUFP-tree, Pre-FUFP, and
FCFPIM, which all performed similarly. In term of overall

55740

execution time, our algorithm also performs faster than
FP-Growth (~88 %), FUFP-tree (~11 %), and Pre-FUFP
(~9 %). In addition, the execution time required for updating
tree and mining frequent itemsets with our algorithm at 3%
minimum support threshold was only ~88 % of that required
by any of the FP-Growth, ~11 % FUFP-tree, ~9 % Pre-
FUFP, and ~14 % FCFPIM algorithms. Moreover, when the
minimum support threshold was very low or the characteristic
pattern of the incremental database differed considerably
from the original database, FIUFP-Growth algorithm was still
very efficient.

ACKNOWLEDGMENT

The authors would like to thank the Faculty of Informa-
tion Technology, King Mongkut’s Institute of Technology
Ladkrabang for facility support.

VOLUME 9, 2021

W. Thurachon, W. Kreesuradej: Incremental Association Rule Mining With FIUFP-Growth I E E E ACC@SS

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Agrawal, T. Imieliniski, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207-216, Jun. 1993.

Y. Djenouri, A. Belhadi, P. Fournier-Viger, and H. Fujita, “Mining diver-
sified association rules in big datasets: A cluster/GPU/genetic approach,”
Inf. Sci., vol. 459, pp. 117-134, Aug. 2018.

N. Sael, A. Marzak, and H. Behja, “Multilevel clustering and association
rule mining for learners’ profiles analysis,” Int. J. Comput. Sci. Issues,
vol. 10, no. 3, pp. 188-194, 2013.

P.-S. Chien, Y.-F. Tseng, Y.-C. Hsu, Y.-K. Lai, and S.-F. Weng, “Frequency
and pattern of chinese herbal medicine prescriptions for urticaria in Taiwan
during 2009: Analysis of the national health insurance database,” BMC
Complementary Alternative Med., vol. 13, no. 1, p. 209, Aug. 2013.

L. Yao, Y. Zhang, B. Wei, W. Wang, Y. Zhang, X. Ren, and Y. Bian, “Dis-
covering treatment pattern in traditional Chinese medicine clinical cases
by exploiting supervised topic model and domain knowledge,” J. Biomed.
Informat., vol. 58, pp. 260-267, Dec. 2015.

H. Gao, W. Huang, and X. Yang, “Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility tra-
jectories and their statistical data,” Intell. Automat. Soft Comput., vol. 25,
no. 3, pp. 547-559, Jan. 2019.

W. Altaf, M. Shahbaz, and A. Guergachi, ““‘Applications of association rule
mining in health informatics: A survey,” Artif. Intell. Rev., vol. 47, no. 3,
pp. 313-340, Mar. 2017.

P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data
Mining, 2nd ed. London, U.K.: Pearson, 2018.

J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

R. Agrawal and R. Srikant, “‘Fast algorithms for mining association rules
in large databases,” in Proc. VLDB, vol. 1215, Sep. 1994, pp. 487-499.

J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53-87, Jan. 2004.

X. Liu, K. Zhai, and W. Pedrycz, “An improved association rules mining
method,” Expert Syst. Appl., vol. 39, no. 1, pp. 1362-1374, Jan. 2012.

M. S. Hoseini, M. N. Shahraki, and B. S. Neysiani, ““A new algorithm for
mining frequent patterns in can tree,” in Proc. 2nd Int. Conf. Knowl.-Based
Eng. Innov. (KBEI), Tehran, Iran, Nov. 2015, pp. 843-846.

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “A tree projection
algorithm for generation of frequent item sets,” J. Parallel Distrib. Com-
put., vol. 61, no. 3, pp. 350-371, Mar. 2001.

Z.-H. Deng and S.-L. Lv, “PrePost+: An efficient N-lists-based algorithm
for mining frequent itemsets via children—parent equivalence pruning,”
Expert Syst. Appl., vol. 42, no. 13, pp. 5424-5432, Aug. 2015.

Z.-H. Deng and S.-L. Lv, “Fast mining frequent itemsets using nodesets,”
Expert Syst. Appl., vol. 41, no. 10, pp. 4505-4512, 2014.

M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372-390, Jun. 2000.

S. Bhanderi, N. C. Chauhan, and S. D. Bhanderi, ““Incremental mining of
association rules: A survey,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 3,
pp. 4071-4074, 2013.

D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, “Maintenance of
discovered association rules in large databases: An incremental updating
technique,” in Proc. 12th Int. Conf. Data Eng., New Orleans, LA, USA,
Feb. 1996, pp. 106-114.

R. Feldman, Y. Aumann, O. Lipshtat, and H. Manilla, “Borders: An effi-
cient algorithm for association generation in dynamic databases,” J. Intell.
Inf. Syst., vol. 12, pp. 61-73, Apr. 1999.

T.-P. Hong, C.-Y. Wang, and Y.-H. Tao, “A new incremental data mining
algorithm using pre-large itemsets,” Intell. Data Anal., vol. 5, no. 2,
pp. 111-129, Mar. 2001.

R. Amornchewin and W. Kreesuradej, ‘‘Probability-based incremental
association rule discovery algorithm,” in Proc. Int. Symp. Comput. Sci.
Appl., Hobart, TAS, Australia, Oct. 2008, pp. 212-215.

R. Amornchewin and W. Kreesuradej, “Mining dynamic database using
probability-based incremental association rule discovery algorithm,”
J. Universal Comput. Sci., vol. 15, pp. 2409-2428, Jun. 2009.

A. Ariya and W. Kreesuradej, ‘‘Probability-based incremental association
rule discovery using the normal approximation,” in Proc. IEEE 14th
Int. Conf. Inf. Reuse Integr. (IRI), San Francisco, CA, USA, Aug. 2013,
pp. 432-439.

VOLUME 9, 2021

[25] A. Ariya and W. Kreesuradej, “‘An enhanced incremental association rule
discovery with a lower minimum support,” Artif. Life Robot., vol. 21, no. 4,
pp. 466477, Dec. 2016.

[26] J.-L. Koh and S.-F. Shieh, “An efficient approach for maintaining associ-
ation rules based on adjusting FP-tree structures,” in Proc. DASFAA, Jeju,
South Korea, 2004, pp. 417-424.

[27] T.-P. Hong, C.-W. Lin, and Y.-L. Wu, “Incrementally fast updated frequent
pattern trees,” Expert Syst. Appl., vol. 34, no. 4, pp. 2424-2435, May 2008.

[28] T.-P. Hong, C.-W. Lin, and Y.-L. Wu, “Maintenance of fast updated
frequent pattern trees for record deletion,” Comput. Statist. Data Anal.,
vol. 53, no. 7, pp. 2485-2499, May 2009.

[29] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “The pre-FUFP algorithm for
incremental mining,” Expert Syst. Appl., vol. 36, no. 5, pp. 9498-9505,
Jul. 2009.

[30] C.-W. Lin and T.-P. Hong, ‘“Maintenance of prelarge trees for data mining
with modified records,” Inf. Sci., vol. 278, pp. 88—103, Sep. 2014.

[31] W.-G. Teng and M.-S. Chen, “Incremental mining on association rules,”
in Foundations and Advances in Data Mining, vol. 180. Berlin, Germany:
Springer, 2005, pp. 125-162.

[32] W. Kreesuradej and W. Thurachon, “Discovery of incremental association
rules based on a new FP-growth algorithm,” in Proc. IEEE 4th Int. Conf.
Comput. Commun. Syst. (ICCCS), Singapore, Feb. 2019, pp. 184-188.

[33] M. Karanjikar and S. V. Kedar, “Secure association rule mining using
Bi-Eclat algorithm on vertically partitioned databases,” in Proc. Int. Conf.
Intell. Sustain. Syst. (ICISS), Palladam, India, Dec. 2017, pp. 176-181.

[34] L. Li, R. Lu, K.-K.-R. Choo, A. Datta, and J. Shao, ‘““Privacy-preserving-
outsourced association rule mining on vertically partitioned databases,”
IEEE Trans. Inf. Forensics Security, vol. 11, no. 8, pp. 1847-1861,
Aug. 2016.

[35] P. D. Lambhate and R. Khairnar, “AssociationRule on vertically parti-
tioned data,” in Proc. Int. Conf. Comput., Commun., Control Automat.
(ICCUBEA), Pune, India, Aug. 2017, pp. 1-5.

[36] Y. Djenouri, J. C.-W. Lin, K. Norvag, and H. Ramampiaro, ‘“Highly
efficient pattern mining based on transaction decomposition,” in Proc.
IEEE 35th Int. Conf. Data Eng. (ICDE), Macao, China, Apr. 2019,
pp. 1646-1649.

[37] J.Sun, Y. Xun, J. Zhang, and J. Li, “Incremental frequent itemsets mining
with FCFP tree,” IEEE Access, vol. 7, pp. 136511-136524, 2019.

[38] J. C.-W. Lin, Y. Shao, P. Fournier-Viger, Y. Djenouri, and X. Guo, “Main-
tenance algorithm for high average-utility itemsets with transaction dele-
tion,” Int. J. Speech Technol., vol. 48, no. 10, pp. 3691-3706, Apr. 2018.

[39] P. Thusaranon and W. Kreesuradej, “‘Frequent itemsets mining using ran-
dom walks for record insertion and deletion,” in Proc. 8th Int. Conf. Inf.
Technol. Electr. Eng. (ICITEE), Yogyakarta, Indonesia, Oct. 2016, pp. 1-6.

[40] P.Thusaranon and W. Kreesuradej, “A probability-based incremental asso-
ciation rule discovery algorithm for record insertion and deletion,” Artif.
Life Robot., vol. 20, no. 2, pp. 115-123, Jun. 2015.

WANNASIRI THURACHON received the B.Sc.
degree in computer science from Lampang
Rajabhat University, Thailand, in 1996, and the
M.Sc. degree in information technology from
Naresuan University, Thailand, in 2004. She is
currently pursuing the Ph.D. degree with KMITL.
Her main research interests include data mining,
association rule mining, incremental association
rule mining, and data mining.

WORAPOJ KREESURADEJ received the B.Eng.
degree (Hons.) in electronics engineering from
the King Mongkut’s Institute of Technology
Ladkrabang, Thailand, in 1989, and the M.S.E.E.
and Ph.D. degrees in electrical engineering from
Texas Tech University, Lubbock, T‘X, USA,
in 1993 and 1996, respectively.

He is currently an Associate Professor with
the Faculty of Information Technology, King
Mongkut’s Institute of Technology Ladkrabang,
Bangkok, Thailand. His main research interests include data mining fuzzy
system neural networks, business intelligence, and big data analytics.

55741

