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ABSTRACT The scaled boundary finite element method(SBFEM) is a semi-analysis method, combing
the advantages of boundary element method and finite element method. However, in solving the quadruple
corner-cut ridged elliptical(QCRE) waveguide, the traditional SBFEM employ the Lagrange polynomials as
the basis functions which leads to the curved boundaries cannot be exactly represented and the continuity
order across element is low. In this paper, a non-uniform rational B-spline (NURBS) enhanced SBFEM
is firstly extended to solve the QCRE waveguide, which can exactly describe the curved boundaries,
reduce the spatial dimensions by one and obtain analytically results in the radial direction. According to
its symmetry, only a quarter of the ridged elliptical waveguide needs to be simulated and subdivided into
several subdomains. The curved boundaries and straight boundaries of the subdomains are described and
discretized by the NURBS and Lagrange basis functions, respectively. The side-face boundaries do not need
to be discretized. Then, the NURBS enhanced SBFEM governing equation of the waveguide eigenvalue
problem is derived based on the vibrational principle and scaled boundary coordinate transforming. Finally,
a generalized eigenvalue equation respecting to the cut-off wave numbers is established by introducing the
boundary dynamic stiffness and employing a continued fraction solution. Numerical results verify the high
computational efficiency and accuracy of the NURBS enhanced SBFEM with exactly describing the curved
boundaries. The influence of the corner-cut on the cut-off wave numbers of several modes and single-mode
bandwidth are investigated in details.

INDEX TERMS Scaled boundary finite element method, elliptical waveguide, NURBS basis function,
quadruple corner-cut ridge, cut-off wave number.

I. INTRODUCTION
In order to meet the performance requirements of micro-wave
and millimeter-wave communication systems, it is necessary
to continuously explore and research new waveguides with
special cross-section shapes. Due to the characteristics of low
cut-off frequency, low impedance and extended bandwidth,
various kinds of ridged waveguide have been applied in
millimeter-wave and micro-wave communication systems.

The analysis of the waveguide eigenvalue problem is of
great significance in designing ridged waveguide devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao .

Thus, a variety of numerical methods has been used to
analyze the characteristics of a ridged waveguide. Such as
the magnetic field integral equation (MFIE) method [1], the
finite difference method(FDM) [2], meshless method [3],
the mode-matching method (MMM) [4], [5], boundary ele-
ment method (BEM) [6], [7], multipole theory (MT) [8],
the finite element method (FEM) [9]–[11], the isogeometric
analysis (IGA) [12] and the scaled boundary finite element
method(SBFEM) [13], [14]. Among those above mentioned
methods, the FEM as the widely used numerical technique
has a remarkable capability to solve the ridged waveguide
problems. However, the traditional FEM cannot exactly rep-
resent the curved boundaries of the computational domain
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with low-order basis functions. Besides, the whole compu-
tational domain need to be discretized in FEM, which leads
to considerable workload in mesh refinement and generation
for the complex waveguide problems. Comparing with the
traditional FEM, only the boundaries of the unknown domain
need to be discretized in BEM, which can reduce the spatial
dimension by 1. Hence, the consuming time in mesh gener-
ation and CPU time are spared. However, the fundamental
solutions of complex waveguide problems are complicated
to express.

The SBFEM [15], [16] as a semi-analysis approach has
been widely used to analyze different problems, such as frac-
ture mechanics [17]–[19], electromagnetic field [20]–[22],
hydraulic structures [23]–[27], heat conduction [28], and so
on. The SBFEM inherits the advantages of the BEM and
FEM with some unique properties of its own. Such as the
fundamental solution is not required, only the boundaries
need to be discretized, the governing equations are weakened
in the circumferential direction and solved analytically in the
radial direction. However, the traditional SBFEM employ the
Lagrange polynomials as the basis functions which leads to
the curved boundaries cannot be exactly represented and the
continuity order across element is low.

Isogeometric analysis (IGA) as an alternative to the con-
ventional FEMwas developed by Hughes et al. [29], in which
NURBS is used to replace conventional Lagrange polynomi-
als. Because the NURBS is employed as a standard approach
in CAD systems, the IGA can seamlessly link the CAEmodel
with the CAD model. In the framework of IGA, the geome-
try can be exactly described by NURBS, and the accuracy
of results is superior. The IGA has been extended to solve
heat conduction [30], shape optimizing [31], contact prob-
lems [32], electromagnetics [33], [34] to name a few.

According to the concept of IGA, the NURBS basis func-
tion is used to replace the Lagrange basis function in the
traditional SBFEM [35]. The NURBS-based SBFEM has
been successfully used in different problems, such as elasto-
statics problems [36], [37], electrostatic problems [38], heat
conduction problems [39] and fracture problems [40]. In this
paper, the NURBS enhanced SBFEM is firstly extended
to analyze the QCRE waveguide. The NURBS enhanced
SBFEM inherits the advantages of IGA and SBFEM, which
can exactly describe the curved boundaries, reduce the spatial
dimensions by one and obtain analytically results in the radial
direction. It worthy note that, the NURBS enhanced SBFEM
only employ the NURBS basis function to represent and dis-
cretize the curved boundaries of the elliptical waveguide. The
side-face boundaries do not need to be discretized. As shown
in Fig.1, the QCRE waveguide contains re-entrant corners
and curved boundaries. Thus, the NURBS enhanced SBFEM
is an attractive approach to solve the QCRE waveguide.

This paper is organized as follows. The concepts of
B-splines and NURBS are briefly reviewed in Section II.
In Section III, the governing equation of the waveguide eigen-
value problem is derived by the NURBS enhanced SBFEM.
A generalized eigenvalue equation is obtained by introducing

FIGURE 1. The sketch of a quadruple corner-cut ridged elliptical(QCRE)
waveguide.

the boundary dynamic stiffness and employing a continued
fraction solution in Section IV. With the NURBS enhanced
SBFEM, the QCRE waveguide is solved and discussed
in Section V. The conclusions are stated in Section VI.

II. B-SPLINES AND NURBS
The concepts of B-Splines and NURBS are briefly outlined
in this section. More detailed description can be referred to
the literature [29], [41].

A B-Spline basis is defined based on a series of non-
decreasing real numbers named knot vector. The knot vector
can be written as:

s =
{
s1, s2, . . . , sn+p+1

}
(1)

where si is the i th knot, n denotes the number of B-Splines
and p denotes the order of B-Splines. The vector [s1, sn+p+1]
is named a single patch and the interval [si, si+1] is named
the i-th knot span. The knot vector s can be named open
knot vector, when the first and last knot have a multiplicity
of p +1 in s. The first and the last basis function have
interpolation property at the both ends of the open knot vector.
In this paper, the open knot vector is employed.

B-Splines basis functions are defined by the Cox-De Boor
formula[41]:

Bi,0 =

{
1, s ∈ [si, si+1]
0, else

Bi,p =
s− si

si+p − si
Bi,p−1(s)

+
si+p+1 − s

si+p+1 − si+1
Bi+1,p−1(s), p ≥ 1

(2)

where, Bi,p denotes the i th B-spline basis function with
p degree.

Univariate NURBS can be defined by the rational and
weighted form of B-spline:

Rpi (s) =
ωiBi,p (s)
n∑
j=1
ωjBj,p (s)

(3)

where Ni,p is the i th NURBS basis function with p degree.
ωi denotes the i th weights. TheNURBS basis function inher-
its the advantage of the B-spline basis function, such as non-
negativity partition of unity, flexible continuity, local support
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and linear independence. NURBS can exactly represent conic
sections comparing with the B-splines.

The quadratic NURBS basis function is shown in Fig.2with
an open knot vector s = {0,0,0,0.25,0.50,0.75,1,1,1}.

FIGURE 2. Quadratic NURBS functions with open knot vector.

A NURBS curve can be represented as a linear combina-
tion of the NURBS basis function:

C (s) =
n∑
i=1

Rpi (s)Pi (4)

where Pi denotes the i th control point.

III. NURBS ENHANCED SBFEM FOR WAVEGUIDE
PROBLEMS
For the ridged waveguide with homogeneous permeability
and permittivity distributions, the propagation characteristics
are determined by the longitudinal component of the mag-
netic field Hz or electric field Ez. The basic equations of the
magnetic field Hz or electric field Ez satisfy the Helmholtz
equation:

∇
2φ + k2cφ = 0 (5)

with essential boundary conditions for TM mode

φ = φ̄ = 0, on0 (6)

and natural boundary conditions for TE mode

φ,n = q̄ = 0, on0 (7)

where TE mode: φ = Hz. TM mode: φ = Ez. kc denotes
the cut-off wave number which is abbreviated as CWN in the
following passage.

As shown in Fig.3, in order to analyze the waveguide
eigenvalue problems by using theNURBS enhanced SBFEM,
a scaled boundary coordinate system (ξ , η) is establishing.
ξ denotes the radial coordinate which ranges from 0 at the
scaling center to 1 on the boundary 0b, η denotes the circum-
ferential coordinate and a scaling center O

(
x̂0, ŷ0

)
is chosen

at a point which satisfies the scaling requirement. The scaling
requirement is defined as the whole boundary must be visible
from the scaling center.

FIGURE 3. A subdomain in the NURBS enhanced SBFEM.

The relationship of the global Cartesian and the scaled
boundary coordinate systems can be expressed as:

x̂ (ξ, η) = ξ (x(η)− x̂0))+ x̂0

ŷ (ξ, η) = ξ (y(η)− ŷ0))+ ŷ0 (8)

where,
(
x̂, ŷ

)
denotes any point in the domain. (x(η), y(η))

denotes an arbitrary point on the boundary 0b.
The gradient operators between the global Cartesian and

the scaled boundary coordinate system are related as:
∂

∂x
∂

∂y

 = J−1


∂

∂ξ
1
ξ
∂
∂η

 (9)

where, J is independence of ξ named boundary Jacobian
matrix:

J (η) =

[
x y

x,η y,η

]
(10)

The derivative of J can be written as:

J−1 (η) =
[
j11 j12
j21 j22

]
=
[
b1 (η) b2 (η)

]
(11)

Then, the Laplace operator is expressed as:

∇ = b1 (η)
∂

∂ξ
+

1
ξ
b2 (η)

∂

∂η
(12)

As shown in Fig.3, the whole boundary is formed by the
side-face boundary 0s and the outer boundary 0b. Only the
outer boundary 0b needs to be discretized in the SBFEM,
which reduce the spatial dimension by one. In the tradi-
tional SBFEM, the whole outer boundary 0b is discretized
by the Lagrange basis function. Comparing with the tradi-
tional SBFEM, the curved segment of the boundary 0b is
described and discretized by the NURBS basis function and
the straight segment of the outer boundary 0b is discretized
by the Lagrange basis function in the NURBS enhanced
SBFEM. As the open knot vector is adopted, then the first
and the last basis function have interpolation property at
the both ends(A and B in Fig3). Thus, the control points A
and B are shared with the straight segment of the outer
boundary.

By applying the NURBS enhanced SBFEM to
discretize the outer boundary, any point (x(η), y(η)) on the
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boundary 0b is expressed as:

x(η) = N(η)x

y(η) = N(η)y (13)

where the coordinate η ranges from si to si+1 in each knot
span or ranges from −1 to 1 in each Lagrange element.
(x, y) represents the coordinates of control points or nodes.
N(η) denotes the NURBS or the Lagrange basis functions.

By substituting equation (13) into equation(8), any point in
the domain is expressed as:

x̂ = ξ (N(η)x− x̂0)+ x̂0
ŷ = ξ (N(η)y− ŷ0)+ ŷ0 (14)

Based on the isoparametric concept, φ (ξ, η) at any point
is expressed as:

φ (ξ, η) = N (η)φ (ξ) (15)

where φ (ξ) represents the unknown functions in the radial
direction.

Based on the variational principle, the waveguide eigen-
value problem (equations(5),(6) and (7)) can be defined as:

δ5 = δ

(
1
2

∫
�

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

− k2cφ
2

]
d�

)
(16)

Substituting equations (12) and (15) into equation (16) yields:

δ5 = δ(
1
2

∫
�

(
B1 (η)φ (ξ),ξ +

1
ξ
B2 (η)φ (ξ)

)T
×

(
B1 (η)φ (ξ),ξ +

1
ξ
B2 (η)φ (ξ)

)
d�

−
1
2

∫
�

k2cφ (ξ)
T N (η)T N (η)φ (ξ)d� = 0 (17)

where

B1 (η) = b1 (η)N (η) ,B2 (η) = b2 (η)N (η) (18)

By applying the integration by parts to terms with δφ (ξ),ξ
and considering the arbitrariness of δφ (ξ), equation(17)
yield:

E0ξ
2φ(ξ ),ξξ + (E0 + (E1)T − E1)ξφ(ξ ),ξ
−E2φ(ξ )+ k2cM0φ(ξ ) = 0 (19)

E0φ,ξ + (E1)Tφ = 0 (20)

where

E0 =

∫
0b

B1(η)TB1(η) |J| dη

E1 =

∫
0b

B2(η)TB1(η) |J| dη

E2 =

∫
0b

B2(η)TB2(η) |J| dη

M0 =

∫
0b

N(η)TN(η) |J| dη (21)

Equation (19) is the NURBS enhanced SBFEM equation of
the waveguide eigenvalue problem. Equation (20) represents
the boundary conditions (ξ = 1). E0, E1,E2 and M0 are the
constant coefficient matrix.

IV. THE GENERALIZED EIGENVALUE EQUATION
In order to solve the homogeneous second-order differential
equation(19), the concept of ‘‘boundary dynamic stiffness’’
S(kc, ξ ) is introduced and defined as:

Q (ξ) = S (kc, ξ)φ (ξ) (22)

where Q(ξ ) represents the external nodal flux.
According to the principle of virtual work, the relationship

between Q(ξ ) and φ (ξ) is as follows which is similar to
equation(20):

Q (ξ) = S (kc, ξ)φ (ξ) = E0ξφ(ξ ),ξ + (E1)Tφ(ξ ) (23)

Based on equations(19) and(23), the governing equation in
boundary dynamic stiffness can be rewritten as:

(S (kc)− E1) (E0)
−1
(
S (kc)− (E1)T

)
+kcS (kc),kc − E2 + k2cM0 = 0 (24)

Equation(24) belongs to the Riccati differential equa-
tion which can be solved by a continued fraction solu-
tion[42]. The continued fraction solution has a higher
convergence rate and a larger convergence radius than
the corresponding power series. Similarly, the contin-
ued fraction solution of equation(24) can be expressed
as [13], [14]:

S (x) = K+ xM

−
x2

S(1)0 + xS
(1)
0 −

x2

S(2)0 +xS
(2)
0 −···

x2

S
(Mcf )
0 +xS

Mcf
0

(25)

where x = −k2c , Mcf denotes the order of the continued
fraction. K, M, S(i)0 and S(i)1 (i = 1, 2, . . . , Mcf ) denote
the coefficient which can be determined by a recursive
procedure[42].

Appling the continued fraction solution to equation(25)
which is respect to the boundary dynamic stiffness, then the
relationship between the flux Q and the field function φ can
be expressed as:(
Kh − k2cMh

)
y = F (26)

Kh = diag
(
K,S(1)0 ,S(2)0 , · · · ,S(

Mcf )
0

)

Mh =



M −I 0 · · · 0
−I S(1)1 −I · · · 0

0 −I S(2)1 · · · 0
...

...
...

. . .
...

0 0 0 · · · S(
Mcf )
1


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y =
(
φT ,

(
φ(1)

)T
,
(
φ(2)

)T
,

. . . ,
(
φ(Mcf )

)T)T
F =

(
QT , 0, 0, · · · , 0

)T
(27)

where Kh and Mh are symmetric matrix. ydenotes the field
function and the auxiliary variables φ(i). F denotes the exter-
nal nodal flux on the outer boundary.

Considering the boundary conditions as expressed in equa-
tions(6) and (7) of the homogeneous waveguide eigenvalue
problem, F equals to 0 on the right-hand of equation(26).
Thus, equation(26) changes to a generalized eigenvalue equa-
tion as follows: (

Kh − k2cMh

)
y = 0 (28)

V. NUMERICAL RESULTS
A. THE EXACTNESS OF GEOMETRIC REPRESENTATION
In order to compare the exactness of geometric representation
by different basis function, a quarter of ellipse is discretized
into four elements by quadratic Lagrange and NURBS basis
functions, respectively. A variable L is employed to evaluate
the exactness of geometric representation which is defined as
L = (|MF1| + |MF2|)

/
(2a), where M denotes the point on

the elliptical boundary, F1 and F2 means the elliptical focal
point, a denotes the lengths of major semi-axes of the ellipse.
According to the definition of an ellipse, the exact value
of L is one. Fig.4 shows that, the elliptical boundary can be
exactly represented by the NURBS basis function, and except
the nodal location the elliptical boundary is approximately
represented by the Lagrange basis function.

FIGURE 4. The exactness of geometric representation.

B. THE ACCURACY AND EFFICIENCY OF THE NURBS
ENHANCED SBFEM
In order to verify the accuracy and efficiency of the
NURBS enhanced SBFEM, the normalized cut-off wave
number(CWN) kca of different modes which consist of the
first 4 TM modes and the first 21 TE modes are solved by
the traditional SBFEM and the NURBS enhanced SBFEM,

respectively. The geometry of the QCRE waveguide assume
a = 10mm, c = 0.5a, b = (a2-c2)0.5, Wa/a = Wb/b = 0.4
Wac/Wa =Wbc/Wb = 0.5 and La/a = Lb/b = 0.7. According
to its symmetry, as shown in Fig.5, only a quarter of the
QCRE waveguide needs to be simulated and divided to nine
subdomains. The curved boundaries and straight boundaries
of each subdomain are described and discretized by quadratic
NURBS and Lagrange basis functions, respectively. In the
analysis, four meshes are employed to validate the conver-
gence of the NURBS enhanced SBFEM. The coarse mesh
as shown in Fig.5(b) consists of 16 elements (12 Lagrange
elements and 4 NURBS elements) with 31 nodes (24 nodes
and 7 control points). Based on the coarse mesh, the other
three meshes are constructed by the binary subdivision. The
quarter of the QCRE waveguide is also discretized into
four meshes(16 elements with 33 nodes, 32 elements with
65 nodes, 64 elements with 129 nodes and 128 elements with
257 nodes) by the traditional SBFEM. In each subdomain,
the scaling center is chosen at the same position where satisfy
the scaling requirement in the traditional SBFEM and the
NURBS enhanced SBFEM. The degree of the continued
fraction solution is set as three. Unfortunately, there is no
analytical solution of the QCRE waveguide. Thus, a FEM
solution[13] with 69217 nodes is employed as a reference.
The CPU time is used to verify the efficiency of the NURBS
the SBFEM which is recorded on a Windows 10 desktop
computer (CPU: Intel core i7-8700 at 3.20 GHz). The root
mean square error(RMSE) is chosen to verify the accu-
racy of the NURBS enhanced SBFEM which is defined as(∑25

i=1
((
kc−cal − kc−ref

)/
kc−ref

)2/25
)0.5

. The normalized
CWN, CPU time and RMSE of the ridged elliptical waveg-
uide with the traditional SBFEM and NURBS enhanced

FIGURE 5. The sketch of the discretization mesh.
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FIGURE 6. Normalized CWNs versus different ratio of (2a − da)/(2a)
and Wa/(2a).

FIGURE 7. Normalized CWNs versus different La/a and Wac /Wa.

SBFEM are given in Tab.1. From Tab.1, the normalized cut-
off numbers obtained by the NURBS enhanced SBFEM are
in very good agreement with those obtained by the FEM,
the accuracy and efficiency of the NURBS enhanced SBFEM
are better than that of the traditional SBFEM.

C. THE EFFECT OF THE CORNER-CUT RIDGES
ON THE CWNs
Then, the effect of the corner-cut ridges on the CWNs
of several lowest modes is analyzed with the NURBS
enhanced SBFEM.

With the fixed aspect ratio Wa/(2a) = Wb/(2b), La/a =
Lb/b and Wac/Wa = Wbc/Wb = 0.5, the relationship of
the normalized CWNs kca of TEe11, TEe21, TEo11, TEo21,
TMe01 and TEe31 modes with different ratio of eccentricity e,
Wa/(2a) and (2a-da)/(2a) is shown in Fig.6.
As shown in Fig.6, with the increasing of (2a-da)/(2a),

the normalized CWNs of TEe11, TEe21 and TEo11 modes
remain unchanged at first, then decrease and eventually tend
to the same value. The effect of the ridge thicknessWa on the
normalized CWNs of the TEe11, TEe21 and TEo11 modes is
little.

When eccentricity e = 0.1, the normalized CWNs of
the TEo11 mode is very close to that of the TEe11 mode.
With the increasing of eccentricity e, the normalized CWNs
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FIGURE 8. Normalized CWNs versus different da/a and Wb/Wbc.

of the TEo11 mode are greater than that of the TEe11 mode
and even greater than that of TEe21 mode. For each eccentric-
ity e, the normalized CWNs of TMe01 mode increases with
the ridge thickness Wa/(2a) and (2a-da)/(2a) increase.
When eccentricity e = 0.1, 0.5 and 0.75, Wa/(2a) =

0.06 and 0.12, the normalized CWNs of TEo21 mode increase
at first and then tend to be flat with the increase of
(2a-da)/(2a). When eccentricity e = 0.1, 0.5 and 0.75,
Wa/(2a) = 0.24, The normalized CWNs of TEo21 mode
increase at first and then decrease with the increase
of (2a-da)/(2a).

When eccentricity e = 0.9, the normalized CWNs of the
TEe31 mode decrease at first and then tend to constant with
the increasing of (2a-da)/(2a).

FIGURE 9. Single-mode bandwidth versus different da/a and Wb/Wbc.

With the fixed eccentricity e = 0.5, Wa/a = Wb/b = 0.12,
Wac/Wa = Wbc/Wb and La/a = Lb/b, the relationship of
the normalized CWNs kca of TEe11, TEe21, TEo11, TEo21
and TMe01 modes with different ratio of La/a and Wac/Wa is
shown in Fig.7.

As shown in Fig.7(a), when the edge width Wac is fixed,
the normalized CWNs of TEe11, TEe21 and TEo11 modes are
determined by the ridge length La. The normalized CWNs of
TEe11, TEe21 and TEo11 modes increases with the edgewidth
Wac increasing.

As shown in Fig.7(b), the normalized CWNs of TEo21
and TMe01 modes keeps almost stable when tuning the edge
widthWac and the ridge length La. Thus, the single bandwidth
of the quadruple corner-cut ridged elliptical waveguide can be
broadened with sufficiently suppressing or not exciting the
TEe21 and TEo11 modes.

With the fixed eccentricity e = 0.5, Wac/(2a) =

Wbc/(2b) = 0.02 and da/a = db/b, the relationship of
the normalized CWNs kca of TEe11, TEe21, TEo11, TEo21
and TMe01 modes with different ratio of da/a and Wb/Wbc
(Wa = W -Wbc +Wac) is shown in Fig.8.

As shown in Fig.8(a), when the ridge thicknessWb is fixed,
the normalized CWNs of TEe11, TEe21 and TEo11 modes
are mainly determined by the ridge gap da. The normalized
CWNs of TEe11, TEe21 and TEo11 modes decrease at first
and then increase with the ridge thicknessWb increasing. For
the ratio of the ridge gap da/a = 0.10, the normalized CWNs
of TEe11, TEe21 and TEo11 modes are almost the same.

As shown in Fig.8(b), for each ridge gap da, the normalized
CWNs of TEo21 mode increase at first and then decrease with
the ridge thickness Wb increasing. When the ridge thickness
Wb is fixed, the normalized CWNs of TEo21 mode are mainly
determined by the ridge gap da.
As shown in Fig.8(c), for the ratio of the ridge gap with the

da/a = 0.10, 0.20 and 0.40, the normalized CWNs of TMe01
mode increase with the ridge thickness Wb increasing. For
the ratio of ridge gap da/a = 0.60, the normalized CWNs of
TMe01 mode increase at first and then tend to constant with
the ridge thickness Wb increasing.
Because the CWNs of TEe21 and TEo11 modes are close

to that of the dominant TEe11 mode. Thus, when efficiently
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TABLE 1. The CWN, RMSE and CPU time of the ridged elliptical waveguide with SBFEM and NSBFEM.

suppressing or not exciting the TEe21 and TEo11 modes,
the relative single-mode bandwidth BW can be determined
by the CWNs of the TEo21 and TEe11 mode as follows:

BW =
2
(
kTEo21c − kTEe11c

)
kTEo21c + kTEe11c

× 100% (29)

Fig.9 shows that, the relative single-mode bandwidths are
mainly determined by the ridge thickness Wb and the gap
distance da of the QCRE waveguide. As the ratio Wb/Wbc
increasing, the relative single-mode bandwidths increase
first and then decrease. Consequently, an optimal relative
single-mode bandwidth can be achieved by changing the
ridge thickness, ridge gap and corner-cut edge width of the
QCRE waveguide.

VI. CONCLUSION
The NURBS enhanced SBFEM has been successfully
extended to analyze the QCRE waveguide. In the NURBS
enhanced SBFEM, the curved boundaries and straight bound-
aries of the subdomains are described and discretized by
NURBS and Lagrange basis function, respectively, and the
spatial dimensions is reduced by one. It has been shown
that, the elliptical boundary can be exactly represented by
the NURBS basis function, and the accuracy and efficiency
of the NURBS enhanced SBFEM are better than that of the
traditional SBFEM. With the NURBS enhanced SBFEM,
the corner-cut influence on the CWNs and the single-
mode bandwidth have been studied in details. Moreover,
the NURBS enhanced SBFEM could be extended to analyze

the waveguide structure with complicated geometry in engi-
neering problems.
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