IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 25, 2021, accepted April 5, 2021, date of publication April 8, 2021, date of current version April 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071654

Deep Learning-Based Short-Term Load
Forecasting Approach in Smart Grid
With Clustering and Consumption
Pattern Recognition

DABEERUDDIN SYED"!2, (Miember, IEEE), HAITHAM ABU-RUB "2, (Fellow, IEEE),
ALI GHRAYEB 2, (Fellow, IEEE), SHADY S. REFAAT “2, (Senior Member, IEEE),
MAHDI HOUCHATI3, (Member, IEEE), OTHMANE BOUHALI*>, (Miember, IEEE),
AND SANTIAGO BANALES 3, (Member, IEEE)

! Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
2Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha 23874, Qatar
3Iberdrola Innovation Middle East, Doha 23874, Qatar

*Department of Research Computing, Texas A&M University at Qatar, Doha 23874, Qatar

5 Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 23874, Qatar

Corresponding author: Dabeeruddin Syed (dsyed @tamu.edu)
This publication was made possible by the National Priorities Research Program (NPRP) Grant [NPRP10-0101-170082] from the Qatar

National Research Fund (a member of Qatar Foundation), and co-funding by IBERDROLA QSTP LLC. The Open Access Funding was
provided by Qatar National Library.

ABSTRACT Different aggregation levels of the electric grid’s big data can be helpful to develop highly
accurate deep learning models for Short-term Load Forecasting (STLF) in electrical networks. Whilst
different models are proposed for STLF, they are based on small historical datasets and are not scalable to
process large amounts of big data as energy consumption data grow exponentially in large electric distribution
networks. This paper proposes a novel hybrid clustering-based deep learning approach for STLF at the
distribution transformers’ level with enhanced scalability. It investigates the gain in training time and the
performance in terms of accuracy when clustering-based deep learning modeling is employed for STLF.
A k-Medoid based algorithm is employed for clustering whereas the forecasting models are generated for
different clusters of load profiles. The clustering of the distribution transformers is based on the similarity
in energy consumption profile. This approach reduces the training time since it minimizes the number of
models required for many distribution transformers. The developed deep neural network consists of six
layers and employs Adam optimization using the TensorFlow framework. The STLF is a day-ahead hourly
horizon forecasting. The accuracy of the proposed modeling is tested on a 1,000-transformer substation
subset of the Spanish distribution electrical network data containing more than 24 million load records.
The results reveal that the proposed model has superior performance when compared to the state-of-the-art
STLF methodologies. The proposed approach delivers an improvement of around 44% in training time while
maintaining accuracy using single-core processing as compared to non-clustering models.

INDEX TERMS Deep neural networks, distribution transformers, k-medoids clustering, machine learning,
short-term load forecasting.

I. INTRODUCTION transmission, and distribution [1]. For that, large amounts
The technological advancement in the smart grid has the of data started to be collected from different grid sources
goal to optimally serve the electric power generation, with the intention of being utilized in various aspects such
as energy forecasting [2], load analysis [3], asset man-

The associate editor coordinating the review of this manuscript and agement [4], customer segmentation [5], demand response
approving it for publication was Xiaochun Cheng. management [6], energy efficiency analysis [7], anomaly
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detection [8], energy trading and marketing [9], etc. The
development of information technology, two-way communi-
cation system, and customer engagements will significantly
increase the amount of generated and collected data of the
grid [10]. The advancement of sensors has penetrated the
electrical systems leading the way for smarter grids that use
smart meters [11]. The massive amount of data collected by
various sensors and smart meters are of high velocity, variety,
veracity, value, and volume, hence satisfy all the big data
characteristics [12], [13].

The rising number of installed smart meters allows for
the collection of big data corresponding to consumers’ end
devices. The smart meter big data, representing the customer
energy consumption behavior with the granularity of the
household level, enable the electrical utilities to perform
capacity planning, capacity building, and operations. The
integration of the smart meters’ capability with the commu-
nication infrastructure in smart grids enhances the protection,
reliability, efficiency, and safety of the energy supply to the
consumers. The collected big data have been aggregated to
different levels to perform load forecasting. For aggregated
feeder level forecasting, the bottom-up approach is usually
implemented. In such a way, the household level consumption
data are aggregated to the feeder level and then the training
is performed at the feeder level. Similarly, the data at the
feeder level can be aggregated to the level of the distribution
transformers, while several distribution transformers could be
aggregated to the level of substation and so on which helps in
performing load forecasting at the needed level. The electric
utilities rely on short-term forecasts at the distribution feeder
and the transformer level to support peak planning and grid
operation.

In this work, load forecasting is performed with the con-
sumption data at the level of distribution transformers. The
lead time of the short-term load forecasting is one day ahead,
and the forecasting horizon is hourly. The hourly energy
consumption prediction performed one day-ahead enables
the utilities to plan and strategically structure their power
system operations. Consequently, peak shaving can be struc-
turally planned and achieved with the usage of energy storage
systems and dynamic demand response units in place [14].
Load forecasting enables the electric energy utilities to plan
ahead, identify the regions with high load demand, match the
volatile energy demand by changing the generation capacity,
reduce generation cost, regulate energy prices, and manage
scheduling. Accurate load forecasting can also benefit the
energy management systems to simplify control algorithms
with forecasted energy signals as inputs [15].

The energy consumption may vary from one location to
another owing to different weather and climate conditions.
And for the same reason, the energy demand may vary on
different days of the week and at different times of the
day. Many researchers have been interested in grouping the
different conditions or different locations based on the sim-
ilarities between the available features of the data in order
to reduce the number of forecasting models required for
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predictions [16], [17]. The clustering techniques intrigue
researchers to improve the load forecasting methodology and
to enhance accuracy. The current work uses a clustering
technique for a day-ahead hourly load forecasting application
with the aim that the clusters and forecasting performance do
not get negatively affected by the presence of outliers in the
energy consumption values.

Typical methodologies employed for energy or load fore-
casting include time-series [18] and machine learning mod-
eling [19]-[21]. There are two methods of machine learning
modeling, namely, supervised [22] and unsupervised model-
ing [23]. These methodologies are worked mostly on small
historical datasets. It is not clear how these methodologies
can be applied to growing energy data in the era of the
smart grid. The challenge is to effectively process big data
from the smart grid and integrate indirect data sets including
customer information, weather data, etc. into load forecasting
applications. In this work, a novel method of utilizing a
deep-learning supervised model along with an unsupervised
machine learning technique is proposed. Firstly, to incor-
porate the effect of time and date on load, the past energy
consumption values, termed as lag hour values, are used as
features. It is followed by the pre-processing and cleaning
of data. Secondly, the k-Medoids clustering technique is
employed to group the transformers based on similarity in the
energy consumption patterns of customers at the distribution
transformers level. The clustering technique is employed to
enhance the scalability of the approach. Finally, the deep
learning models, including Deep Neural Networks (DNN)
and Long Short-Term Memory (LSTM), are employed to
train and generate predictions.

The load forecasting at the transformer level provides a
pattern of the estimated load demand at the distribution net-
work level rather than the feeder or household level. Distribu-
tion transformer load forecasting can contribute to efficient
demand response management, generation scheduling, and
can help in the reduction of losses. The motivation of this
paper is to contribute to addressing the problem of timely
and accurate short-term load forecasting in large electrical
distribution networks.

To the best of our knowledge, there is no previous work
that proposed a combinational hybrid methodology utilizing
k-Medoids clustering algorithm and deep learning models
for load forecasting. This is the first paper that proposes
the use of a clustering algorithm, insensitive to the pres-
ence of outliers and solely based on energy consumption
patterns, for load forecasting application in smart grids.
The key contributions of this paper are summarized as
follows.

1) A novel hybrid highly accurate forecasting approach
based on clustering techniques and deep learning mod-
els is proposed. The clustering technique is aimed to
enhance the scalability of the approach and its capabil-
ity to analyze big data. Initially, the approach clusters
the distribution transformers based on the profile of
energy consumption at the aggregated level. Finally, the
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forecasting models are developed within each cluster
utilizing deep learning.

2) A pattern-based similarity metric utilizing pairwise
Minkowski similarities is proposed to determine the
transformers that can be clustered based on daily energy
consumption patterns. This simplifies the determination
of clusters that better represent the load profiles of trans-
formers within them.

3) The number of clusters is optimally selected in such
a way that the overall within-cluster error for all the
clusters is minimized. The optimization of the sum of
square errors on all transformers is performed within
constraints to generate the deep learning models for each
cluster.

4) Different from the conventional clustering method, this
work avails a robust clustering algorithm insensitive to
the presence of outliers.

5) The multi-stage methodology reduces the number of
forecasting models required for predictions of energy
consumption in an electric network. Hence, the method-
ology can be scaled to any large electric network and
big data. Eventually, the proposed methodology fixes
the large-scale problem, which is significant since the
real-world data are usually large-scale.

6) We investigate the performance of the proposed scheme
using real-world data and show that a gain of 44% in
training time is achieved over existing schemes whilst
maintaining the forecasting accuracies.

The rest of the paper is organized as follows: in Section II,
the paper presents an overview of the load forecasting
approaches used in the literature considering the aggregation,
profiling, and clustering of the energy consumers. Section III
presents the different aspects of our proposed methodology
and an overview of the load forecasting approach imple-
mented in this work while Section IV summarizes the results
of the proposed clustering approach. Finally, Section V
presents conclusions and future work.

Il. RELATED WORK

In recent years, many researchers have invested their efforts
to develop highly accurate forecasting models for energy
consumption. Also, many of the presented methodologies are
based on clustering using different features and conditions.
In this section, the review of the proposed methodologies in
the literature is presented.

Reference [17] proposed a day-ahead forecasting algo-
rithm that uses load fluctuations and feature importance to
cluster different customers at the distribution level. Crow
search algorithm was utilized to determine the initialization
conditions to avoid local minima convergence in the K-means
clustering method and finally, an ensemble random forest
model was generated to realize the day-ahead forecasting.
The authors reported the lowest Mean Absolute Percentage
Error (MAPE) of 1.633% for the random forest model and
showed that the model performs better compared to Extreme
Learning Machine (ELM), Neural Networks (NN), and
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Support Vector Machines (SVM). Their methodology ben-
efited from the clustering of the 24 hours of a day into
different clusters based on the fluctuation of energy con-
sumption. Although the employed clustering method solves
the issues of criteria for selection and initialization in the
k-means algorithm, there is a scope of improvement in the
Crow search-based k-means clustering algorithm when faced
with high multi-modal peaks in the data formulations.

In [24], the authors proposed a long-term energy fore-
casting methodology that utilizes the spatial clustering algo-
rithm of Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) to predict year-ahead load values for
power system planning. The density-based clustering tech-
nique benefits from its inherent ability to effectively dealing
with the noise in the data by eliminating the outliers. Similar
sub-zones are clustered using DBSCAN based on the features
of historical yearly energy consumption profiles, land use
types, and geographic information. Eventually, Non-Linear
Auto-Regressive (NAR) neural network models yield the
values of the predicted load. They reported that their proposed
model works better when compared to existing models such
as exponential smoothing, grey theory, and Linear Regression
(LR). However, short-term load forecasting is not addressed
using this methodology.

In [25], the author proposed a hybrid model based on
a Kalman filter, an artificial neural network, and wavelet
transforms. The hybrid model also used clustering techniques
for short-term load and renewable energy forecasting. The
work provided evidence that the hybrid models involving
clustering-based wavelet and artificial neural networks per-
form better than conventional models and other hybrid model
combinations. However, in this work, the clustering was
based on geographical zones, rather than the actual patterns
of energy consumption.

Empirical Wavelet transformations (EWT) have been used
to decompose the load data into Intrinsic Mode Functions
(IMF) [26]. Along with LSTM modeling, the IMF functions
are used to predict the low and medium frequency compo-
nents for load predictions. Furthermore, the high-frequency
components are highly varying components with uncer-
tain characteristics, and these are clustered using Improved-
DBSCAN (IDBSCAN) algorithm. The prediction results of
the high, medium, and low-frequency components are aggre-
gated to determine the total load predictions for short-term
load forecasting. Their methodology has the advantage of
employing different prediction methods according to the
characteristics and the variance of data. However, the method-
ology based on IDBSCAN is not effective if the data is scaled
to a large number of dimensions. Also, it is efficient only
when the different clusters have varying densities.

Autoregressive Integrated Moving Average (ARIMA)
model has been utilized as a baseline method for predicting
energy consumption as it is easy to implement and gener-
alize to a wide variety of specifications [27]. Nepal et al.
used k-means clustering along with ARIMA modeling
for predictions of energy consumption in buildings [27].
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The clustering technique is used to cluster the days with
similar load characteristics during the hours of a day. In their
work, the days of a year were clustered into 6 clusters.
During the prediction phase, their methodology determines
the cluster number of the days preceding the testing day and
finally predicts the energy consumption of the testing day.
The results indicate that the standalone ARIMA model can
be improved with the addition of clustering-stage as in their
proposed model. However, the k-means clustering utilized is
sensitive to outliers if present in the data.

Fuzzy c-Shape clustering has been investigated by
Fateme et al. to cluster the load data depending on the shape
of energy consumption [28]. A horizontal ensemble model
consisting of LSTM and XGBoost has been utilized to per-
form a day-ahead forecast of 30-minute granular load predic-
tion. A novel feature of apparent temperature is used in their
analysis. The apparent temperature is the equivalent weather
variable as experienced by humans due to the collective
influence of humidity, temperature, water vapor pressure, and
wind speed values. They have suggested that the addition of
novel features, such as the representative feature of weather,
will improve the accuracy of predictions from cluster-based
ensemble models. However, their methodology is dependent
on the empirical and assumed function and formulation of
equivalent apparent temperature.

LSTM models have been of interest to many researchers to
perform energy forecasting [29], [30]. An ensemble of LSTM
was used to perform short-term energy forecasting [31]. The
different branches of the ensemble utilize different clustering
algorithms in their initial phases. The employed clustering
algorithms involve Balanced Iterative Reducing and Cluster-
ing using Hierarchies (BIRCH), DBSCAN, and KMeans++-.
In the final phase, a dense neural network is employed
to aggregate the results from the different branches of the
ensemble. The ensemble and deep learning models have been
tested to yield better results when compared to nonensemble
and classical models. In [32], Syed et al. proposed an aver-
aging ensemble model of the classical algorithm including
LR and deep learning algorithms including LSTM and DNNSs.
The results indicate that the averaging ensemble model over-
comes the shortcomings of the individual models and pro-
vides synergy to enhance the overall accuracy. However,
the ensemble models and the LSTMs are computationally
expensive.

In [33], anovel fuzzy-based clustering method is employed
to cluster data into different clusters using the order of feature
importance. The clustered data goes through two different
phases of regression. In the first phase, a Radial Basis Func-
tion Neural Network (RBFNN) is utilized. In the second
phase, the output of the first phase is passed to a pooling
layer followed by a convolutional layer and finally, through
two fully connected neural networks. They tested their pro-
posed method with two case studies to predict the hourly
energy consumption for the next week with better results as
compared to the classical energy forecasting methodologies.
However, the clustering method utilizes common space where
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data are shared between neighboring clusters and this intro-
duces redundancy and requires additional computations.

Clustering has also been applied at the household level.
In [34], Bayesian non-parametric clustering model has been
applied to cluster the households with similar energy con-
sumption profiles across seasons and neighborhoods. The
load profile curves are obtained after the removal of phase
variability with the application of elastic shape analysis. The
household-level energy consumption has high variability and
with the predictions on household-level load, it is difficult to
aggregate the prediction results to high levels for the use of
optimized utility operations.

In summary, there has been a significant research effort in
the application of clustering techniques at different levels of
energy distribution networks. The metric for clustering has
been similarities in weather conditions, seasons, days of the
week, hours of the day, etc. However, it is required that the
metric for clustering should emphasize the patterns of energy
consumption.

The main advantages of the proposed solution over similar
works [35], [36] are as follows.

1) The clustering is solely based on the energy consump-
tion pattern at the distribution node level in electric net-
works. Hence, additional granular data at the household
level or other low levels of the grid are not required.

2) Unlike k-Means clustering, the adopted clustering is not
sensitive to the presence of outliers in the data.

3) A trade-off between the accuracy of the predictions and
the training time is achieved.

Ill. THE PROPOSED FORECASTING METHODOLOGY

In this section, a hybrid methodology for day-ahead hourly
short-term load forecasting is proposed. Fig. 1 represents the
sequence of steps performed for developing the clustering-
based short-term load forecasting model. As shown in Fig. 1,
the proposed methodology is carried out in four main stages:
A. Data acquisition and pre-processing stage.

B. Clustering stage.

C. Training stage.

D. Testing stage.

The time-series load data have been utilized for the case
study. The methodology begins with the cleaning of data.
The time-series energy consumption data consist of attributes
such as entry date time and date time. The date time attribute
indicates the time at which the electrical energy is consumed,
and the entry date time indicates the time at which the record
of energy consumption value is updated in the central dis-
tributed recording system. The irrelevant attributes, such as
entry date time, meter codes, etc., in the data that do not
affect energy consumption, are eliminated. The data cleaning
is performed to deal with duplicate records, missing data, etc.

A. DATA ACQUISITION AND PRE-PROCESSING STAGE

The main objective of the data acquisition process is to
collect the data to evaluate the proposed methodology in
terms of accuracy and training time. The pre-processing stage
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FIGURE 1. Clustering-based short-term load forecasting model.

is crucial to remove noise, avoid redundancy, and improve
consistency in the data. Basically, this stage aims to enhance
data quality.

The datasets used in this work, consisting of two subsets
of the Spanish distribution network, have been provided by
the global energy company Iberdrola. Iberdrola has been a
pioneer in the deployment of Advanced Metering Infrastruc-
ture (AMI) using Power Line Communications (PLC) and
open standards. The STAR project, implemented between
2008 and 2018, has mobilized an investment of 2 billion
Euros resulting in 10.8 million smart meters installed and
the digitization of 90,000 transformer substations [37]. Both
datasets are time-series energy consumption data at the dis-
tribution transformers’ level. The major differences between
the two datasets are the size of the data, and the data features.
This section describes the two datasets in the following and
also details the performed pre-processing steps.

1) DATA ACQUISITION

a: DATASET 1

The load forecasting data available for analysis are the energy
consumption data at the distribution transformers’ level of
Spain. The data contain the hourly energy consumption data
for 10 distribution transformers. The weather data for the
location of these 10 distribution transformers are scraped
online using an Application Programming Interface (API)
named Darksky [38]. The data are available for 33 months
from 01 January 2017 to 28 September 2019. The weather
data are merged with the energy consumption data. The data
contain missing values for the weather features. The missing
values should be either filled, extrapolated, or deleted [39].
The missing values for numerical features can be filled with
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mean or median values. Otherwise, backward or forward
filling methods can be utilized to fill the missing values.
Mode imputation is applied for categorical or ordinal fea-
tures. In this work, we have used the forward fill method to fill
missing values for numerical weather features. Dataset 1 con-
sists of features such as date time, wind speed, maximum
temperature, minimum temperature, humidity, summertime,
and other weather features in addition to energy consumption
values. Fig. 2 presents the standard deviation and mean of
the energy consumption values for different transformers in
dataset 1. The boxes represent the deviation of the energy
consumption values, the horizontal blue line inside the blue
box represents the median of the consumption, and the black
circles represent the outliers. The higher width of the blue
boxes represents that the energy consumption values for those
transformers are highly varying.
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FIGURE 2. The standard deviation of energy consumption for different
transformers in dataset 1.

b: DATASET 2

The load forecasting data available for analysis are the energy
consumption data at the distribution transformers’ level of
Spain. The data contain the hourly energy consumption
data for 1000 distribution transformers. There are more than
24 million load records in the dataset. The locations of these
1000 transformers are not available currently. The data are
available for the same 33 months as dataset 1. The difference
for dataset 2 is that the hourly weather information at the loca-
tion of 1000 transformers is not available. Hence, dataset 2
consists of features limited to energy consumption values, and
season. Fig. 3 presents the standard deviation and mean of
the energy consumption values for a subset of transformers
in Dataset 2. The high width of the boxes in Fig. 3 depicts
that the energy consumption values for transformers 21, 127,
and 562 are highly varying. Moreover, it indicates that many
records have zero values for consumption. The mean and the
range of energy consumption values in dataset 1 and dataset 2
are mentioned in Table 1.

Fig. 4 and Fig. 5 represent the daily consumption of one
transformer and the aggregated consumption of all the trans-
formers from dataset 1 and dataset 2 respectively. It is evident
that the overall pattern of consumption is the same irrespec-
tive of the consideration of one distribution transformer or
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TABLE 1. Descriptive statistics of datasets.

Statistic Dataset 1 Dataset 2
Mean (kWh) 75.25 45.41
Standard deviation 111.87 1346.71
(kWh)
Minimum (kWh) 0 0
Maximum (kWh) 754.60 2147483.64
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FIGURE 3. The standard deviation of energy consumption for different
transformers in a sample of dataset 2.
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FIGURE 5. Energy consumption by the hour - dataset 2.

aggregation of the total number of transformers. As seen
in Fig. 4, the energy consumption decreases gradually from
the hours 00:00 to 05:00 AM and increases at a constant rate
from the hours 05:00 AM to reach a peak energy consumption
around 03:00 PM. The energy then declines at a constant rate
till 08:00 PM and then increases with a more or less constant
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slope till a peak is achieved around 10:00 PM. As per Fig. 5,
the energy consumption is more or less the same between
the early hours of the morning from 00:00 AM to 05:00 AM
while a constant increase in the energy demand is witnessed
until 10:00 AM. The energy consumption then fluctuates
between a small range between 10:00 AM and 09:00 PM
with local peaks observed at 01:00 PM and 06:00 PM. After
09:00 PM, there is a decline in the consumption of energy.

2) DATA PRE-PROCESSING
It involves the stages of data cleaning, scaling attributes,
attribute/feature selection, feature extraction, etc.

a: DATA NORMALIZATION

For accurate and efficient learning of machine learning algo-
rithms, it is required that all the attributes have the same
numerical contribution and variance in the same order. If one
attribute has variance much larger than another attribute,
then it dominates whilst learning the objective function.
To incorporate a non-distorting scaler, Minimum-Maximum
(min-max) Scaler has been utilized in this work. The min-max
scaler is given as per (1).

;o (am —min(a)) (g — p)
A =€+ (max (a) — min (a)) M

where a;,l is the new attribute value at row m, a,, is the original
attribute value at row m, min(a) is the minimum value of the
attribute, max(a) is the maximum value of the attribute, and
[p, q] is the scaling range decided for the attribute a.

b: ADDITION OF LAG FEATURES

Lag hour energy consumption values are added in the pre-
processing step to provide additional feedback features to the
model. The optimal number of lag hour values is determined
to be in the order of 24.

¢: FEATURE SELECTION

The candidate input features in dataset 1 include the lag
energy consumption values, wind speed, maximum tem-
perature, minimum temperature, instantaneous temperature,
humidity, pressure, wind speed, wind gust, cloud cover, pre-
cipitation intensity, dewpoint, Ultraviolet (UV) index, visibil-
ity, season, and calendar variables. There are 39 input features
in the candidate set of inputs.

The candidate input features in dataset 2 include the
lag energy consumption values, season, and calendar vari-
ables. There are 28 input features in the candidate set of
inputs.

For feature selection, two methods have been investigated.
The feature importance scores are calculated utilizing the
permutation feature importance techniques. Additionally,
a top-down search based feature selection method called
Sequential Backward Search (SBS) is employed to address
the multi-collinearity between the different features unlike
the best individual feature technique [32].
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B. CLUSTERING STAGE

The pre-processed data with high quality in terms of consis-
tency, low noise, and no redundancy are passed to the next
stage of clustering. The main objective of this stage is to group
together the different distribution transformers with similar
patterns in the daily energy consumption. The similarity met-
ric utilized to group the transformers together is the daily
energy consumption. There are two factors to be kept in mind
while clustering-technique is used - the number of clustered
models and accuracy. As observed in dataset 2, there are
1000 transformers. If each of the transformers is modeled sep-
arately, then these models capture the patterns of energy con-
sumption for the transformers effectively. However, the aim
is to reduce the number of models to be developed from
1000 to as much low number as possible. Nevertheless, while
reducing the number of clustered models to be created, it is
also crucial to maintain the accuracy of the models. Two of the
clustering algorithms have been considered in the time-series
forecasting of energy consumption at the transformers level.
These algorithms are described in the following:

Algorithm 1 . K-Means Algorithm
Input: €, k, Data S

Initialize k centroids randomly, u{, ih....... s My eRr?
Output: )

1: while Y%, lluﬁ —u§_1|‘ <edo

2: t<t+1

3: Cj < dforallj=1,2,3,..,k

4: for all x, € S do

. 2

5: J argmmp{||x[7 — ,u,~|| }

6: Cp < Cpx Ux,

7. end for

8: for all i = 170k do

. 1
9: 'u'f <~ C; ZXPEC,' Xp

10: end for
11: end while

1) K-MEANS CLUSTERING ALGORITHM

The objective of the k-Means clustering algorithm [40] is to
reduce the Error Sum of the Squares (SSE) scoring function
that is given by (2).

k
SSE = Zi:l preC,- ey — il 2

where k represents the total number of clusters, C; represents
each cluster, x, represents each point in a cluster, and y; is
mean of all points in a cluster.

K-Means applies an iterative greedy approach to reduce
the sum of squares error until it reaches a local optimum.
k-Means starts with the selection of the number of clusters &
and the initial kK number of centroids assigned to each cluster.
This step is followed by the centroid update. At this stage,
all the points are assigned to the clusters with the nearest
centroids. Once all the points are assigned, the centroids
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are updated for each cluster as the mean values of all the
points in the clusters. The cluster assignment and the centroid
update are repeated until there is no change in the centroids
in two subsequent loops. This indicates the point of local
minima.

The algorithm for the k-Means model is given in
Algorithm 1. The value of & is selected in such a way that the
average distance from points to centroid decreases rapidly till
it converges or changes slowly thereafter.

2) K-MEDOIDS CLUSTERING

It is known that means, as a statistic, is highly sensitive to
the outliers. The k-Means algorithm, that determines and
utilizes the means of the data points in calculations, is par-
ticularly sensitive to the outliers in the data. To overcome
this, a technique of using medoids instead of average val-
ues in a cluster is devised. Medoids are centrally located
points in a cluster and the technique is called the k-Medoids
clustering. Although k-Medoids are computationally more
demanding, k-Medoids clusters are not particularly sensitive
to the presence of outlier points and are applicable to both
continuous and discrete domains of data [41]. This algorithm
minimizes the sum of dissimilarities between the objects in
a cluster with the reference object selected for that cluster.
Basically, the input given is the value of k that represents
the number of clusters defined for the data. For each of the
k clusters, k-reference points are selected. The remaining
points are clustered into the cluster of a reference point
such that the sum of the dissimilarities between the refer-
ence object and the points in the cluster is minimized. With
different initial medoids selected, the clusters obtained are
different. The difference between the k-Means algorithm and
the k-Medoids algorithm is that k-Means consider the average
value in a cluster to be a reference point and k-Medoids
consider the points to be a reference object for the clusters.
Algorithm 2 presents the sequence of steps performed in the
k-Medoids Algorithm.

Algorithm 2 . K-Medoids Algorithm
Input: €, k, Data S

Initialize k medoids randomly, ®}, ®%,...... , O eRr?
Output: )
1: while Y%, ‘|®§ - ®;—l|‘ <edo
2: t<t+1
3: Ci< @forallj=1,2,3,...,k
4 for all x, € S do
. 2
5: p¥ <« argmmp{||xp — ®,~|| }
6: Cp* < Cp* U)CP
7: end for
&: for all i = 1tok do
. 1
9: ®; < G prec,' Ap
10: end for
11: end while
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C. TRAINING STAGE

The main objective of this stage is to develop machine learn-
ing and deep learning networks and train these networks on
real training data. After the similar transformers are clustered
together, the pre-processed data are passed to linear regres-
sion, deep neural networks, and long short-term memory
networks to train the models for STLF. These models are
explained in the following:

1) LINEAR REGRESSION (LR)
The hypothesis of LR is given by:

My (X) = wo +wixp +woxp + ...+ wixy 3)

where xi,x2,........ , X, represent features, and wy,
wi, wa, .. ..., w, represent model parameters.

The objective of the LR is to choose wg, wi, wa, .. ..., wy,
so that the values of A, (x) is as close to the actual values
of the labels (y). This is achieved by the introduction of a
constraint while determining wg, wi, wa, . . ..., Wy.

The objective constraint is given by (4) [42].

minimize 1
Jwo,wi, .o, W) = —M —
Wowi ... Wy 2n

T ()0 @

Here, J (wg, w1, ...., wy) is the cost function in terms of
model parameters.
This constraint is basically the sum of squared error and the
aim is to minimize this error while determining the weights.
The LR has been used as one of the prediction models to
act as a benchmark for training time as this model would have
the lowest training time owing to the simplicity of the model

but coarser accuracy.

2) DEEP NEURAL NETWORKS
If the artificial neural networks have multiple hidden layers
between the input layer and the output layer, then these are
termed as Deep Neural Networks (DNNs) [43]. DNNs have
the capabilities of modeling linear and non-linear relation-
ships between the data features. Further, the tendency to
overfit can be reduced with the application of dropout where
the neurons are dropped in random or systematic order [44].

The non-linear function representing the data is effectively
determined in the neural networks using summation and prod-
uct operations. If a neuron ’j’ of layer ’1’ (depicted in Fig. 6)
from a neural network is considered, then the input to the
neuron is Sjl, the weight at the neuron is wfj Let o be the
activation function, then x} is the output from the neuron and
this output acts as input to the neurons in the next layer. Here,
i represents the neuron number in the previous layer and d’
represents the number of neurons in the layer ’/’.

The input to the neuron S /l is given as

PG 4=
I _ W (=1 0 _ 0 (-1
=2 Wik AR =) wi ) ©)
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and the output from the neuron j in layer / is given as
I _ !
Xp=0 (Sj) (6)

In the matrix form, the equation for the input to neuron in
layer [ is given as:

sl = <W1>T)£1—1 @

This equation is used in the forward propagation calcu-
lations. The value x, which is input, is available initially.
It is used with pre-initialized weights W to calculate the
input S to the neurons in the hidden layer 1. This input
when applied with activation function yields the output x(!
from the neuron in hidden layer 1.

Algorithm 3 . Forward Propagation

Input: x©) = x. Initialization of augmented vector
Output:
for(=1,2,3,...,Ldo
compute S = (Wl) X

1
2
3: compute xV = !
' PR T e )
4
5

~

-1

end for
compute h ()ﬁ) =x®D

Graphically, the forward propagation can be represented as
the calculations involving the following:

= O WY e o WY ) o o WY e

x L axb=h(x) )

The algorithm for the forward propagation of the neural
network is given in Algorithm 3. The aim of the forward
propagation is to calculate the inputs and outputs in different
layers of the network using the weights, bias, and activation
functions.

Algorithm 4 . Neural Network

0

Input: Initialize all weights Wi

Output:

1 fort=0,1,2,3,....,do

2 pickne 1,2,3,....,N

3 Forward propagation: compute all le

4 Backward propagation: compute all 8}

5: update the weight: w;l) &£ w/(.l)nxf_l(S/l.

6: iterate to the next step until it 1s time to stop
7:  end for

8

return the final weights wd

ij

The backpropagation is utilized to determine the gradient
of error in the direction from the last hidden layer to the first
hidden layer while minimizing the gradient of the error with
respect to the weights of neurons.

The error associated with the predictions is given
by (9) [45]. The subsequent equations (10), (11), and (12) are
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/
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FIGURE 6. Neuron ‘j’ of layer ‘I" in a neural network.

the calculation of error gradient with respect to the weight of
the corresponding layer.

ot [ I

OF dey,
sWl T N Z:n=1 sW! (10)

is given by D that is equal to
lJ

dey,

where ST

I
den — %ﬁ (11)

) I [
Bwij as- Bwu

dey,  dey pE (12)

! ad X
3WU 8s

This brings the partial derivative of the error with respect
to neuron weights to the following equation:
0 ad
T S (13)
8wl.j oW
In the backpropagation, the error gradient (Si(L) is deter-
mined first (L represents the last layer in the neural network)
and by way of backpropagation, the errors in the previous
layers are calculated as the following:

de (w)
asﬁ_l

-1 _
s =

) _
N

=1 dsh ax]~! asl!
d! ax! !
— M, 194
=2 8 i (14)
l

The above equation is the representation of the error
gradient of a layer in terms of the error gradient of the
next layer. All the steps of forming a DNN are provided
in Algorithm 4.

3) LONG SHORT TERM MEMORY (LSTM) NETWORKS

LSTM is a type of Recurrent Neural Network (RNN) that
predicts the output based on not only the current state of the
hidden units but also on the previous states witnessed so far,
with the help of storing information in memory blocks [46].
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LSTMs are sequential models and hence, capture the tempo-
ral dependencies. These models are suitable for processing
time-series data such as load forecasting data. In a standard
RNN, there are two inputs at a time step ¢ to a neuron: input of
time step ¢ (x;) and output obtained at time step ¢ — 1 (h,—_1).
Output at a time step is obtained by the weighted sum of x;
and ;1 which is then followed by using activation functions
such as Rectified Linear Unit (ReLU), hyperbolic tangent
(tanh), etc. on the weighted sum.

LSTM places a mini neural network inside each neuron
and therefore complicates the process of training. However,
it helps to improve reliance and handles the long-term depen-
dencies well by eliminating the issues of gradient vanishing
and gradient explosion that usually exist with the use of
standard RNN. The main idea of LSTM is to have two outputs
and gates. One of the outputs goes to the output layer and
the next time step. Besides, the other output goes to the next
time step only. Gates are the multiply operations performed
and there are several gates in the LSTM. The LSTM net-
work determines the weights and these weights are used to
dot-product the inputs.

An LSTM layer followed by a fully connected neural
network is depicted in Fig. 7. The machine learning models
utilized in the proposed clustering-based modeling and their
parameters are specified in Table 2. The values for the param-
eters are obtained after grid search parameter optimization.
The objective of the work is to develop day-ahead hourly
forecasting models whilst minimizing mean squared error as
the loss function.

TABLE 2. Machine learning models used in clustering-based short-term
load forecasting (STLF).

Model Name Specifications Type
Deep Neural Total layers: 6 DNN
Network No. of neurons in hidden

layers: {75, 50, 30, 20}
LSTM Total layers: 6 RNN

No. of neurons in hidden
layers: {52, 42,42, 32}

Linear Regression Classical Model

D. TESTING STAGE

In this stage, the performance of the clustering-based deep
learning models is evaluated by testing these models on the
datasets of all the distribution transformers. The performance
of clustering-based models is compared against the indi-
vidual models developed for each transformer. The metrics
of evaluation utilized for accuracy are Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE).
Training time and testing time are used to evaluate the perfor-
mance in terms of execution time.
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FIGURE 7. LSTM with fully connected NN.

1) Root Mean Square Error (RMSE): RMSE is the square
root of the sum of squares of the difference between
actual and predicted energy consumption. RMSE is an
effective performance metric for comparing forecasting
errors of different models for a single attribute which is
the case in our paper. However, it is not a recommended
measure to compare performance between attributes as
RMSE is scale dependent. RMSE is given by (15) [47].

1 N 2
RMSE = \/IV Zr:l (Epredicled - Eactual) 15)

2) Mean Absolute Percentage Error (MAPE): MAPE rep-
resents the ratio (in percentage) of the absolute dif-
ference between the actual and predicted value to the
actual value at every record of energy consumption. It is
necessary to make sure that the actual value is not zero
while calculating MAPE. MAPE is given by (16) [47].

N
100
MAPE (%) = —
N

r=1

Epredicted — Euctual

(16)

Eactual

Here, E4cruqi is the actual energy consumption, Epedicred is the
predicted value of energy consumption, and N is the number
of energy values. For low prediction values, the MAPE value
cannot exceed 100%. However, for high prediction values,
there is no maximum control limit to the value of MAPE.

The data of each transformer are split into a training set and
a testing set with the data split as 80% and 20% respectively.
Algorithm 5 details the sequence of steps designed in the
proposed methodology to perform the STLF task.

IV. RESULTS OF CLUSTERING-BASED MODELS

The current work focuses on the application of clustering
by energy consumption patterns at the transformer level to
enhance the performance of forecasting. The methodology
determines the clusters of similar transformers based on a
similarity metric of aggregate daily energy consumption after
which the data are sent to the machine learning models.
The proposed methodology is applied to two real datasets
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to illustrate the performance and enhancement in the fore-
casting accuracy. The computations are performed on 1 core
with 32 GB RAM.

A. SIMILARITY METRIC FOR TRANSFORMERS

At the outset of the clustering stage, a similarity matrix is
required to define the similarities and dissimilarities between
the transformers. The similarity metric is defined to be aggre-
gated daily load to capture the daily load patterns of the
transformers. Let L, ; be the load of transformer s at time
duration ¢. The load matrix for the transformers is represented
by Lsx7 in (17) where S is the total number of transformers
and T is the total number of days when aggregation level is
24 hours. The size of the matrix increases with the increase
in the number of transformers or with the reduction in the
aggregation level of energy consumption values. For the
1000 transformers dataset that is used in case study 2, the size
of the load matrix is 1000 x 1001 where 1001 is the number
of days between 01 January 2017 to 28 September 2019.

L1 L Li; 1 Li;
Ly L Ly, 1 Ly
Lsxr = : T ) ) a7
Ly 11 Ly—12 . o Ly1:-1 Le—1;
Ls,l Ls,2 Ls,t—l Ls,t

The similarity between any two transformers r, s at any
given time p is determined based on pairwise Minkowski
similarity which is given by (18).

1

24
Dr,s,p = <Zt_l |Lr,t — Ls,t|q> 4 (18)

where L,, L; represent the row vectors of load values for
transformers r, s respectively. The optimized value of q
in (18) was determined to be equal to unity. Finally, the
obtained pairwise similarity matrix is passed as an argu-
ment to the clustering function to obtain the clusters of
transformers with similar energy consumption patterns. The
adoption of Minkowski similarity enhanced the performance
of clustering.

B. OPTIMIZATION OF THE NUMBER OF CLUSTERS

There are various methods to optimize the number of
clusters (k) in a clustering algorithm. There are direct meth-
ods such as elbow curve [48], average silhouette [49], etc.,
and statistical methods such as gap statistic [50], etc. The
direct methods involve optimizing a cost function such as the
minimization of within-cluster error. Statistical methods are
those methods that collect evidence to support a hypothesis or
to reject a null hypothesis [51]. In this work, the elbow curve
is constructed to determine the optimal number of clusters
and the results are shown in the following:

1) ELBOW CURVE
In this work, the direct method of the elbow curve is uti-
lized. The elbow curve calculates the within-cluster sum of
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Algorithm 5 . Proposed Methodology
Input:
D: hourly energy consumption data for an electrical net-
work.
S: total number of transformers.
Output:
D®eraged  powByRowWeightedAverage(D);
L < concatenate(Daveraged);
SimMat <« minkowskiDistances(L, L),
while k < S/2 do
Kopt < argminy ||calculateWCSSE(SimMat, k)|[;
end while
C <« kMedoids(kopt, SimMat).get_clusters();
for iter 1 = Otolength(C) do
globals()[Dg‘;;l] <~ null;
10:  globalsOID ] < null:
11:  for iter2 = Otolength(Cliter1]) do

A A ol

b

12: tfnum < Cliter1][iter2];
13: peliterliier?] = py tfpum;
14: globals()[D?:"?;l] <« 80% of DC[?te”][?terz];
15: globalsO[Dir™) < 20% of DClitertlliter2],
16: Train machine learning model on train data D?;ZL;,T :
17: Store tuned hyperparameters for further use.
18: Dump trained model Ml%';vr? dua) TOT future testing.
19: Forecast on 'teslt data D7 with Min';'g;g dual
. 1 4 .
20: globals()[D;.fa’m]. append (globalsQ[D; .. ' 1);
21: globalsO[DI™1). append(globals()[Diyy 1 );
22:  end for

23:  Train ML model on cluster train data globals() [D;’fa’”ll 1.
24:  Store tuned hyperparameters for further use.

25:  Dump trained model M Zigtlm , for future testing.
26: end for

27: for iter1 = Otolength(C) do

28:  for iter2 = Otolength(Cliter1]) do

29: tfnum < Cliter1][iter2];

30: Forecast on test data globals()[DZ;';m] with
iter1
clliiztered ’ .

31: Compare the accuracy results of M éﬂ,tlmd and
ifn .

Mindl;:;ldual for tfnum;
32:  end for
33: end for

square errors (WCSSE) and determines the k-value such that
WCSSE is minimized. The aim of the selection of k is to
determine a low value of £ such that the sum of square error
for that value of k is the minimum and if any more clusters
are added, the clustering is not improved much. This is to
provide a trade-off between the number of clusters and the
accuracy. The elbow method is selected over other methods
of determining the k-value for clustering because of its low
complexity. As per existing research [52], the execution time
is the lowest for the elbow method when compared to other
methods owing to its low complexity of utilizing the sum of
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the square distance between cluster points and representative
centers.

To determine the optimal number of clusters, the elbow
curves are obtained for dataset 1 and dataset 2 as illustrated
in Fig. 8 and Fig. 9. The independent axes in the figures indi-
cate the number of clusters and the dependent axes in the
figures represent the WCSSE for the corresponding number
of clusters (k) value. As per Fig. 8, the sharp decline in the
WCSSE is observed for k = 3. Hence, the optimum number
of clusters is selected as 3 for 10 transformers dataset. The
elbow in Fig. 9 suggests that the optimal number of clusters is
k = 93 for the 1000 transformers dataset. Hence, the clusters
are determined, and the deep learning models are developed
with the number of clusters k = 93.

8
[+

Within cluster error
o o 4 o =
N & o ® o

o
o

1 2 3 7 8 9

4 5 6
Number of clusters - k

FIGURE 8. Elbow curve for 10 transformers dataset.
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FIGURE 9. Elbow curve for 1000 transformers dataset.

C. EVALUATION OF FEATURE ENGINEERING

Fig. 10 depicts the feature importance scores determined
for the weather attributes and this illustrates that tempera-
ture, pressure, humidity, and UV index are the most cru-
cial attributes contributing to the accurate predictions of
the target variable whilst learning the objective function.
Fig. 11 illustrates the feature importance scores determined
for the lag consumption attributes for 6-hour ahead pre-
diction of energy consumption values. The accuracies of
forecasting models increase after the application of feature
engineering i.e. feature selection using Sequential Backward
Search (SBS). Fig. 12 illustrates the RMSE performance
of forecasting models for increasing number of features in
the data. The forecasting models are developed after the
application of the proposed clustering-based deep learning
approach. However, the results are shown after testing on the
individual transformers within the clusters. The best testing
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FIGURE 10. Feature importance - weather attributes.
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FIGURE 12. RMSE for increasing number (n) of features.

performance is obtained when the number of features is
optimal (n = 19). If the number of features whilst training
is increased or decreased, then the accuracy decreases.

D. FORECASTING RESULTS

The data obtained consisted of energy consumption values
for 33 months for 1000 transformers. The K-Medoid clus-
tering is utilized to cluster similar transformers together. The
similarity indicates that transformers have similar patterns of
aggregated daily consumption and hourly consumption. The
aim of the work is to evaluate the performance of individual
models for 1000 transformers against the clustered models.
Individual models mean that 1000 transformers have sepa-
rately trained models using their individual data i.e. these
have 1000 different models. The clustered models indicate
that the 1000 transformers are clustered into ‘k’ different
groups and these ‘k’ clusters have one trained model each

VOLUME 9, 2021

trained on the transformers within the clusters. The employ-
ment of a clustering technique reduces the number of models
required from 1000 to k. As described in the previous sub-
section, the value of ‘.’ (number of clusters) is optimized to
minimize the within-cluster sum of square errors.

The performance of clustered and individual forecasting
models for distribution transformers is evaluated in terms of
RMSE, MAPE, training time, and testing time.

The RMSE and MAPE values for individual models and
clustered models using DNNs are determined and these are
depicted in Fig. 13 and Fig. 14. Fig. 13 indicates the results
of the DNN models for load forecasting. Each of the subfig-
ures indicates a representative subset of 1000 transformers.
As observed from the RMSE lines, mostly the individual
models represent the lower boundary of the two lines. The
RMSE values range between 0 and 30 kWh. These values
are very low considering the range (0 to 2,147,484 kWh) of
energy consumption in the dataset. At a few points, the clus-
tered models over perform the individual models for the
respective transformers. The MAPE values for the individ-
ual models range between 4 to 16 percent and the MAPE
for clustered models range between 5 to 19 percent. These
MAPE values indicate that the clustered models are very
comparable to the individual models. A few transformers
exhibit high statistical variance in the energy consumption,
i.e. they have either zero consumption values, or very high
energy consumption values, or actual energy values range
between 0 and 1. The MAPE values for such transformers
are around 20-32%. These transformers have been found to
be alternate backup transformers that are used only during
the periods of faults, preventive, or predictive maintenance of
main transformers.

Table 3 presents the results of clustering and individual
models on dataset 1 when the machine learning models
used are LR, LSTM, and DNNs. When accuracy is consid-
ered, the best performing model is the DNN model. In the
clustering-based algorithm, the models are trained on a clus-
ter whilst the testing is performed on each transformer within
the cluster. If the clustering and individual models are com-
pared, the individual models have slightly better accuracy
when compared to clustered models. However, the accuracy
of clustered models is highly competitive. If the gain on
training time is considered, then the clustered models are
highly preferable to individual models. When the training
times for different machine learning models are considered,
LR is the best owing to its simplicity. The DNN models have
10 folds of lesser training times compared to LSTM models.
As a trade-off between accuracy and training time, it can
be concluded that the clustering-based DNNs perform better.
A similar pattern is also recognized in Table 4. It depicts the
results of clustering and individual models on dataset 2 when
LR, LSTM, and DNNs are used for training and testing.

The comparison of a trained clustered STLF model using
different machine learning algorithms is illustrated in Fig. 15.
The independent axis represents the time points and the
dependent axis represents the energy consumption in kWh.
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FIGURE 14. Performance evaluation (in MAPE) of clustered models v/s individual models for different transformers.

The results in the figure denote that the proposed k-Medoids
methodology has generated accurate clusters, and the clus-
tered model predicts energy consumption values close to the
actual values of consumption for all machine learning algo-
rithms in general. Fig. 15 also indicates that the DNN fore-
casts follow the consumption peaks better than LSTM and
LR models. LSTM and LR at many time points forecast peaks
after the peaks have occurred. Fig. 16 illustrates the error bars
that depict the standard deviation of predictions using DNN
and LSTM-based clustering models for STLF. The shaded
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region around the blue line depicting predicted energy values
using clustered DNN model represents the error region or
the deviation of model predictions. The experiments were
repeated a reasonable number of times i.e. 20 times to obtain
the mean prediction and standard deviation of the predictions.
LR-based clustering models had zero variance for predictions
and hence, are not plotted. LSTM-based clustering models
have variance tending to zero and additionally, DNN-based
models have very low variance as shown in Fig. 16. The
sources of randomness are kept at the minimum whilst
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FIGURE 15. Forecast comparison of a trained clustered STLF model using different machine learning algorithms.
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FIGURE 16. Error bars for forecasts using DNN and LSTM-based clustered STLF models.

TABLE 3. Results on dataset 1.

Model Mean RMSE (kWh)  Mean MAPE (%) Training Time (s) Testing Time (s)
LR non-clustered 12.27 28.82 0.0656 0.0076
LR + clustering 13.25 32.23 0.0525 0.0076
ARIMA non-clustered ~ 12.6305 30.2368 1.7182 1.8768
ARIMA + Clustering 14.2755 31.6923 1.0611 1.0047
LSTM non-clustered 2.2087 19.0902 421.00 3.7731
LSTM + clustering 3.1301 21.6020 118.83 0.2520
DNN non-clustered 2.3769 14.6451 14.63 0.0710
DNN + clustering 2.6874 15.9380 10.76 0.1070
training the proposed models and the trained mod- deviation of the error metrics for retraining of forecast-

els can be saved using deep learning serialization for ing models under similar initialization conditions will be
future testing in industrial applications. The standard negligible.
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TABLE 4. Results on dataset 2.

Model Mean RMSE (kWh) Mean MAPE (%) Training Time (s) Testing Time (s)
LR non-clustered 54.0449 20.3235 14.06 0.89
LR + clustering 62.3503 20.8479 17.35 1.07
ARIMA non-clustered 59.4144 37.7886 513.5092 14.7560
ARIMA + Clustering 67.8725 39.4502 317.1253 8.6468
LSTM non-clustered 22.5221 72773 113432 378.86
LSTM + clustering 37.0626 11.1064 29106.35 110.41
DNN non-clustered 19.8216 7.1840 8409.14 6.08
DNN + clustering 21.2596 7.2271 4644.82 4.57
V. CONCLUSION REFERENCES

The electric utilities rely on load forecasting for capacity
planning, power management, and operations in this era
of uncertainty due to renewables integration. In this paper,
a hybrid model of k-Medoids clustering and deep learning
models for the day-ahead hourly load forecasting at the level
of distribution transformers was proposed. The performance
and applicability of this solution were demonstrated on two
real datasets, which proves the generalization ability of the
work. In the larger dataset 2, there were 1000 distribution
transformers analyzed. These transformers were clustered
based on the pairwise Minkowski similarity of aggregated
daily consumption of energy using the k-Medoids clus-
tering method with WCSSE measure. The elbow method
determined that the optimum number of clusters for these
1000 transformers was 93. The reduction in the number of
required models from 1000 to 93 reduced the constraint
on the computational resources utilized for load forecasting
and was a step towards real-time application. Consequently,
the deep learning models were used to train and test the
clustered models. These models were also compared with
the 1000 individual deep learning models in the metrics of
RMSE, MAPE, training time, and testing time values. The
forecasting results indicated that the proposed methodology
has generated accurate clusters and saved 44% of training
time. In essence, the clustered models were highly competent
with the individual models in terms of accuracy. Furthermore,
the training time for clustered models was significantly lower
than the individual models by a huge margin. The proposed
methodology can be used with huge electrical networks and
big data in smart grids at any level. Future work will investi-
gate the scalability of the proposed methodology to a large
electrical distribution network of 100,000 transformers for
which the data are being collected currently.
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