
Received March 7, 2021, accepted March 26, 2021, date of publication April 8, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071794

Detecting and Recovering Integer Data
Manipulated by Multiplication With a Nonintegral
Real Number and a Rounding Operation
TAEJUNG PARK 1, HYUNJOO SONG 2, AND SANG JUNE LEE 3
1Department of Cyber Security/IT Media, Duksung Women’s University, Seoul 01369, South Korea
2School of Computer Science and Engineering, Soongsil University, Seoul 07027, South Korea
3Department of Mathematics, Kyung Hee University, Seoul 02447, South Korea

Corresponding author: Sang June Lee (sjlee242@khu.ac.kr)

The work of Taejung Park was supported by the Korea Electric Power Corporation under Grant R18XA01. The work of Sang June Lee was
supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education through the Basic Science Research
Program under Grant NRF-2019R1F1A1058860.

ABSTRACT This paper presents a method for detecting and restoring integer datasets that have been
manipulated by operations involving nonintegral real-number multiplication and rounding. As we discuss in
the paper, detecting and restoring such manipulated integer datasets is not straightforward, nor are there any
known solutions.We introduce themanipulation process, whichwasmotivated by an actual case of fraud, and
survey several areas of literature dealing with the possibility that manipulation may have happened or might
occur. From our mathematical analysis of the manipulation process, we can prove that the nonintegral
real number (α) used in the multiplication exists not as a single real number but as an interval containing
infinitely many real numbers, any of which could have been used to produce the same manipulation result.
Based on these analytic findings, we provide an algorithm that can detect and restore manipulated integer
datasets. To validate our algorithm, we applied it to 40,000 test datasets that were randomly generated using
controllable parameters that matched the real fraud case. Our results indicated that the algorithm detected
and perfectly restored all datasets for which the value of the nonintegral real number was at least 16 (α ≥ 16)
and the number of data entries was at least 40 (n ≥ 40).

INDEX TERMS Data fraud, detection algorithm, integer data manipulation, interval operations.

I. INTRODUCTION
Since the advent of data-driven technologies, including big
data and artificial intelligence, the importance of data security
has only increased. In large part, this is because many social
and industrial systems use statistical and other types of data
to make decisions or to automate their processes. In such
an automated system, there can be security risks caused by
manipulation by malicious agents of the data used in the
system. Such security breaches can cause multiple unaccept-
able problems for our communities and industries, including
corruption, unfairness, and lack of public confidence in our
existing social and technological systems.

Among various types of data, the ‘‘integer list’’ type is
commonly found in commercial and political surveys, vote
counts among candidates, academic data, and demographic
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data such as data based on age, gender, or region. We define
an integer list as a set of integer numbers where each integer
number represents a certain quantity of each component of
the list. As illustrated in Figure 1, columns of tabular data
often comprise integer lists. We can easily extract an integer
list (e.g., List A) from a general table format (e.g., the two
columns to the left of List A). In an integer list, integer entries
often have different values, as shown in the figure. This
integer list type of data provides policymakers or automated
systems with critical information for determining the next
plan of action. For example, national policy makers distribute
government budgets to each region according to demographic
data (e.g., population for each region), marketers require
C-level managers to allocate marketing funds based on con-
sumer surveys or revenue for each segment, and television
show producers negotiate prices with advertisers based on
their relative popularity (i.e., the number of viewers of each
show).
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FIGURE 1. The populations of ten countries multiplied by an integer and by a real number (a) multiplied by an integer 6213 (b) easy to restore the original
integer list by calculating the GCD (i.e., 6213) (c) multiplied by a real number 6213.134 (d) applied rounding operation to make values integer numbers
(e) NOT EASY to restore!! - the GCD is 1.

An interesting phenomenon accompanying the prevailing
platform economy [1] is that platform businesses consider
the total number of users or subscribers more important in
competitive terms because a larger user population implies
more power in business. This aspect is often more meaningful
to businesses than the order or rank of each entry. As a
result, it can lead to inappropriate attempts at overestimating
critical data in an integer list. One approach to manipulation
would be to multiply every list entry by an integer number to
give an overestimation that would maintain the same ratios
between the entries. However, this would not easily deceive
the public or auditors because it is a simple linear operation:
the multiplication factor is discoverable by calculating the
greatest common divisor (GCD). For example, the original
integer list (List A) in Figure 1 could be manipulated by mul-
tiplication with an integer (6213) to generate the manipulated
list (List B in Figure 1 (a)). We can detect that List B has
probably been manipulated by calculating the GCD (6213)
of the integer entries without needing to know the original
data in List A.

A more sophisticated approach would be to multiply List
A by a real number such as 6213.134, resulting in List C
in Figure 1 (c). List C could then be rounded to make all
entries integer values (List D in Figure 1 (d)). In this case,
the GCD is 1 for List D and we cannot use this method
to determine if List D has been manipulated. Despite the
manipulation operation presented in Figure 1 being rather
simple and straightforward, its reversal is neither trivial nor
simple.

In an actual case, a television producer was alleged to
havemanipulated vote counts collected from live auditions by
multiplying each vote count by a large real number (around
7494.442) and then rounding the values [2]. The intentionwas
suspected to involve exaggerating the vote counts that directly
indicated the popularity of the show. Again, this was because
the popularity of any television show often determines the
earnings (e.g., advertisement income) for that show. Because
the rounding calculation on real numbers is a nonlinear
operation, it is neither straightforward to recognize that the
integer list has been manipulated by such an operation nor
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easy to reconstruct the original data. Although this particular
case is under investigation following great public attention,
we can reasonably suspect that there are or will be similar
cases that are undetected and are causing hidden damage
somewhere or other.

Motivated by this scandal, we explored two issues. First,
we wondered if there had been other cases involving similar
types of manipulation. Second, we were curious about the
mathematical and computational techniques used to detect
the manipulation and/or recover the original data.

To address the first issue, we investigated several possi-
ble areas, including research misconduct, management and
accounting, national statistical data, and election data. During
the investigation, we learned that the intentions and values
that could lead to data manipulation differed between the
various areas. However, we found very few cases in each area
where the manipulation described in Figures 1 (d) and 1 (e)
had occurred. This observation has two implications. First,
we can assume that there have been few such data manipula-
tion cases in each area to date. Second, we can also assume
that there may well have been undetected cases, because
detection is difficult in the absence of reliable methods for
detecting and restoring such manipulated data. Considering
that our world will be increasingly dependent on data in the
future, the first assumption—that there might have been no
such cases—cannot justify that there is and will be no need
to detect and recover from the type of data manipulation
illustrated in Figure 1. In addition to practical considerations,
we believe that any mathematical analyses and computational
algorithms that address this issue will be valuable per se.
With respect to the second assumption, we have found sev-
eral possible reasons for the existence of only a few reports
on the details of numerical manipulations in the literature.
One is that many data manipulation cases involved ‘‘abuse
by authorities’’ and were exposed by competitors, politi-
cal successors, or external auditors who had relatively few
opportunities to access the internal resources or details of the
data manipulators [3]–[5]. For example, politicians or senior
managers have been known to press subordinate staff in
national statistical offices or finance departments to manip-
ulate numerical data, aiming to fulfill unrealistic goals. The
manipulation would remain concealed until political suc-
cessors or competitors, who often would know little of the
details, would publicize the issue. During any forensic pro-
cess, most of the staff members who implemented the manip-
ulation following some kind of incentive [6], [7] would tend
to keep quiet to avoid any liability or penalty. Because of this,
most forensic work has focused on the macro aspects of the
data manipulation, such as statistical inconsistency among
different datasets gathered by independent parties [3], [6].
In summary, although the details of the manipulation involve
operations at the micro level, investigation and forensic tasks
often focus on macro levels. Therefore, we will need sophis-
ticated micro-level methods for detecting and reconstruct-
ing manipulated numerical data to avoid unnoticed cases.

Most digit-based test algorithms to detect data manipula-
tion at the micro level check the distribution of individual
numeral digits. For example, some studies seek to spot fraud
in numerical data based on experimental results showing that
human beings are not good at generating randomnumbers [8].
One well-known method to detect numerical manipulation is
Benford’s law [9]–[11]. This law is based on the fact that
the frequency of appearance in any data of the digit ‘‘1’’
is around 30%, ‘‘2’’ around 17.6%, and so on. However,
Benford’s law does not work well when the number of data
entries is less than 50. Moreover, the data should contain
all numbers from ‘‘1’’ to ‘‘9’’ as the leading digit, which
makes this method less applicable to many datasets. (For
example, Benford’s law is not suited to a dataset involving the
average height of an adult man in centimeters because most
leading digits would be ‘‘1’’ or ‘‘2’’). Finally, this method has
not been proved mathematically [11]. Unlike these methods,
the method described in this paper deals with manipula-
tion processes that are more specific, presents mathematical
proofs and analyses of its validity, and is implemented as
a practical algorithm for detecting and recovering from the
specific manipulation depicted in Figures 1 (c) and 1 (d).

The second issue we explored can be summarized by
the following questions: given only the manipulated integer
data (e.g., List D in Figure 1), is it possible to determine
whether the integer dataset has been manipulated, with a high
degree of confidence? If so, is it also possible to determine
the exact real number, containing nonzero decimal digits,
which was used in the multiplication, thereby reconstructing
the original data? At first glance, this problem might seem
easy because the original manipulation process was simple.
However, to our surprise, reversing the process is not at all
easy, nor has our survey found a strictly proven method that
addresses this issue.

In this paper, we formalize and analyze the issue in math-
ematical terms, aiming to address this specific manipulation
problem. Based on our analysis and findings, we also pro-
pose an algorithm that detects if any integer list data has
been manipulated by multiplication with a real number and
rounding. For any such manipulated integer list, it finds the
set of possible real numbers used in the multiplication and
thereby reconstructs the original integer list data. (Note that
the malicious manipulator might have used just one real
number in the manipulation, but our method finds a (narrow)
real interval containing the number(s) used.)

We believe it is necessary to categorize the various types
of numerical data manipulation in a more systematic way,
not only from a macro perspective but also from a micro
perspective. However, such a categorization is beyond the
scope of this paper, where we focus on the specific type of
data manipulation depicted in Figure 1.

To the best of our knowledge, our approach is the first
that analyzes and solves this problem thoroughly. We believe
that our algorithm will help prevent the type of manipulation
addressed, acting effectively as an ‘‘automated auditor’’.
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II. RELATED WORK
A. NUMERIC DATA MANIPULATION
1) NATIONAL STATISTICS
Politicians are often tempted to manipulate sensitive national
statistical data—including but not limited to national income,
unemployment, and death rates from pandemic disease—
for their own political interests. Wallace [6] indicates that a
hierarchical structure in an authoritarian country is vulner-
able to manipulation of sensitive national data at the lower
levels of the hierarchy. The central authority and subnational
leaders (or lower-level officials) would be associated with the
principal–agent problem [4], [5], which makes it difficult to
uncover details of data manipulation at lower levels, such as
that in Figure 1.

Aragão and Linsi [3] analyze the relationship between
political interests and statistical manipulation in various
countries and categorize government data manipulation into
four types. They report the details of three manipulation cases
involving macroeconomic data by interviewing former gov-
ernment officers and applying statistical forensics. However,
they focus only on the macro perspective of the data manip-
ulation and not on low-level details of the data manipulation.
Among their category types, Type 2—politically convenient
guesstimating—is often found in underdeveloped countries
where the government has limited statistical resources.

Jerven [12] reports that some important macroeconomic
indicators are often roughly fabricated or projected based on
partial data simply because accurate data do not exist in some
underdeveloped countries. He describes a data manipulation
case to fabricate food production data by multiplying the
estimated farming population with an estimated intake of
calories per capita, which is similar to the manipulation pro-
cess we discuss in Figure 1 (see Chapter 1 in [12]). Although
unreliable and manipulated national data in such underdevel-
oped countries may have different implications from those
in other cases (e.g., outright and malicious manipulation of
financial data for listed companies in developed economies),
we believe that the method presented in this paper would help
to obtain accurate conclusions from the available public data
in some cases.

2) MANAGEMENT AND ACCOUNTING
Inmanagement and accounting, datamanipulation has amore
direct connection with illegal economic interests. Consider-
ing its potentially huge damage to the economy and to society,
any attempts to manipulate relevant data should be detected
and prohibited. Unfortunately, the common structure of many
modern corporations—where management and ownership
are separated—often makes it vulnerable to data manipula-
tion. According to the principal–agent theory [4], [5], [13],
agents (i.e., managers) can more easily access important data
than principals (e.g., shareholders) in general. Because of
this asymmetric distribution of information among agents
and principals, agents are often tempted to manipulate

management and accounting data. As we discussed in
Section 2.1.1, the principal-agent problem makes it hard to
discover data manipulations at lower levels.

Young and Sherman [14] advocate the need for new ana-
lytical tools to prevent accounting fraud via practical meth-
ods. One such practical tool, Benford’s law, is commonly
utilized in financial markets. For example, Grammatikos and
Papanikolaou [10] applied Benford’s law to detect accounting
data manipulation in the banking industry [10]. However,
as Collins [11] indicates, Benford’s law cannot be applied to
every case because of its well-known limitations.

Considering that there are only a few analytical tools to
detect manipulation at micro levels, we need tools that are
more specific to address separately the various types of data
manipulation. In particular, with the proliferation of artificial
intelligence technology in every field, the demand for special-
ized analytical tools to detect manipulation will both increase
and become more specialized. Schreyer et al. [15] introduce
an adversarial model based on a deep neural network to study
the potential impact of adversarial (‘‘deep fake’’) attacks on
computerized audit systems, which will require more sophis-
ticated and specialized micro-level analytic tools to protect
computer-assisted audit and accounting systems.

3) ELECTIONS AND VOTING
Klimek and colleagues [16], [17] have developed a
tool called the ‘‘election fingerprint’’, which visualizes a
two-dimensional histogram of voter turnouts and votes for
winners to detect election fraud. Their method is based on
detecting statistical irregularities in election data from a
macro perspective.

Jimńez and Hidalgo [18] apply the election fingerprint
to estimate statistical irregularities at the macro level and
Benford’s law to verify numerical data at the micro level.
However, as the authors indicate, Benford’s law should
be applied with care when checking for election fraud.
Deckert et al. [19] also analyzed Benford’s law and con-
cluded that this method can be problematic if used to detect
election fraud.

One approach to overcoming the limitations of Benford’s
law is to use a machine learning algorithm. Levin et al. [20]
applied machine learning algorithms (including supervised
and unsupervised methods) to the detection of election fraud,
while Zhang et al. [21] focused on supervised learning (‘‘ran-
dom forest’’) using a hierarchical model to overcome the
labeling issues in supervised learning. Although machine
learning techniques—those based on deep neural networks
(DNNs) in particular—have great potential for detecting data
manipulation from a macro perspective, we still have to
address issues related to the acquisition of proper datasets
and making sure that the datasets have not been manipulated,
as discussed in [21]. We believe that the method presented
in this paper will help verify and refine the training datasets
used by DNN-based supervised learning methods.
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4) RESEARCH MISCONDUCT
The past decades have witnessed various cases of disappoint-
ing research misconduct directly related to the manipulation
of numerical data in various research fields. According to the
National Science Foundation [22], there are three categories
of research misconduct: data fabrication, data falsification,
and plagiarism. Among the three categories, we can regard
integer data manipulation as data falsification.

In a typical research project, researchers will gather a
finite number of samples of a particular quantity and esti-
mate its population based on these samples, because it is
too expensive or even impossible to investigate all items in
the population. As a result, one of the main motivations for
research misconduct by falsification is to support a weak
theory or claim by adjusting a few ‘‘outlier’’ samples to affect
the statistical estimation [23]–[25]. We have found that it
might be unnecessary in many cases to enlarge the number of
samples while preserving their relative proportions because
the main purpose of sampling is to estimate the population
using a limited number of samples based on statistical rules.
However, at the same time, we cannot ignore the possibility of
unfairly enlarging small research datasets—particularly when
sampling tasks are very expensive or risky—to meet certain
minimum requirements for the number of statistical samples.
Here, the method illustrated in Figure 1 could be used.

B. DIGIT TEST
One practical digit test relies on the arguable hypothesis
that human beings cannot generate random numbers natu-
rally. Although some researchers, including Persaud [26] (but
criticized by Figurska et al. [27]), deny the hypothesis, this
assumption plays a practical role in detecting digit manipula-
tion.Mosimann et al. [8], [28] show that people are often only
careful when selecting the leftmost digits to fit an intended
magnitude but pay less attention to the remaining digits—
particularly the rightmost digits—causing the digits to lose
their uniform distribution. This could lead to a practical
tool for detecting data manipulation. Beber and Scacco [29]
applied a last (rightmost) digit test to detect fraud in election
data from Sweden, Nigeria, and Senegal.

However, because this approach depends on human psy-
chology and statistical characteristics, it cannot address any
algorithm-based manipulation processes such as that illus-
trated in Figure 1.

C. ROUND-OFF ERROR AND INTERVAL ARITHMETIC
Because modern digital computers use a limited number
of bits to represent infinitely continuous real numbers,
we should consider the subtle aspects of the floating-point
representation of real numbers to avoid unexpected results in
calculations that involve converting between floating-point
and integer representations. Overton [30] introduced rudi-
mentary concepts and tools that involve the ‘‘condition num-
ber’’ to enable applications to use the IEEE 754 floating-point
number representation appropriately. Researchers and

developers often rely on interval arithmetic [31] to over-
come the discrete aspects of this representation. Revol [32]
analyzed the influence of the condition number on inter-
val computations. In a slightly different context, Layer and
Quinlan [33] presented a parallel algorithm for processing
N -way interval set intersections in genome research. (This
is somewhat similar to our approach to solving the problem
illustrated in Figure 4.)

III. MATHEMATICAL ANALYSIS
In this Section, we formalize mathematically the question
regarding the numerical manipulation by multiplication and
rounding illustrated in Figures 1 (c) and 1 (d).

A. PROBLEM FORMALIZATION
Suppose that nonnegative integers y1, y2, . . . , yn are the
entries in an integer dataset whose integrity is in question
(List D in Figure 1). Without loss of generality, we can
assume that yi ≤ yj for i < j. Can we determine if the integer
element yi was obtained from some original integer element
xi by multiplication with a large constant real number α and
then rounding? If so, can we recover the values for the orig-
inal integer dataset x1, x2, . . . , xn and α? This is expressed
schematically in Figure 2.

FIGURE 2. Multiplication process and recovery process.

More specifically, let α ≥ 2 be a nonintegral real number1

and let x1, x2, . . . , xn be nonnegative integers representing the
genuine dataset before the multiplication process. We also
assume that xi ≤ xj for i < j without loss of generality. Let

ỹi := αxi (1)

for each i = 1, 2, . . . , n. Because ỹi may not be an integer,
we denote yi as the rounded value of ỹi. That is,

yi := round(αxi). (2)

where yi represents the manipulated value, which is revealed
publicly.

1We note that the assumption α ≥ 2 can be replaced by α ≥ 1 + δ for
some 0 < δ < 1. However, in practice, a ‘‘blow-up’’ process is used when
the data needs to be substantially enlarged, so the assumption α ≥ 2 will
suffice. With this assumption, we do not need to introduce δ as above, and
the analysis becomes simpler.
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For each nonintegral real number α, denote zi :=
round(yi/α) for 1 ≤ i ≤ n and let

D(α) =
∑
i

|yi − round(αzi)|. (3)

Our problem can then be summarized as determining if α
with D(α) = 0 exists for a given yi.

Our goal is to propose an algorithm that detects all α with
D (α) = 0 within a ‘‘finite’’ number of operations. To the best
of our knowledge, no viable solution to this problem exists in
the literature.

There are some technical hurdles in addressing this prob-
lem. First, D (α) is not unimodal and has many local minima
and maxima caused by the two rounding functions. Second,
because the interval containing α with D (α) = 0 could
be very narrow, common iterative approaches (including the
‘‘brute force’’ search) may not succeed in finding the inter-
val even with a small step size (i.e., with a low level of
granularity).

To enable a succinct discussion in the remainder of this
paper, we define a proper multiplicative factor as follows.

For arbitrary integers y1, · · · , yn, we say that a nonintegral
real number α ≥ 2 is a proper multiplicative factor with
respect to yi if there exist integers xi such that (2) holds for
1 ≤ i ≤ n.

For given integers yi, a proper multiplicative factor α and
the corresponding original data xi may not be unique for
two reasons. First, all elements of a narrow interval around
a proper α might also be proper. Second, it follows that, if α
is proper, then α/k for an integer k ≥ 2 is also proper for
(a different) original dataset kxi. However, in this case, all
integers kxi are multiples of k , which would be unrealistically
improbable for a randomly selected set of integers. Therefore,
it makes sense that our goal can be to find a proper factor α
that is as large as possible.

B. REDUCING SEARCH RANGE
We first reduce the search range of proper multiplicative fac-
tors. Recall that we assume that yi, ỹi and xi are not decreasing
in i. Consider the differences between two adjacent values

1yi := yi − yi−1, 1̃yi := ỹi − ỹi−1 and 1xi := xi − xi−1,

where 1 ≤ i ≤ n and y0 = ỹ0 = x0 = 0. Equation (1) leads
to

1̃yi = α1xi.

The fact that |̃yi − yi| ≤ 1/2 implies that

1yi − 1 ≤ α1xi ≤ 1yi + 1.

We denote

1y = min
1≤i≤n
1yi 6=0

1yi and 1x = min
1≤i≤n
1xi 6=0

1xi,

and therefore,

1y− 1 ≤ α1x ≤ 1y+ 1.

Consequently,

1y− 1
1x

≤ α ≤
1y+ 1
1x

. (4)

We assume 1x ≥ 1 as defined in (4), while allowing
duplicated entries in xi (i.e. xi = xi+1).We can then determine
the range of 1x from (4) and α ≥ 2 as

1y− 1
α
≤ 1x ≤

1y+ 1
α
≤
1y+ 1

2
.

Because 1x is a positive integer,

1 ≤ 1x ≤
⌊1y+ 1

2

⌋
.

Therefore, there is a finite number of possible ranges for α,
according to the minimum differences between two adjacent
original integer values xi. We set a positive integer ` as a
possible 1x to scan and define αs = αs (l) and αt = αt (l)
from (4) as

αs =
1y− 1
`

and αt =
1y+ 1
`

.

We also let I` = αs, αt and

I =
⋃

1≤`≤b1y+12 c

I`. (5)

It follows from (4) that α ∈ I and the range of the set I is
much smaller than the trivial range 2 ≤ α ≤ 1y because the
length of I is

|I | =
b
1y+1

2 c∑
`=1

2
`
≈ 2 log1y

as 1y→∞. Effectively, therefore, the search range for α is
decreased from 1y to 2 log1y.

C. NAÏVE ALGORITHMS AND COMPUTATIONAL ISSUES
Having found finite search ranges for possible α intervals
based on 1x (see Section III-B), one approach might then
be to apply standard numerical algorithms to (3). However,
because of the many local minima and its nondifferentia-
bility, solving D(α) = 0 using iterative or gradient-based
optimization methods would not be successful. These obsta-
cles can be shown in plots of D(α) near any intervals of
proper multiplicative factors. Figure 3 shows D(α) near an
interval of proper multiplicative factors for the procedures
in Figures 1 (c) and 1 (d) at two different scales. In the upper
graph of Figure 3, the interval of proper multiplicative factors
appears as a point in the red circle. The lower graph of
Figure 3 magnifiesD(α) near the red circle in the upper graph
by around 105 times. Unlike the upper graph, the magnified
graph suggests that the proper multiplicative factor is not a
single real number, but that there are infinitely many proper
multiplicative factors in the interval [6213.1339999996999,
6213.1340000001492). Note that any real number α0 in this
interval satisfiesD(α0)= 0. This includes themultiplier given
in Figure 1 (i.e. 6213.134). From Figure 3, we can observe
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FIGURE 3. Plot of D(α) near the interval containing the proper
multiplicative factor α ∈ [6213.1339999996999,6213.1340000001492] for
the procedures shown in Figures 1 (c) and 1 (d).

some of the issues hindering any iterative or gradient-based
optimization methods for D(α) = 0.
• Because of the very large number of local minima in
D(α), any optimization approach could fail to find the
global minimum (the upper graph in Figure 3).

• With D(α) being nondifferentiable (because of the
rounding operation), gradient-based optimization meth-
ods would not work well (the lower graph in Figure 3).

• Although the proper multiplicative factors form a con-
tinuous interval, the length of the interval is quite short
(it is 4.5 × 10−10 in Figure 3). The infinitesimal length
of the interval and the narrow valley near the global
minimummake it hard to determine an effective iteration
step size.

• Given that we consider only `′s (from (5)) that have
proper multiplicative factors in Figure 3 and there are far
more `′s that do not, scanning all `′s based on iterative
methods could be impractical.

• Finally, common iterative methods could be numeri-
cally unstable because executing floating-point opera-
tions with very small real numbers and very large real
numbers does often cause instability.

FIGURE 4. x =
yi
α (i = 1 . . .10).

FIGURE 5. Reconstruction of the manipulation process for xi .

In this paper, we propose a numerically robust algorithm
for solvingD(α) = 0 based on interval union and intersection
operations to overcome the above issues.

D. ANALYSIS BASED ON INTERVALS
Figure 4 shows x = yi

α
(i = 1 . . . 10) plots for the Figure 1

case. Note that there are 10 curves for all yi. From these
graphs, we can obtain a clearer understanding of the nature
of the manipulation we are dealing with by reconstructing the
manipulation process.

Figure 5 focuses on the specific data manipulation process
for an original integer data entry xi, showing that the real
number α should be within the interval [α1, α2] (green line),
for which

α1 =
yi − 0.5

xi
and α2 =

yi + 0.5
xi

when the manipulator multiplies α and the original integer
value xi to give the disclosed integer value yi. Note that xi
multiplied by the interval [α1, α2] makes yi− 0.5 ≤ ỹ < yi+
0.5, leading to round (̃y) = yi. Otherwise, we would obtain
yi − 1 when we multiply xi and any real number in [αu, α1]
and yi + 1 when in [α2, αv], as shown in Figure 5. Figures 3
and 5 together show that the proper multiplicative factor in
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FIGURE 6. Reconstruction process with two original values, xi−1 and xi .

this problem cannot be a single real number but is an interval
of real numbers.

However, Figure 6 provides us with a clue to solving this
puzzle because other original data entries xk (k 6= i) will
have corresponding ‘‘proper’’ intervals like that for xi within
each searching range I` = αs, αt . We could search for the
common multiplicative factor used in the manipulation via
the intersection of all proper intervals for xk .
Figure 6 shows an additional proper multiplicative inter-

val for xi−1 within the search range I` = αs, αt , namely
[α3, α4]. This gives the interval [α1, α4] as containing the
proper multiplicative factors used for the manipulation of the
two original data entries xi−1 and xi, produced by the inter-
section of two intervals (i.e., [α1, α2]∩ [α3, α4]). In this way,
we can determine if a proper multiplicative interval exists in
each search range [αs, αt ] and obtain the exact interval that
satisfies D(α) = 0 for all xi, if it exists at all. However,
because we still do not know xi (we know only yi), we need to
test integer candidates for xi based on yi and the search ranges
I` = αs, αt defined in 4.

FIGURE 7. The sets J(i, `1) and J(i, `2).

Figures 5 and 6 illustrate the situation where the xi values
are known. If they are unknown, we have to estimate the
validity of several candidate integer values along the vertical
axis. For example, Figure 7 shows two search ranges I`1 and
I`2 , where `1 < `2. For I`1 , the corresponding range along

the vertical axis contains at least one integer (i.e., k) but the
range for I`2 includes more than one integer (i.e., k+1, k+2,
and k + 3) (see Lemma 1, below).
To formalize the validation of candidates along the vertical

axis, we set a real variable z̃i and an integer variable zi.

tzi :=
yi
α

and zi := round (̃zi) (6)

for the i = 1, 2, . . . , n that can represent the original data xi.
Lemma 1 gives a necessary and sufficient condition for a

proper multiplicative factor to exist.
Lemma 1: A real number α is a proper multiplicative

factor with respect to yi if and only if

−
1
2α

< z̃i − zi ≤
1
2α

(7)

for 1 ≤ i ≤ n.
Lemma 1 also implies that large α values will lead to

narrow ranges along the vertical axis and small α values to
wide ranges (see Figure 7). (Appendix A gives a proof of
Lemma 1.)
To validate integer candidates along the vertical axis,

which is now the z̃ axis, we focus on candidate integers zi =
zi(`) such that (7) holds for i ∈ [1, n] and α ∈ I` = [αs, αt ].
Note that, for fixed i and `, there is only a finite number of
such zi, which should help us find all proper α using a finite
number of operations.

Inequality (7) is equivalent to−1/(2α) ≤ zi− z̃i < 1/(2α).
That is,

z̃− 1/(2α) ≤ zi < z̃i + 1/(2α),

and therefore (6) gives

f −i (α) ≤ zi < f +i (α),

where

f −i (α) =
yi − 0.5
α

, fi(α) =
yi
α

and f +i (α) =
yi + 0.5
α

.

Because f −i , fi, and f
+

i are decreasing in α, we can infer
that the set of all integers zi satisfying (7) for some α ∈ I` is

J (i, `) :=
{
j | f −i (αt ) ≤ j < f +i (αs), j is an integer

}
,

which is shown in Figures 7 and 8.
Lemma 1 implies that α` is proper if and only if, for each

i ∈ [1, n], there exists an integer j ∈ J (i, `) such that f −i (α) ≤

j < f +i (α), or equivalently, α ∈
[
yi−0.5

j ,
yi+0.5

j

)
.

Note that those horizontal intervals
[
yi−0.5

j ,
yi+0.5

j

)
with

α > 1 do not overlap when projected onto the α axis (see
Figure 8).
Lemma 2: For each i ∈ [1, n] and ` ∈ [1, b1y+12 c],

the intervals
[
yi−0.5

j ,
yi+0.5

j

)
for j ∈ J (i, `) do not overlap.

(See Appendix B for a proof.)
Considering all j ∈ J (i, `), a proper factor α ∈ I` is

contained in

I∗(i, `) :=
⊔

j∈J (i,`)

[yi − 0.5
j

,
yi + 0.5

j

)
, (8)
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FIGURE 8. The set I∗(i, `) when |J(i, `)| = 3.

for all 1 ≤ i ≤ n, where the notation
⊔

means a disjoint
union. (See Figure 8 for I∗(i, `) when |J (i, `)| = 3.)

It follows that α ∈ I` is a proper multiplicative factor if and
only if

α ∈ I∗` :=
⋂

i∈[1,n]

I∗(i, `). (9)

Therefore, if I∗` is not empty, we obtain a proper multiplica-
tive factor α ∈ I∗` and we have the following lemma.
Lemma 3: There exists a proper multiplicative factor α if

and only
⋃

1≤`≤b1y+12 c
I∗` 6= ∅.

Based on (8) and (9), we can infer that the set of all proper α
is not a discrete set but a union of disjoint intervals. If we want
to obtain a specific large proper α, then such a multiplicative
factor α can be chosen from the rightmost interval of

⋃
` I
∗

` .
Based on Lemma 3, it is clear that if the yi are obtained by

multiplication, then the probability that
⋃
` I
∗

` 6= ∅ is 1.
Next, suppose that the yi values have not been multiplied.

Can we estimate the probability that
⋃
` I
∗

` 6= ∅? Because
this is not easy, we could instead consider a weak estimate
for the related value

∑
1≤`≤b1y+12 c

Pα ∈ I∗`
∣∣ α ∈ I` in the

best possible situation. Then,∑
1≤`≤b1y+12 c

Pα ∈ I∗`
∣∣ α ∈ I`

≤
(1y)n+1

(n+ 1)2n+1(1y− 1)n
·

∏
1≤i≤n

2+ 1y
yi

2− 1
yi

. (10)

(See Appendix C for the weak estimation of (10)). Here,
the probability decreases as n and yi/1y increase. We can
speculate that the probability of

⋃
` I
∗

` 6= ∅ has a similar
property.

Inequality (10) gives an upper limit to the conditional
probability that any arbitrary α values we are using in the
estimation would be located erroneously in the interval given
by (8). That is, if we use higher upper limits in (10), we would

Algorithm 1 Detection Algorithm
Data:
• Disclosed integer numbers {y1, . . . , yn}, (sorted,
yi+1 ≥ yi)

Result:
• Flag m indicating whether {yi} is
multiplied or unmultiplied

• Rightmost interval I∗ of the set of all proper
multiplicative factors (i.e. α)

1 m← unmultiplied
2 I∗← ∅
3 I∗` ← ∅
4 1y← max(1,min({yi+1 − yi|yi ∈ {y1, . . . , yn}}))
5 if 1y = 1 then
6 return m, I∗`
7 end
8 for `← 1 to b1y+12 c do // ⇒ § III − B
9 αs←

1y−1
`

, αt ←
1y+1
`

10 if αs < 2 then
11 αs← 2
12 end
13 I∗` ← [αs, αt ]
14 for i← 1 to n do
15 I∗(i, `)← ∅
16 zlow ←

⌈
yi−0.5
αt

⌉
, zhigh ←

⌊
yi+0.5
αs

⌋
17 for j← zlow to zhigh do // ⇒ Eq.(8)

18 I∗(i, `)← I∗(i, `) ∪
[ yi−0.5

j ,
yi+0.5

j

)
19 end
20 I∗` ← I∗` ∩ I

∗(i, `)
21 if I∗` = ∅ then
22 break
23 end
24 end
25 if I∗` 6= ∅ then
26 m← multiplied
27 I∗← the rightmost interval of I∗`
28 break
29 end
30 end
31 return m, I∗

be more likely to obtain erroneous predictions. Conversely,
we would be more likely to obtain accurate predictions with
lower upper limits. This is consistent with our experimental
results, described in Section V.

IV. ALGORITHM
A. OVERVIEW
Based on the findings described in Section III, Algorithm 1
determines if the disclosed integer dataset yi has been manip-
ulated by multiplication with a nonintegral real number
α(≥ 2) and a rounding operation. If so, it finds the rightmost
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Algorithm 2 Restoration Algorithm
Data:
• Disclosed integer numbers {y1, . . . , yn}, (sorted,
yi+1 ≥ yi)

• Proper multiplicative factor interval I∗ = [αp, αq)
obtained from Algorithm 1

Result:
• The original integer data {x1, . . . , xn}, (sorted,
xi+1 ≥ xi)

1 αavg←
αp+αq

2
2 for i← 1 to n do
3 xi← round ( yi

αavg
)

4 end
5 return {x1, . . . , xn}

interval I∗ of the set (i.e., the largest α) comprising all proper
multiplicative factors. As discussed in Section III, any real
number α in I∗ generates the same yi after the operation
yi = round(αxi).
Algorithm 2 restores the original data xi, after the dis-

closed data yi are determined as modified, using the proper
multiplicative factor interval I∗ = [αp, αq] returned from
Algorithm 1. For better numerical robustness, we apply the
average of αp and αq in the restoration. The algorithm is
numerically robust in that it guarantees a bounded number
of loop operations (Line 8 and 14 in Algorithm 1) and relies
mainly on interval union and intersection operations (Line 18
and 20 in Algorithm 1) for subtle floating-point numbers.
These features also make it well suited to parallelization
and/or hardware-based implementation. (See Section IV-C
for further discussion on the numerical robustness of
Algorithm 1.)

B. IMPLEMENTATION AND CODE OPTIMIZATION
We implemented Algorithm 1 using 64-bit double-precision
floating-point variables in C++ and Python 3.7 within the
Ubuntu 18.04.3 LTS environment. Most of the major calcu-
lations in our algorithm involve the union and intersection
of intervals in (8) and (9) (Line 18 and 20 in Algorithm 1).
(The problem of finding the intersection of disjoint unions
of intervals is known as the N-way interval set intersection
problem [33].)

We implemented most of the code in the Python 3.7 pro-
gramming language, but we improved the efficiency of the
critical interval operations by using native binary executables
(as a single-threaded shared library) implemented via the
interval_set class template in the Boost C++ library [34] for
better performance.

Algorithm 1 may require a large computation time, such as
when the second for loop (Line 14) is repeated for all i values
in the unmultiplied-dataset case. One approach to improving
this process is to find a way to obtain I∗` = ∅ earlier in the
loop to enable early termination. From observation, we have

found a tendency towards I∗(i, `) ∩ I∗(i + 1, `) 6= ∅ in
the loop because the adjacent unions of intervals I∗(i, `)
and I∗(i + 1, `) are likely to have similar interval patterns.
Conversely, unions of distant intervals (e.g., I∗(1, `) and
I∗(n, `)) are likely to have different interval patterns, which
makes the intersection a null interval set. We can apply this
heuristic simply by rolling the search indices from (1, 2, .., n)
to (n, 1, 2, . . . , n − 1) in the second for loop (Line 14). For
example, we found that the computation speed for a specific
integer dataset with 35 entries (and which had not been
multiplied) was increased by a factor of about 160.

Another mechanism for early termination begins with the
third for loop (Line 17) in Algorithm 1. When there are no
integer candidates between zlow and zhigh (i.e., zlow = zhigh
in Line 16), we can ignore the third for loop, abandon the
operations for the current candidate 1x, and move on to the
next candidate1x (see Line 22). Note that even a single null
interval within I∗(i, `) can make I∗` a null interval, which
means that we would be unable to find a valid α under the
current assumption about the minimum difference between
two consecutive original data entries (i.e. 1x).

C. NUMERICAL ROBUSTNESS
As shown in Figure 4, the typical interval length for valid
α values is around 10−10. These narrow intervals imply we
cannot use 32-bit single floating-point variables because their
calculation results are only accurate to 7 significant digits at
most. We therefore use 64-bit double floating-point variables,
which can calculate accurately to 16 significant digits for
decimal numbers [30]. Because we are dealing with nonin-
tegral real numbers at high precision, numerical instability
can occur during incremental traverse operations (e.g., brute
force search or optimization algorithms). Here, the finite
machine precision can lead to erroneous cancellation results.
A useful tool for analyzing numerical robustness in interval
algorithms involves the condition number [32]. As a rule
of thumb [30], the number of valid—i.e., not cancelled by
floating-point operations—decimal digits Ndigit in the signif-
icand of floating-point numbers based on the IEEE 754 stan-
dard is estimated as

Ndigit ≈ dplog10 2− log10 kf , e

where kf is the condition number of operation function f ,
p = 24 for single precision, and p = 52 for double precision.

However, Algorithm 1 depends on the intersection and
union of interval sets and they are the two most prevalent
operations, following which we need only to estimate the sign
bit of floating-point numbers. That is, intersection and union
compare two real numbers α1 and α2, which represent either
the start point or the end point of two different intervals by
estimating

f (α1, α2) = sgn(α1 − α2),

where sgn(x) is the sign function. As a result, Algorithm 1
does not rely on having valid digits in the significand but
depends only on its sign bit, which makes Algorithm 1 robust
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against instability caused by limited-precision-based erro-
neous cancellations.

V. EXPERIMENTS
For the data in Figure 1, Algorithm 1 returned m = modified
and I∗ = [6213.1339999996999, 6213.1340000001492],
which includes the actual manipulation factor 6213.134.
As shown in Figure 3, every real number α in I∗ satis-
fies D(α) = 0 in (3). Moreover, Algorithm 2 successfully
restored the original data for the manipulation depicted in
Figures 1 (c) and 1 (d).
Because a single successful data test is insufficient to jus-

tify the validity of our algorithms or to explore its limitations,
we now report on our stress testing of Algorithm 1, using
random datasets generated according to specific rules.

A. DESIGN OF TEST DATASETS
To stress test Algorithm 1, we prepared 20,000 mul-
tiplied positive integer datasets and the corresponding
20,000 unmultiplied positive integer datasets as a control
group. The following design rules for each parameter were
motivated by the recent data manipulation case disclosed to
the public [2].

For the multiplied datasets, we first chose 1,000 original
datasets {x1, x2, . . . , xn} involving three parameters, namely
the number n of integer data entries and the lower and upper
bounds of xi, as follows.

1) n = 10, 20, . . . , 100.
2) The lower bound of xi = 100× 2i for 0 ≤ i ≤ 9.

3) The ratio
upper bound of xi
lower bound of xi

= 2, 4, 6, . . . , 20.

We generated the multiplied datasets {y1, y2, . . . , yn} as fol-
lows. For each choice of {x1, x2, . . . , xn}, we chose 20 α
values, with five nonintegral real numbers being uniformly
and randomly chosen from each of the four ranges [2, 10],
[10, 100], [100, 1000], and [1000, 10000], under the condi-
tion that the fractional part should have five digits.

Next, for the control group (i.e., unmultiplied datasets),
we generated random datasets such that the i-th dataset had
the same smallest and largest positive integer data entries as
the corresponding i-th multiplied dataset.
The calculations were executed in parallel by distributing

the single-thread-based tasks in Algorithm 1 among 40 Xeon
processor cores.

We discuss the details of our results in the following
subsections.

B. DEFINITIONS FOR EXPERIMENTS
To compare the results of our tests, we introduce some
definitions.

[Integrity of Dataset] A disclosed dataset {yi} is called
actually multiplied if {yi} is generated by multiplication with
amultiplicative factor α0 ≥ 2. Conversely, a disclosed dataset
{yi} is called actually unmultiplied if {yi} is generated without
multiplications.

[Predictions From Algorithm 1] A disclosed dataset {yi} is
called predicted as multiplied if Algorithm 1 determines that
it has been multiplied (i.e., {yi} has a proper multiplicative
factor α ≥ 2). Conversely, a disclosed dataset {yi} is called
predicted as unmultiplied if Algorithm 1 determines it has not
been multiplied (i.e., {yi} has no proper multiplicative factor
α ≥ 2).

From Definitions V-B and V-B, we can categorize erro-
neous predictions from Algorithm 1 into three cases.
1) False Positive (FP) - A disclosed dataset that was

actually unmultiplied but is predicted as multiplied.
2) False Negative (FN) - A disclosed dataset that was

actually multiplied but is predicted as unmultiplied.
3) Error in finding α (ER) - A disclosed dataset that

was actually multiplied using a multiplicative factor α0
is predicted (correctly) as actually multiplied but the
rightmost interval returned from Algorithm 1 does not
contain α0.

We also categorize correct predictions into two cases.
1) True Positive (TP) - A disclosed dataset that was

actually multiplied and is predicted as multiplied.
2) True Negative (TN) - A disclosed dataset that was

actually unmultiplied and is predicted as unmultiplied.

C. TEST RESULTS
The table in Figure 9 (a) summarizes the overall results. For
all the datasets that were actually multiplied, Algorithm 1 pre-
dicted them correctly as actually multiplied with no FN cases.
However, there were some extremely rare ER cases (22 cases
out of 20,000 experimental samples or 0.44%), for which
α was less than six. For all the datasets that were actually
unmultiplied, there were 3,508 FP cases out of 20,000 control
samples (17.54%).

The results given in Figure 9 (a) might appear initially to be
unimpressive, particularly for the TN cases, but we found that
we could achieve better results with a more careful selection
of parameters (i.e., lower bounds of α and the number of data
entries in each dataset, n). This will be discussed next.

1) RESULTS WITH RESPECT TO THE LOWER BOUNDS OF α
The tables in Figures 9 (b) and 9 (c) give the results with
respect to two different lower bounds of α. If the lower bound
of α is 6, as shown in Figure 9 (b), all 17,523 experimental
cases were correctly predicted and the ER cases decreased
from the 0.44% in Figure 9 (a) to 0%. Moreover, the TP cases
decreased from 17.54% in Figure 9 (a) to 2.74%.
As given in Figure 9 (c), both the ER and FP cases

decreased to 0% when the lower bound was set to 16, which
means that we can rely on Algorithm 1 with high confidence
if α is greater than or equal to 16. The graph in Figure 10 (a)
describes the occurrence ratio of the ER and the FP cases with
respect to the lower bound of α. This graph is also consistent
with the probability estimation in (11) (see Appendix A).

2) EFFECTS OF THE NUMBER OF DATA ENTRIES
A second point to note from our results is that the success
rates of the predictions rise as the number of data entries

VOLUME 9, 2021 57159



T. Park et al.: Detecting and Recovering Integer Data Manipulated by Multiplication

FIGURE 9. Prediction results.

n increases. The table in Figure 9 (d) shows that there are
16,000 datasets that have at least 16 data entries for both
the experimental and control groups. For the experimental
group, all samples were correctly predicted and there were no
failures in finding correct α values (i.e., no ER cases). Only
150 cases out of the 16,000 control samples were wrongly
predicted (FP). Figure 10 (b) shows how ER and FP change
according to n. This shows that we can avoid any nonzero
ER cases by limiting the samples to those with n ≥ 30
and the nonzero FP cases with n ≥ 40 while leaving other

conditions unchanged. We can therefore say that Algorithm 1
predicts perfectly for datasets having at least 40 data entries
(n ≥ 40).

We can mitigate this limitation on n further by selecting
appropriate combinations of α and n. Although using small
α values (i.e., α < 6) can negatively affect prediction rates,
as shown in Figures 9 (b) and 9 (c), we obtain better prediction
rates when we consider datasets containing at least 20 data
entries, even for small α values. The table in Figure 9(e)
shows the case where the lower bound of n is set to 20 and the
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FIGURE 10. Prediction error rates with conditions on α and n.

FIGURE 11. Prediction error rates considering the minimum values in disclosed datasets and the ratio between the minimum and the maximum values in
disclosed datasets.

lower bound of α is set to 2.42. Here, Algorithm 1 predicted
perfectly for 15,790 experimental samples and 16,000 control
samples. In Figure 10 (c), where n ≥ 20, the FP cases increase
as α decreases below 2.42.

3) EFFECTS OF THE MINIMUM AND THE MAXIMUM VALUES
OF THE DISCLOSED DATASET
As defined in Section III-A, y1 and yn indicate the mini-
mum and the maximum values of the disclosed dataset {yi},
respectively.

The graphs in Figures 11(a) and 11 (b) show that both
the ER and FP error rates decrease as y1 increases. We can
understand this tendency from the conditional probability
in (10), which describes the possibility that any arbitrary
α values we are considering would be located erroneously
within I∗ (8). That is, we would expect the ER and FP error
rates to be higher when using a high upper limit for the
conditional probability in (10).

Therefore, as y1 increases, the ratio yi/1y also increases,
and the upper bound of the conditional probability in (10)
decreases, which implies a lower likelihood of predic-
tion errors related to the ER and FP cases. The graph
in Figure 11 (c) shows similar tendencies for the ER and FP
cases with respect to the ratio yn/y1.

In summary, we can obtainmore accurate prediction results
with higher yi and yn/y1.

D. PROCESSING TIME
The table in Figure 9 (f) gives the maximum, minimum,
and average processing times for each of the five cases TP,
TN, FP, ER, and FN. The maximum time (21914.43 sec)
involved one of the TN cases. Among all the TN cases,
around 25% of cases (4,118 data samples out of 16,492)
required more than 60 seconds. This was because the full
set of iterative calculations within nested loops were required
(Lines 8 and 14 in Algorithm 1) to determine that the dataset
had not been modified (i.e., the TN case). Because this
is the worst case, the computational complexity of Algo-
rithm 1 can be given as O(n1y). Similarly, more process-
ing time for the FP cases was required when α approached
2 because αs and αt approach 2 only for the final iterations
of Line 8 in Algorithm 1. Among all the FP cases, around
11.35% of cases (398 out of 3,508) required more than
60 seconds. This issue could be a limitation of Algorithm 1
for some applications but we believe this issue could be
addressed adequately by scaling up the GPU-based parallel
processing.
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VI. CONCLUSION
In this paper, we formalize and analyze an integer data manip-
ulation problem inspired by a recent voting scandal where
ballot counts were fabricated by multiplication with a large
nonintegral real number [2]. Because the multiplied numbers
are rounded to integers, recovering the multiplicative factor
and the original data is not easy. Based on our mathematical
model and analysis, we develop an algorithm that can deter-
mine, with high probability, if a given integer dataset has been
manipulated by multiplication.

If the integer dataset has actually been multiplied,
Algorithm 1 reports this fact and returns a narrow interval
containing the multiplied nonintegral real number. With this
information, the original data can be restored accurately using
Algorithm 2. Conversely, if the integer dataset is genuine, our
algorithm also reports that fact with high probability.

To check the validity of our algorithm, we tested
20,000 multiplied integer datasets (the experimental group)
and 20,000 genuine integer datasets (the control group),
which were randomly generated within parameter value set-
tings for the multiplicative factor α, the number of data
entries n, and the range of data values. In these experiments,
our algorithm found correct answers perfectly under conser-
vative assumptions such as α ≥ 16 and n ≥ 40. To the best
of our knowledge, ourmathematical analysis andAlgorithm 1
represent the first attempt to address themanipulation process
discussed in this paper.

APPENDIX A
PROOF OF LEMMA 1

Proof: First, suppose that α is a proper multiplicative
factor with respect to yi. We first claim that

zi = xi

for i = 1, 2, . . . , n. Recalling that ỹi = αxi, Definitions (1)
and (6) give

|zi − xi| =
∣∣∣yi
α
±

1
2
−
ỹi
α

∣∣∣ ≤ |yi − ỹi|
α

+
1
2
≤

1
2α
+

1
2
< 1,

where a = b± ε means b− ε ≤ a ≤ b+ ε. Therefore,

z̃i − zi = z̃i − xi =
yi − ỹi
α

,

and (7) therefore holds.
From the other direction, suppose that (7) holds for 1 ≤

i ≤ n. If xi = zi,, then

αzi = αxi = ỹi.

The definition α̃zi = yi gives ỹi − yi = α(zi − z̃i). Applying
the condition (7) gives

−
1
2
≤ ỹi − yi <

1
2
,

(i.e., yi = round (̃yi) = round(αxi)). Following this, yi is
obtained by multiplication of the factor α by the original data
xi = zi, whereby α is proper with respect to yi.

Figure 12 is an intuitive presentation of this argument.

FIGURE 12. Change of intervals by multiplying with 1/α.

We can shed light on how hard it is to satisfy condition (7)
for 1 ≤ i ≤ n in cases where the real numbers z̃i are inde-
pendently and randomly chosen from a uniform distribution
of [1,N ] for a sufficiently large integer N . Clearly, |̃zi− zi| is
uniform within [0, 1/2], and it follows that

P|̃zi − zi| ≤
1
2α
=

1
α

for i = 1, 2, . . . , n. Because the z̃i values are independent,
we have

P|̃zi − zi| ≤
1
2α

for 1 ≤ i ≤ n =
1
αn

for independently random z̃i. (11)

This shows that for randomly chosen data, it becomes
harder to satisfy condition (7) for 1 ≤ i ≤ n in Lemma 1
as α and n increase. This tendency is consistent with the
experimental results described in Section V-C1.

APPENDIX B
PROOF OF LEMMA 2

Proof: Two consecutive intervals of the form[
yi−0.5

j ,
yi+0.5

j

]
can be written as[yi − 0.5

j
,
yi + 0.5

j

]
and

[yi − 0.5
j− 1

,
yi + 0.5
j− 1

]
.

Assuming

αj+ =
yi + 0.5

j
≥ 2,

yi + 0.5− j ≥ j > 0,

it follows that
yi + 0.5

j
−
yi − 0.5
j− 1

=
−yi − 0.5+ j

j(j− 1)
< 0,

and we can infer that two consecutive intervals of the form[
yi−0.5

j ,
yi+0.5

j

]
do not overlap.

APPENDIX C
INITIAL ESTIMATE FOR INEQUALITY (10)
Supposing that the yi values are not multiplied, we can form
an initial estimate for the value∑

1≤`≤1y−12

Pα ∈ I∗`
∣∣ α ∈ I`

for an ideal situation. We start with

|I`| =
2
`

and |I∗(i, `)| =
∑

j∈J (i,`)

1
j
.
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We first estimate |I∗(i, `)| for each 1 ≤ i ≤ n. Recalling
that j ∈ J (i, `) is equivalent to yi−0.5

αt
≤ j < yi+0.5

αs
, we have

E (|J (i, `)|) =
yi + 0.5
αs

−
yi − 0.5
αt

=
`(yi + 0.5)
1y− 1

−
`(yi − 0.5)
1y+ 1

=
`(2yi +1y)

(1y− 1)(1y+ 1)
.

Consequently,

|I∗(i, `)| =
∑
j

1
j
≤

`(2yi +1y)
(1y− 1)(1y+ 1)

·
1y+ 1
`(yi − 0.5)

=
2(2yi +1y)

(1y− 1)(2yi − 1)
.

Therefore,

Pα ∈ I∗(i, `) | α ∈ I` =
|I∗(i, `)|
|I`|

≤
`(2yi +1y)

(1y− 1)(2yi − 1)
.

To refine this estimate, suppose that I∗(i, `) is independent
of i. Recalling that I∗` :=

⋂
i I
∗(i, `), we have

Pα ∈ I∗`
∣∣ α ∈ I` = ∏

1≤i≤n

Pα ∈ I∗(i, `) | α ∈ I`

≤

∏
1≤i≤n

`(2yi +1y)
(1y− 1)(2yi − 1)

=

(
`

1y− 1

)n ∏
1≤i≤n

2yi +1y
2yi − 1

.

Therefore, with disjoint I`, we have∑
1≤`≤1y−12

Pα ∈ I∗`
∣∣ α ∈ I` ≤ ( 1

1y− 1

)n ∏
1≤i≤n

2yi +1y
2yi − 1

·

∑
1≤`≤1y−12

`n

≤

(
1

1y− 1

)n ∏
1≤i≤n

2yi +1y
2yi − 1

·

∫ 1y/2

0
xndx

≤
(1y)n+1

(n+ 1)2n+1(1y− 1)n
·

∏
1≤i≤n

2yi +1y
2yi − 1

≤
(1y)n+1

(n+ 1)2n+1(1y− 1)n
·

∏
1≤i≤n

2+ 1y
yi

2− 1
yi

.
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