IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 22, 2021, accepted April 4, 2021, date of publication April 8, 2021, date of current version April 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071795

Developing Software Signature Search Engines
Using Paragraph Vector Model: A Triage
Approach for Digital Forensics

SOMAYEH SOLTANI!, SEYED AMIN HOSSEINI SENO"’!, AND RAHMAT BUDIARTO?
! Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
2Department of Informatics, Faculty of Science and Technology, Universitas Al-Azhar Indonesia, Jakarta 12110, Indonesia

Corresponding author: Seyed Amin Hosseini Seno (hosseini @um.ac.ir)

ABSTRACT Today, with the growth of information and communication technology, digital crimes have
also spread. Advanced storage technologies and their low cost have led to a significant increase in their use.
Therefore, the high volume of digital data to be analyzed is a challenge facing digital forensic investigators.
Digital forensic triage solutions aim to alleviate the forensic backlog. A promising triage technique is to
quickly find the software packages run on the target system to narrow down the search space. In this paper,
we propose a software signature search engine (S3E) to identify software on the system under investigation.
The document collection of this search engine consists of software signatures, and the query is the features
extracted from the system’s hard disk. We propose a forensic differential analysis model to build software
signatures. Besides, we use the paragraph vector model to construct the corresponding vectors of each
software signature and find similarities between the query vector and the signature vectors. Different design
parameters are involved in making software signature search engines, and distinct values of these parameters
lead to different models. We have measured the performance of these S3E models against several controlled
systems and some pseudo-real systems. The experimental results on both datasets show that some S3E
models achieve perfect recall, and many of them have a recall of more than 90%. Besides, we find that the
recall rate of the S3E models in both datasets is higher than the averaged word2vec model and the TF-IDF
model.

INDEX TERMS Digital forensics, triage solution, software signature, forensic differential analysis, search

engine, paragraph vector.

I. INTRODUCTION They provide keyword searching, index searching, and filter-

Advances in technology have led to the creation of high-
volume, low-cost digital media. Therefore, in today’s digi-
tal cases, a large amount of data is present. The Regional
Computer Forensic Laboratory (RCFL) annual reports reveal
a significant increase in the number of digital cases and
the volume of data [1]. Consequently, digital forensic lab-
oratories experience the accumulation of evidence awaiting
analysis [2], [3].

In addition to the large volume of data, the lack of auto-
mated forensic analysis methods slows down the analysis
process. Conventional digital forensic tools such as Encase
and FTK list the artifacts extracted from digital devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xianzhi Wang

55814 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ing the known files. However, these tools cannot investigate
what events led to the creation of these artifacts, and this
is mostly done manually by the investigator [4]-[7]. This
manual process causes some problems. First, the range of the
reconstructed events is entirely limited to the experience of
the investigator. The examiner cannot retrieve the unknown
events, and thus the retrieval rate would reduce [8]. Second,
like most manual analysis, there is a possibility of human
error and reduced accuracy. Third, the process of manually
reconstructing the events is very time-consuming.

Over the years, researchers have presented numerous triage
and data reduction solutions. Detection of the programs exe-
cuted on the system is a digital forensic triage approach,
which narrows the investigation scope and gives the inves-
tigator an overview of the system [9], [10]. A list of software

VOLUME 9, 2021

https://orcid.org/0000-0001-7152-7334
https://orcid.org/0000-0002-0838-1800
https://orcid.org/0000-0001-9582-3445

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

executed on the target system can help the investigator make
hypotheses about the incident [11]-[13].

Running any software causes changes in various parts of
the system, including the hard disk and, in particular, the file
system. We can use the footprints of each software to build
the software signature. Then, in a post-mortem analysis,
the investigator could use the software signatures to deter-
mine what software was present on the compromised sys-
tem. So far, different methods have built signatures for some
software or events [8]-[10], [13]-[19]. However, the methods
in [14], [15], and [17] made signatures with a limited number
of items, and therefore, the adversary can easily bypass the
signature detection. The methods in [8], [15], and [19] did not
provide an automated process for making signatures. Finally,
[9], [10] used the content of disk copy to make software signa-
tures. Detecting these signatures, unlike the metadata-based
ones, is time-consuming.

In this study, we present a forensic differential analysis
model. This differential model can be used to calculate the
differences between two digital objects of the same type.
In particular, it can be used to calculate the differences
between two copies of a disk. We make the software signature
using the differential analysis of disk copies before and after
running the software.

Besides, we develop a software signature search engine
(S3E) to detect the software on a target system. The input doc-
uments of this search engine are the signatures of various soft-
ware. The query of the search engine is the disk copy of the
target system. We then use the paragraph vector model [20]
to build the numeric representation of signatures and queries.
Finally, we measure the similarity of the query with software
signatures. If the query’s similarity with a software signature
is more than an established threshold, we conclude that the
software has run on the target system.

We consider several design parameters for building soft-
ware signature search engines. Different values of these
design parameters lead to different S3E models. Then,
we measure the performance of these models against some
experimental datasets and a pseudo-real dataset.

We can summarize our contributions as follows:

o We present a general model of forensic differential anal-
ysis that can be used to detect differences between two
digital objects for forensic purposes. We then adapt
this general model to disk objects to build software
signatures.

o We provide 120 software signature search engine models
with different design parameters. Then, we run these
search engines against several controlled machines and
MS57 Patents machines [21] and obtain their precision
and recall. We also calculate the effect of different values
of design parameters on the performance of the S3E
models and determine the values that result in the best
models.

The organization of this paper is as follows. Section II

reviews the related research on digital forensic analysis.
Section III describes the word embedding and paragraph

VOLUME 9, 2021

vector model. Section IV describes the proposed method for
building software signature and software signature search
engine. The experimental results are given in Section V, and
finally, Section VI concludes the paper.

Il. LITERATURE REVIEW

Digital forensic investigation is the analysis of digital evi-
dence using scientific methods to reconstruct the happened
events. Digital forensics has a history of almost three decades.
While the first attempts in digital forensics were devoted
to gathering valuable information from the compromised
system [22]—[25], recent research focuses more on analyz-
ing extracted evidence. After extracting evidence from the
compromised system, the investigator faces a large amount
of low-level raw information that should be analyzed to
identify and reconstruct the events. In this section, we will
review research works in digital forensic analysis and event
reconstruction.

A. INDEX SEARCHING AND FILTERING

One of the first attempts in forensic analysis is to search the
keyword in the collected data. Digital forensic analysis tools
such as ProDiscover, EnCase, FTK, and PyFlag also provide
index searching capability [26]-[28]. After mounting the disk
copy, an index is created on text data and metadata of the
files. While index generation is very time-consuming, index
searching is fast.

Since so many files exist in a digital case, the investigator
sometimes decides to filter out files related to known soft-
ware to reduce the investigation time. Given a hash list of
known files, popular forensic tools such as EnCase and FTK
can filter known files. NIST’s National Software Reference
Library (NSRL) is one of the most important references of
the known files [29]. It includes an extensive collection of
software packages and a metadata database of the files in the
software packages. A subset of the metadata for each file is
published as NSRL Reference Data Set (RDS). Since 1999,
the RDS dataset has been published and updated quarterly.
For each file in the NSRL collection, the RDS includes
1) cryptographic hash values of the file’s content, 2) informa-
tion about the software package(s) containing the file, 3) the
manufacturer of the package, 4) the original name, and 5) the
size of the file. Many studies have used the hash list of RDS to
identify and filter known benign files [3], [11], [30], and [31].

B. DIGITAL FORENSIC TIMELINE

One of the first steps taken to facilitate forensic analysis is
to create a timeline of digital events. Timing information
obtained from digital evidence such as file systems and log
files is displayed in chronological order to get a better view
of the temporal order of creating, accessing, or manipulating
various digital evidence.

One of the first attempts to display the timeline of events is
Zeitline [32]. The timeline includes MACB timestamps and
timing information from system logs and IDS and firewall
logs. Olsson and Boldt [33] developed a tool called CFTL that

55815

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

extracts timestamps from FAT and NTES file systems. It also
extracts timing information from different files such as EXIF
files, Link files, MBOX archives, and Registry hives. CFTL
designs a special extractor for each type of file.

Log2timeline [34] is another efficient tool for extracting
timing information from different file types. Log2timeline
designs special extractors for 26 different input files, includ-
ing Chrome, Internet Explorer and Firefox history files, event
log files, McAfee log files, and Registry. Subsequent ver-
sions of log2timeline have parsers for about 100 different
sources [35].

Timeline2GUI [36] is a graphical interface that reads and
analyzes CSV files generated by log2timeline. Operations
supported by this tool include 1) filtering data by column
values, 2) sorting column values, 3) searching text anywhere
in CSV data, and 4) configuring automatic highlighting.
These tools do not allow for automated analysis, and the
investigator needs to aggregate and correlate the evidence to
create high-level events.

C. CREATING SIGNATURES FOR SOFTWARE OR ACTIVITIES
Some research efforts create signatures for applications or
activities. The signatures can be used later in a post-mortem
analysis to identify what events took place on the target
system. PyDFT [15] is a digital forensic timeline includ-
ing file system timestamps and timing information of files
such as Skype, Chrome history, Registry, and Link files.
It also defines some rules to detect several activities such as
USB connection, Skype call, and Google search. However,
PyDFT does not provide an automated process for making
signatures. Kilber et al. [17] used file system timestamps and
James et al. [14] used file system and registry timestamps to
make signatures. These two methods make signatures with a
limited number of timestamps.

Roussev and Quates [9] identified the software in
MS57 Patents machines [21] using fuzzy hashing (similarity
digest). Unlike cryptographic digest, which checks object
identity, the similarity digest finds similar objects. Roussev
and Quates used sdhash [37] to generate the similarity digests
for all executable files. Then, to discover software appli-
cations on the system, they used these hashes as a query
against the memory image. This method is content-based
and relatively slow. It also requires both the disk copy and
memory image of the system to detect software.

Jones et al. [10] built signatures or catalogs for various
software using the NIST’s Diskprint project [38]. In this
project, each software is installed, run, closed, and uninstalled
separately on a base-controlled operating system on a virtual
machine. In each of these states, a snapshot is taken from the
system, and the software diskprint is created.

For each software, Jones et al. compared consecutive snap-
shots of the software diskprint and identified created and
modified files. Then they created a software catalog using
the names of these files and the MDS5 hashes of the sectors
containing these files. The hard disk of the target system is
then matched to the software catalogs, and two file-weighted

55816

and sector-weighted measures are used to determine whether
the software is present on the disk in question. This method
calculates the hash of disk sectors, which is relatively time-
consuming. Also, it does not address the issue of setting a
threshold for software presence.

Khader et al. [19] looked for fingerprints of Hadoop Dis-
tributed File System (HDFS) operations. They recorded
metadata changes after each operation and used fsimage and
hdfs-audit logs to view metadata for HDFS operations. This
method only attempts to find footprints for basic file opera-
tions such as create, delete, append, and rename. It does not
build signatures for high-level events.

Jeong and Lee [39] tried to recognize storage devices,
including HDD, SSD, and USB. They extracted the connec-
tion signature of storage devices connected to a computer sys-
tem from different parts of the system, including the system
registry, the master boot record (MBR), the system logs, and
NVAR variables.

Park et al. [40] created signatures for anti-forensic tools or
techniques. They created the signatures using a seven-step
process: 1) creating the virtual machine test system, 2) run-
ning Process Monitor as a file system logger, 3) perform-
ing desired actions, i.e., installing, running, and uninstalling
anti-forensic tool, 4) saving the output of file system logger,
5) filtering the output to remove the noises, 6) extracting
unique signature, and 7) using regular expressions to gener-
alize variables in signatures.

The work in [18] developed software signatures using file
system metadata. The authors suggested a similarity measure
to calculate the similarity of software signatures and the target
system. Nevertheless, the authors did not consider different
design parameters to build software signatures and did not
use software signature search engines.

The work by Nelson [13] is the most similar work to
ours, which has designed software signature searchers. The
author used a frequency-based information retrieval method.
Frequency-based methods consider independent vectors for
words and do not take into account the syntactic and semantic
similarity of the words. In this study, we use the paragraph
vector model, so that the vectors of words with similar con-
texts are closer to each other in the vector space. Another
significant difference between the two methods is that Nelson
used registry artifacts, while we use file system artifacts.

The M57 Patents scenario [21], developed by the Naval
Postgraduate School, tracks the first four weeks of the
MS57 Patents company. The company has four employees,
Charlie, Jo, Pat, Terry. They perform some malicious and
illegal acts, in addition to their usual activities. The pur-
pose of designing this scenario is for students to find traces
of various malicious activities performed by the company’s
employees. This scenario involves four computers. At the
end of each working day, the hard disk and memory of each
computer are imaged. Also, the company’s network traffic is
recorded every day. Besides, the contents of four USB devices
have been copied. M57 Patents is one of the most impor-
tant and documented forensic research collections. In this

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

paper, we use some of the computers of this scenario as the
pseudo-real dataset.

IIl. PRELIMINARIES: PARAGRAPH VECTOR MODEL

To design our software signature search engine, we use the
paragraph vector model. In traditional information retrieval
techniques, each term/word is displayed as a one-hot encoded
vector [41]. Each document or query is displayed as a vector
in N-dimensional vector space, in which N is the number of
terms/words in the corpus of documents. There are several
ways to calculate the weight of a term in a document, and one
of the most common is the term frequency-inverse document
frequency (TF-IDF) [42].

In these frequency-based information retrieval methods,
the vector of each word is independent of the other words,
i.e., the similarity of one-hot encoded vectors is zero. We need
representations for word vectors that consider the context and
semantic of words, so that word vectors with similar contexts
are closer together in the vector space. Mathematically speak-
ing, the cosine of the angle between word vectors with similar
context should be close to one.

Recent NLP models learn meaningful vector representa-
tions for words. These vectors are often known as word
embeddings or distributed word representations [43]. There
are neural network solutions for learning word embedding,
which preserve the syntactic and semantic relations between
words. Two of the most popular neural network models
for training word embedding are continuous bag-of-words
(CBOW) and skip-gram [44]. These two models are known
as word2vec.

The Skip-gram model tries to predict the context words
given a target word. Therefore, given a sequence of training

words wi, wa, - - - , wy, the goal of the Skip-gram model is to
maximize the log probability in (1).

LN

V2 2 g miw)), ¢))

t=1 —c<i<c,i#0

where N is the number of training words, and c is the size
of the sliding window that determines the number of context
words.

Inversely, the continuous bag-of-words model tries to pre-
dict the target word given the context words. More formally,
given a sequence of training words wy, wo, - - - , wy, the goal
of the CBOW model is to maximize the average log proba-
bility in (2).

|
NZ Y 1og (p(wilwig)).)

t=1 —c<i<c,i#0

The word2vec models formulate the probability p (wo|wy)
using the softmax function represented by (3).

(Wolwn) = —or (v3071)
pWolwr) = 5 ,
>t e (Vi)

3

VOLUME 9, 2021

where v, and V,, are the embedding and context vector
representations of w, respectively [45].

While CBOW and skip-gram models can calculate similar-
ities between words, they do little about similarities between
documents or sentences. Paragraph vectors or doc2vec mod-
els extend CBOW and skip-gram models [20], which learn
document embeddings. Here the notion of *“‘paragraph” rep-
resents text with varying lengths, which can be sentences,
paragraphs, or whole documents.

The CBOW model is expanded so that the input layer
also comprises the paragraph’s ID containing the words.
Therefore, every paragraph is mapped to a unique vector
that is trained using the network. Since the paragraph ID
acts as a memory that wires context to (missing) words, this
model is called the distributed memory model of paragraph
vectors (PV-DM). The other doc2vec model is the distributed
bag-of-words model of paragraph vectors (PV-DBOW) that
extends the word2vec skip-gram model [20], [41]. These two
models are used to find similarities between sentences or
documents and are leveraged in NLP search engines.

IV. THE PROPOSED METHOD

In this study, we first create the signatures of different soft-
ware in the learning phase. Then, we check the system hard
drive and look for the signatures of various software applica-
tions to identify the software running on the target system. For
this purpose, we design a software signature search engine
whose input documents are software signatures, and its query
is the hard disk of the system under investigation. Figure 1
shows the component diagram of our proposed method for
detecting software. The proposed method consists of two
subsystems: signature construction and signature detection.
In the following, we describe each of these subsystems and
their components.

A. SIGNATURE CONSTRUCTION SUBSYSTEM

To make a software signature, we need to compare the disk
copies immediately before and immediately after the soft-
ware execution. We first extract valuable features from these
two disk copies and compare them with each other. In this
way, a difference-set is obtained, which can be processed
to get a software signature. The signature construction sub-
system consists of four components: feature extraction, dif-
ferential analysis, difference-set construction, and signature
construction. In the following, we describe each of these
components.

1) FEATURE EXTRACTION

To extract features from a disk copy, we use fiwalk [46].
This tool processes a disk image into an XML structure
representing all of the file system and document metadata
resident within a disk image. In particular, the XML block
that fiwalk produces has information about each file, such
as the file name, file size, MACB timestamps, and MD5 and
SHAT abstracts.

55817

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

<<subsystem>>

Signature Construction

=]

Building Building

@ (<) Difference-Set @

Differential

(@

Signature

Difference-Set Feature Differences

Feature
Extraction

]

=—=O—

Features

Analysis

Disk copies before and

d) Software Signature
O/

=

after the software
execution

(D—

Software Signatures

--
Signature
Database

Feature
Extraction

Vector

)

Features

—

Target system’s dis
copy

L

<<subsystem>>
Signature Detection / Software Signature Search Engine

Signature Vectors

Building @ _O}
O

Query Vector

[Vector Similarit

=5
Setting @

Threshold

Calculating
Similarity

Decision @ g i)
Engine T

Threshold

Presence or absence
of software

Disk copy after the
/) software execution on
the base controlled
machine

FIGURE 1. The component diagram of the proposed method for software detection.

2) THE GENERAL MODEL FOR FORENSIC DIFFERENTIAL
ANALYSIS

The forensic differential analysis compares two digital arti-
facts and reports the differences between them. Forensic
differential analysis can provide valuable information about
what happened in a system. For example, comparing the
memory images at two different time points gives information
about created or terminated processes and established or ter-
minated network connections. Besides, the differential anal-
ysis of two disk copies of a system explains the differences in
the file system, Registry, and log files.

Artifacts or objects vary depending on the type of dif-
ferential analysis. For example, to obtain a pattern of net-
work traffic changes, the captured network packets act as
objects. In this study, the disk copies are the objects that
are compared to build the software signatures. Objects have
different features, some of which are valuable for forensic
purposes.

Objects can contain subobjects themselves. For example,
if the object is a memory image, subobjects can be pro-
cesses in memory; In this case, the features can be, for
example, process status, number of resources allocated, and
number of threads. However, the object can be a process
itself, and the subobjects can be different blocks of memory
allocated to it. Of course, sometimes we do not need to
consider subobjects, and only the features of an object are
important to us.

Suppose we have two objects A and B of the same type,
collected at times T4 and Tp respectively, and T4 < Tp.
Suppose object A has N4 subobjects, and object B has Np
subobjects. Also, assume that each subobject has M different
valuable forensic features. So, we get M - Ny features from
object A and M - Np features from object B. The function £

55818

extracts features from each of these objects:

E:O0— Fo, 4

where O = {A, B}, and F is the set of all features extracted
from subobjects of object O; In other words:

F0={f0,‘,j|ie{17"'vNO}vje{lv"'»M}}’ (5)

where fo,; is the value of jth feature extracted from the ith
subobject of object O.

The differential analysis of the two objects A and B is
reduced to the differential analysis of F4 and Fp. The dif-
ferential analysis function is defined in (6), as shown at
the bottom of the next page, where PS (M) is the power set
of the set {1, --- , M}, but it does not include the empty set
and the set itself. Therefore, PS (M) has 2! elements. The
function DA (F4, Fp) returns a set in which each element is
an ordered triple in the form of (0, i Sj), which shows the set
of selected features (S;) of the ith subobject of object O. If S;
has only one element j, we show the ordered triple as (O, i, j).

The differential analysis function (6) consists of four parts.
The first part returns the ordered triples in the form of (A, i, j)
if the value of the jth feature of none of the subobjects of
B equals the value of the jth feature of the ith subobject of
the object A. Similarly, the second part returns the ordered
triples in the form of (B, i, j) if the value of the feature j of
the subobject i of the object B equals none of the values of
the feature j of the subobjects of A. The third part returns
ordered triples (A, i, S;) if for subobject i of A, there exists
a subobject of B like k so that all of the k’s features in S;
are equal to the corresponding feature of i, and other features
of k are not equal to the corresponding feature of i. Likewise,
the fourth part returns ordered triples (B AN /) if for subobject
i of B, there is a subobject of A like k so that all of the

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

k’s features in §; are equal to the corresponding feature of
i, and other features of k are not equal to the corresponding
feature of i.

Generally speaking, differential analysis lists features that
a) exist in object A but do not exist in object B, b) do not exist
in object A but exist in object B, and ¢) changed between two
objects. We should note that, in practice, differential analysis
is usually performed with a small number of features. Also,
it is often not necessary to consider all features in all parts
of (6), and usually, a subset of {1,---, M} or a subset of
PS (M) is considered.

3) FORENSIC DIFFERENTIAL ANALYSIS FOR BUILDING
SOFTWARE SIGNATURE
Here, the disk copies are the objects, and files and folders
in these copies are the subobjects. Each of these subobjects
has many features, some of which have forensic value. For
example, some metadata of files and folders, including path,
size, various timestamps (modification, access, and create),
and hash values, are valuable for forensic analysis.

When comparing two disk copies to build the signatures,
we are interested in the following:

o Deleted files and folders.

o Created files and folders.

« Files that have changed. The change can be one of the

following:

v" Files whose content has changed (the hash value has
changed).

v' Files whose content has changed, but the modifica-
tion timestamp has not changed. It could indicate a
hardware problem, a software error, or a malicious
effort. However, this could also mean that the mod-
ified files have not been saved.

v" Files whose modification timestamp has changed,
but their content has not changed. In addition to the
possibility of malicious manipulation, this may also
happen when we make changes to a file but then
undo the changes.

Therefore, for differential analysis of two disk copies,
we consider three features: 1) the file path, 2) the modification
timestamp, and 3) the hash value.

To formally describe the software signature construction,
we use the proposed differential analysis model. To follow
the terminology of the differential analysis model, we call the
two disk copies taken before and after the software execution
A and B, respectively. We also display our three features,
i.e., the file path, the modification timestamp, and the hash
value with p, ¢, and c, respectively.

The formal representation of deleted files and folders is
defined in (7).

Del (Fa, Fp)
{1, ,Na}jelp}

XfAi,j :ka,j} . @)

Equation (7) lists files and folders whose file path value is
present in object A but not in object B.

The formal representation of created files and folders is
defined in (8).

{A,i,)) | -3k e {1,--- ,Np}:

Cre (FA, FB)
ie{l,-- ,Np}.jelp}

X fBi.]‘ :fAk,j} . (8)

Equation (8) lists files and folders whose file path value is
present in object B but not in object A.

The formal representation of files whose content has
changed is defined in (9).

{(B,i,)) | =3k € {1,--- , Na}:

Mod\(F4, Fp)

- U

ie{l,,Np).S;e(p)

dkefl,---,Na}:VjeS;
(B, 1, S)) | fB:; =faw ;N
(Vh € {t. c} : fo,, #fan)
9

Equation (9) lists the files in object B whose hash value and
timestamp have changed, but the file path has not changed.
Since we are interested in the changes made to the disk’s copy
after running the software, we use this form of the equation
and return the ordered triples that list the files and features in
object B. Another form of the equation that lists the ordered

DA (Fa, Fp)

- U

i€{l, -+, Na},je{l, - .M}

v U

ie{l,- ,Np},je{l, - .M}

v U

ie{1,--\Na}.S;€PS(M)

v U

i€(1,+ Ng),S;€PS (M)

VOLUME 9, 2021

{A.ip) | =3k € {1, Np}: fa,, = fig; }
{(B’ ls]) |_'ak € {1’ te ’NA} :fBl‘.j :fAk,j}
{(A.i.85) [Tk e {1, N} :Vj €S fa, =fo; A(Yhe(l,- - MY, R &S fa, #5is)}

{(B.i.S)) 13k e {1, ,Na}:Vj€Sfo, =far, ANVhe{l, - M}, h &S fo, %)}

(6

55819

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

triples of object A is given in (10). However, there is no need
for it because the modified items are the same and do not need
to be repeated.

Mod1' (Fa, Fg)

- U

i€{1, N4}.S;€(P)

Jdk € {1,---,Np} : VjeS;:
(A, 1, Sj) A Zka,j/\
(Vh S {t, C} :fAi_h #ka,h)
(10)
The formal representation of files whose content has

changed, but the modification timestamp has not changed is
defined in (11).

Mod?2 (Fa, Fp)

- U

ic{l, Np).S;elp.1)

dkefl,--- ,Na}:Vje§;:
(B, 1, Sj) fBi,j :fAk,j/\
(Vh € {c} /B ?éfAk,h)
(11)

Equation (11) lists the files whose hash value has changed,
but the file path and modification timestamp have not
changed.

The formal representation of files whose modification
timestamp has changed, but the content has not changed is
defined in (12).

Mod3 (Fa, Fp)

-y

i€f{l,- ,Np},S;e{p,c}

Jdke{l,...,Na}:VjeS;:
s fBi,j :fAk.j/\
(5.5 Sj) (Vhe {t} :fBiJv #fAk,h)

(12)

Finally, the differential analysis of two disk copies before
and after the software execution is the union of triples
obtained from (7), (8), (9), (11), and (12).

In our experiments, we found that most of the deleted or
modified files were not due to software execution, but to the
underlying operating system. Therefore, to create a software
signature, we only focus on the files and folders created
during the software execution and consider only the file path
feature, p. The differential analysis function for finding the
mentioned differences between two disk copies, before and
after running the software SW, is defined by (13).

Cre (F Pre(SW)»> FPost (SW))

= U {(i,p)

i€{1, ,Nposrisw) }

—dk € {1’ cee ,NPre(SW)} :
Jpost(sWy,, = JPre(sw),, ’

13)

In this way, the differential analysis of two disk copies
before and after the software execution creates ordered pairs
representing the files and folders created during the soft-
ware run. We get the difference-set of software execution
by extracting the second element from these ordered pairs,
as represented by (14).

DS (SW) = {p| (i, p) € Cre (Fpre(sw). Fpostswy) } - (14)

55820

For the software signature not to rely on just running the
software once, we run each software with different scenarios,
and after each run, we get the difference-set. Then, we com-
bine these difference-sets and get the software signature.
This combination, unlike the union operation of sets, does
not remove duplicate elements. If the file path p exists in r
difference-sets, p appears in the final signature r times. If the
software SW runs with K different scenarios sy, --- , Sk,
we will have K difference-sets that should be combined to
get the software signature, as represented by (15).

Sig(SWy= (] DS (SWy,). (15)

iefl,- K}

4) BUILDING DIFFERENCE-SET AND SIGNATURE OF THE
SOFTWARE

To build the signature for each software, we proceed as
follows. On a virtual machine, we install the operating system
X and uninstall the default OS programs and take a snapshot
of the system called Snapshot_Base. Then we install the
desired software on the system and run it with the relevant
scenarios, and after each run, we take a copy of the disk. In the
following, we will explain how to make the signature for the
software app.

We install the software app on the system, suspend the
system, convert the virtual machine disk (.vmmdk file) to
EO1 format using a forensic tool (such as FTK Imager or
EnCase Forensic Imager) to get the app_install. EOI. Then
we resume the system and make a series of initial settings
of the software app and take a snapshot of the system called
Snapshot_app_initial_setting. We run the software app with
the first scenario, suspend the system, and convert the result-
ing.vimdk file to app_run_1.EO1. Then we restore the system
to the snapshot_app_initial_setting. Similarly, we run app
with all the scenarios and take a copy of the disk.

We should note that before each scenario execution of
the app, we must restore to the snapshot_app_initial_setting.
This way, every time, the software app runs on a system
on which the software is recently installed and configured.
Also, we need to go back to the snapshot_Base to install any
software.

After installing and running all apps and getting the disk
copies, we process the copies with fiwalk [46] to get the
files and folders in the disk copy as a DEXML! output [47].
Now we use the differential analysis model to find files and
folders created, deleted, or changed while running software
with a specific scenario. For this purpose, we compare the two
DFXML files after installing and after running the app and
get the differences using the make_differential_dfxml com-
mand. However, as mentioned in the previous section, due
to the high false-positive rate of deleted and modified items,
we focus only on the added items to build the difference-set.
Then we combine the difference-sets of software and create

1Digital Forensic XML (DFXML) is an XML language that allows the
exchange of structured forensic information.

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

Al

gorithm 1 Create software signature

1
2
3
5:
6:
7
8

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:

27

Install operating system X on a virtual machine
Take a snapshot of the system called Snapshot_Base
apps < The set of applications
for app in apps do
Install app
Create app_install. EO1
Perform initial settings
Take a snapshot of the system called Snapshot_app_initial_setting
fori in related_scenarios do
Run app with scenario i
Create app_run_i.EQ]
Restore virtual machine to Snapshot_app_initial_setting
end for
Restore virtual machine to Snapshot_Base
end for
for alldisk copies as d.EOI do
fiwalk d.EOI d.dfxml
end for
forapp in apps do
signature_app = {}
fori in related_scenarios do

signature_app = signature_app U difference-set_app_run_i
end for
: end for

make_differential_dfxml app_install.dfxml app_run_i.dfxml >> delta_app_run_i.dfxml
difference-set_app_run_i = added items in delta_app_run_i.dfxml

the software signature. Algorithm 1 describes how to build a
software signature.

B.

In
of

5)
SIGNATURE DETECTION SUBSYSTEM
this section, we provide a solution to detect the presence
software on the target system. The software detection

subsystem or software signature search engine consists of six
components:

1) software signature database: The software signatures
created by the software construction subsystem make
the signature database. These software signatures, after
processing, make the input documents of our S3E.

2) feature extraction: The hard disk of the target system is

processed, and valuable forensic features (the file path

attribute of all files and folders) are extracted. These
extracted features make up our query.

vector construction: We need a method to compare

the query with the signatures of different software.

Therefore, we should find a numerical representation

of this textual data so that each signature or query is

represented as a vector in a multidimensional space.

As described in Section III, we use the paragraph vector

model to construct the signature vectors and the query

vector.

similarity calculation: If a piece of software has run on

the target machine, the queried hard disk must be sim-

ilar to the software signature. This module calculates

3)

4)
6)

VOLUME 9, 2021

the cosine similarity of the query vector and various
signature vectors.

threshold setting: We should note that unlike conven-
tional search engines, which return a list of related
documents in response to a query, the software signa-
ture search engine must determine whether the soft-
ware has run on the target system. Therefore, we need
to define a threshold for the presence of any soft-
ware. If the similarity score is greater than the thresh-
old, we conclude that the software has run on the
system.

To set the software threshold, we install and run
the software on a base-controlled system. The
base-controlled system is a newly installed system on
which no software has been installed yet, and even
the default Windows programs have been uninstalled.
This system acts as a query, and the similarity score
against the corresponding software signature makes the
software threshold. Suppose the search engine has n
software signatures. To determine the threshold of the
ith software, we install and run it on the base-controlled
system. Then we process the disk copy and give it to
the search engine as a query. The similarity score of
this query with the ith document of the search engine
is the threshold of the ith software.

decision engine: If the similarity of the query vector
with a software signature vector is greater than the

55821

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

software threshold, the decision engine concludes that
the software has run on the system.

C. DESIGN PARAMETERS OF SOFTWARE SIGNATURE
SEARCH ENGINES

We consider several design parameters in developing soft-
ware signature search engines. Our first design choice is
to choose the doc2vec model type (PV-DM or PV-DBOW).
The second and third design parameters consider different
values for the vector size and window size, respectively.
Finally, the fourth design parameter sets the threshold value
for each software. Table 1 shows these parameters and their
different values. Different values of design parameters lead
to different S3E models. The total number of S3E models
is 2 x4 x5 x 3 = 120. We have used some tags to
make it easier to name the models. For example, the S3E
model, which uses PV-DM and has a vector size of 80 and
a window size of 10 and uses a medium threshold, is known
as P1-V3-W5-T2.

TABLE 1. Design parameters of our software signature search engines.

Parameter Value Tag
paragraph model PV-DM P1
PV-DBOW P2
vector size 20 V1
40 V2
80 V3
160 V4
window size 2 Wi
4 W2
6 w3
8 W4
10 W5
Threshold value Big T1
Medium T2
Small T3

The first parameter of the software signature search engine
determines the representation model for software signatures.
As stated in Section III, the PV-DM model predicts a word
using the context words and the paragraph containing it. For
this purpose, a three-layer neural network is used, which
has context word vectors and the paragraph vector in its
first layer. These vectors are averaged or concatenated to
predict the target word. Once the neural network is trained,
the trained vectors for the paragraphs can be used as para-
graph signatures.

The second model, PV-DBOW, predicts words in a para-
graph using only the paragraph (without using other con-
text words). Therefore, the first layer of the neural network
has only one paragraph vector. This model is conceptually
simpler than PV-DM and requires less storage space; Unlike
the PV-DM method, which requires storing softmax weights
and word vectors, this method only needs to store softmax
weights [20].

The second and third parameters adjust vector dimensions
and window size. For vector dimensions, we have 20, 40, 80,
and 160, and for window size, we have 2, 4, 6, 8, and 10. The

55822

fourth parameter determines the threshold value for different
signatures. As mentioned earlier, we need to set a threshold
for the presence of any software. Every search engine model
has a separate threshold per software.

Note that the first three design parameters affect the thresh-
old value. After developing the S3E model using these param-
eter values, we set the threshold for each software. The
Big value for the threshold is calculated according to the
description in the previous section. The Medium value is
half of the Big one, and the Small value is one-quarter of
the Big.

V. EXPERIMENTS, EVALUATION AND RESULTS

A. EXPERIMENTS

In our experiments, we run two versions of several software
applications with different scenarios on two operating sys-
tems (Windows 7 x32 and Windows XP x32). We choose
the 32-bit version of Windows XP to have the same OS as
the MS57 computers [21]. Table 2 describes the scenarios of
these software packages. The first versions (Adobe Reader
9.2, Firefox 3.5.10, and Python 2.6.1) are the same as the
applications executed on the M57 computers.

As stated in Section IV, we combine the difference-sets of
various software execution scenarios to get the software sig-
nature. Therefore, our S3E models have 16 input documents,
each with an average of 954 sentences and 4942 words.
However, we should note that the meaning of words and sen-
tences in software signatures is different from their meaning
in natural languages. Here the sentences are complete file
paths, and the words are the names of each of the folders and
files in the path. Unlike common documents, where words
are separated by spaces, signature words are separated by /
character. We need to do the necessary preprocessing on
software signatures to introduce these words to PV-DM and
PV-DBOW algorithms.

As mentioned, the word2vec and doc2vec models pay
attention to word context and place word vectors with
similar contexts close together. To display word vectors
used in software signature, we first need to convert the
high dimensional word vectors into two-dimensional points.
We use the t-distributed stochastic neighbor embedding
(t-SNE), which is a nonlinear dimensionality reduction
technique [48].

Figure 2 shows only a small part of this two-dimensional
space. Each point in this figure represents one of the com-
ponents of the file paths in the software signature of Adobe
Reader. A small piece of these file paths is shown in Figure 3.
Comparing Figure 2 and Figure 3, we find that the vectors of
words with similar contexts are almost close. For example,
most of the last components of the file paths are located
in the middle of Figure 2. Also, the second components
administrator and all users are located close to each other.
Similarly, the third components, including application data,
local settings, and desktop, are located close to each other in
the vector space. Moreover, the two components 9.0 and 71.0,
which represent the Adobe versions, are close together.

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

TABLE 2. Description of performed experiments.

Software Scenario Scenario Description
Adobe Reader 9.2 & S1 1 Clicking on Adobe Reader icon on the desktop, opening filel.pdf, and finally, closing it
Adobe Reader 11.0.3 S1 2 Clicking on Adobe Reader icon in the Start menu, opening filel.pdf, and finally, closing it
S13 Clicking on Adobe Reader icon on the desktop, then opening file2.pdf, saving it to another file, and finally, closing
it
S1 4 Opening file2.pdf by double-clicking it and then closing it
Adobe Reader 11.0.3 S1 5 Opening file2.pdf by double-clicking it, then making changes to it, saving it, and finally closing it
S1 6 Opening filel.pdf by double-clicking it, then making changes to it, saving it to another file, and finally closing it
Firefox 3.5.10 & S2 1 Clicking on Firefox icon on the desktop, visiting yahoo.com, and finally, closing it
Firefox 40.0.3 S2 2 Clicking on Firefox icon in the Start menu, then visiting google.com, searching for Olympic, opening
www.olympic.org in a new tab, and finally, closing it
S2 3 Clicking on the Firefox icon on the desktop, then visiting gmail.com, logging in, opening an email, downloading
the email attachment, which was a pdf file, and finally closing it
S2 4 Clicking on the Firefox icon in the Start menu, opening the en.um.ac.ir, and then reviewing several successive
links on this site and finally closing it
Python 2.6.1 & S3 1 Opening Python by selecting Run and typing python, then typing the command print "hello world”, and finally
Python 2.7.17 closing it
Word 2003 pro & S4 1 Opening the Word by clicking on its icon on the desktop, creating a new document, saving it as docl on the
Word 2010 pro desktop, and finally closing it
S4 2 Opening the Word by clicking on its icon in the Start menu, opening doc2, making changes to it, saving it, and
closing it
S4 3 Double-clicking on the doc2, making changes to it, saving the changes to the doc3 file, and finally closing it
S4 4 Right-clicking on the desktop and selecting New Microsoft Word Document and naming it doc1, then double-
clicking it, typing a text and saving it, and finally, closing it
dEnopd32_shx
15 @ocuments and settings @hplication data
gmwarednd .
docal settings @eskiop . gricrosoft
10 &l users getwork gilo.198 gssets grefetch
@dministralor .
geader glelpdf gFeache i
5 ofie2.paf Jrshist012020031520200315 gindow
Jlel.ink dndex dat @mware-adrinistrator
~ . em gonnloader oy ink goc3rese distory.ie5
| gecen .
E o geaderImanifeshman. dat ollab gorms . -
z R
@marl.dat adobesysfntll |st
5 aolor @Or2350tMp sercache bin b 2alb N
crobat Jlash player diI9.tmp @s5ets-2003 153533587, 0005 @rlobearm exe 2dLbgbkalini
@s5ets-2003 15144836808 log
-10 &2 @cecachell.Iggiobdata gssetcache
gdobe erotect st
¥
-15 &0 &
J10
-20 15 10 5 D 5 10
t-SNE_1

FIGURE 2. Two-dimensional representation of software signature word vectors.

B. CONTROLLED MACHINES

To evaluate each S3E model, we design controlled machines
on which we already know what applications run. We design
20 controlled machines: 10 machines with the specification
of Intel Core i5 processor with 2.50 GHz 8§ GB RAM, run-
ning Windows 7 and 10 machines with the same specifica-
tion, running Windows XP. How to run the applications on

VOLUME 9, 2021

both Windows is the same. Table 3 describes the controlled
machines.

We query the controlled machines one by one against each
S3E model and calculate its similarity with different input
signatures. For the software x that has a signature in the search
engine, if x is present on the controlled machine, the similar-
ity of this queried machine with the signature of x should be

55823

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents

and
and
and
and
and
and
and
and
and
and
and

Settings/Administrator/Application Data/Adobe/Acrobat/9.8/Collab/

Settings/All Users/Application Data/Microsoft/Network/Downloader/qmgr@.dat/

Settings/All Users/Application Data/Microsoft/Network/Downloader/qmgrl.dat/
Settings/Administrator/Local Settings/History/History.IE5/MSHist812020831520288316/index.dat/
Settings/Administrator/Recent/file2.1lnk/

Settings/Administrator/Local Settings/Application Data/Adobe/Color/
Settings/Administrator/Local Settings/Temp,/AdobelRM.log/

Settings/Administrator/Local Settings/Temp/vmware-Administrator/VMwareDnD/a9%c3fe8e/filel.pdf/
Settings/Administrator/Desktop/filel.pdf/

Settings/All Users/Application Data/Microsoft/Network/Downloader/
Settings/Administrator/Desktop/file2.pdf/

WINDOWS/Prefetch/EULA.EXE-2546E412.pf/

WINDOWS/Prefetch/ACRORD32.EXE-3A1F13AE.pf/
WINDOWS/Prefetch/ADOBEARM. EXE-2D1B11BF.pf/

WINDOWS/Prefetch/ACRORD32INFO.EXE-242CE4AA. pf/

Documents and Settings/Administrator/Application Data/Adobe/Acrobat/9.8/
Documents and Settings/Administrator/Local Settings/Application Data/Adobe/

Documents and Settings/Administrator/Application Data/Adobe/Acrobat/9.8/SharedDataEvents/

Documents and Settings/Administrator/Application Data/Adobe/Acrobat/

Documents and Settings/Al11 Users/Application Data/Adobe/Reader/9.2/8RM/Reader9Manifest.msi/
Documents and Settings/Administrator/Application Data/Adobe/Acrobat/9.8/UserCache.bin/
Documents and Settings/All Users/Application Data/Adobe/Reader/

Documents and Settings/All Users/Application Data/Adobe/Reader/9.2/ARM/

FIGURE 3. Part of file paths in software signature of Adobe Reader.

TABLE 3. Description of controlled machines.

name Description

Controlled machine 1
pro one after the other, without closing them.
Controlled machine 2

Controlled machine 3
Controlled machine 4
Controlled machine 5
Controlled machine 6
Controlled machine 7

them.
Controlled machine 8
Controlled machine 9

them.
Controlled machine 10

them.

We execute the first version of all four applications, namely Adobe Reader 9.2, Firefox 3.5.10, Python 2.6.1, and Word 2003

We execute the first version of all four applications, namely Adobe Reader 11.0.3, Firefox 40.0.3, Python 2.7.17 and Word
2010 pro one after the other, without closing them.

We execute three applications Adobe Reader 9.2, Firefox 3.5.10, and Python 2.6.1 one after the other, without closing them.
We execute three applications Firefox 3.5.10, Python 2.6.1, and Word 2003 pro one after the other, without closing them.

We execute three applications Adobe Reader 9.2, Python 2.6.1, and Word 2003 pro one after the other, without closing them.
We execute three applications Adobe Reader 9.2, Firefox 3.5.10, and Word 2003 pro one after the other, without closing them.
We execute three applications Adobe Reader 11.0.3, Firefox 40.0.3, and Python 2.7.17 one after the other, without closing

We execute three applications Firefox 40.0.3, Python 2.7.17, and Word 2010 pro one after the other, without closing them.
We execute three applications Adobe Reader 11.0.3, Python 2.7.17, and Word 2010 pro one after the other, without closing

We execute three applications Adobe Reader 11.0.3, Firefox 40.0.3, and Word 2010 pro one after the other, without closing

greater than or equal to the threshold of x. Conversely, if x
is not present on the controlled machine, the similarity of the
query to x’s signature should be less than the x’s threshold.

C. EVALUATION AND RESULTS

To evaluate software signature search engines, we first need
to define evaluation criteria. The efficiency of information
retrieval methods and search engines is usually measured
by precision and recall [49]-[51]. Precision is the number
of related results retrieved by the search engine divided by
the total number of retrieved items. Recall is the number of
related results retrieved by the search engine divided by the
total number of related items in the collection. To calculate
the precision and recall, it is necessary to determine the val-
ues of true-positive, true-negative, false-positive, and false-
negative, each of which is defined as follows:

55824

o True-positive (TP) is the number of software packages
that the search engine correctly detects them running on
the system.

o True-negative (TN) is the number of software packages
that the search engine correctly detects them not running
on the system.

« False-positive (FP) is the number of software packages
that the search engine falsely detects them running on
the system.

« False-negative (FN) is the number of software packages
that the search engine falsely detects them not running
on the system.

We calculate true-positive, true-negative, false-positive,
and false-negative values cumulatively for each controlled
machine. In other words, for each controlled machine, we get
these values and add them together, and finally, we calcu-
late the precision and recall using these cumulative values.

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

Algorithm 2 Calculate performance metrics for a software signature search engine

1: Apps < The set of input applications of the software signature search engine

2: machines < 20 controlled machines
3: for m in machines do

4: machine_apps < The set of applications in m
5: foriin Apps do

6: if i in machine_apps then

7 if similarity(i) > = threshold(i) then
8: TP <~ TP +1

9: else

10: FN < FN + 1

11: end if

12: else

13: ifsimilarity(i) > = threshold(i) then
14: FP «— FP + 1

15: else

16: TN < TN + 1

17: end if

18: end if

19: end for

20: end for

21: Precision <— TP / (TP + FP)
22: Recall < TP / (TP + FN)

Algorithm 2 describes how to calculate the performance met-
rics for a software signature search engine.

We should note that we run each S3E model 10-times and
average the precision and recall values of these 10-runs. The
reason is that our software signature search engine is based on
neural networks, and the document vectors are learned using
a probabilistic modeling approach. Unlike frequency-based
vector representations such as TF-IDF, in which the vector of
a document or a query is non-variable, the probability-based
vectors are different each time the neural network is trained
or tested.

As mentioned earlier, we have designed 120 different mod-
els of software signature search engines. In the following,
we examine the precision and recall of different search engine
models and examine the effect of different design parameters
on these performance metrics.

1) EXPERIMENTAL RESULTS ON CONTROLLED MACHINES

Figure 4 shows the precision and recall distribution of our
120 S3E models against 20 controlled machines. We see that
the minimum precision of these models is more than 0.795.
However, none of the models have reached perfect precision.
The minimum recall of these models is about 0.75, and some
models have perfect recall. We can divide these points into
two categories: the first category (A) has a recall of less than
0.85 and a precision of more than 0.8, and the second group
(B) has a recall of more than 0.85 and a precision of less than
0.805. We can see that models in category A have higher
precision and lower recall, and models in category B have
higher recall and lower precision. To see which models fall

VOLUME 9, 2021

0815

0810

Precision
=
o
[=}
5

0.800

ovas

ovs oBs0 o085 Lik=in) 0a5 100
Recall

FIGURE 4. The precision and recall of 120 S3E models against controlled
machines.

into each of these two categories, we can look at the diagrams
in Figure 5.

Each of the diagrams in Figure 5 shows the precision and
recall for one of the design parameters. Each of the two
doc2vec models, PV-DM and PV-DBOW, has relatively the
same share in two categories, A and B. However, in cate-
gory B, PV-DM models have better performance in terms of
recall than PV-DBOW models, so that most models with a
recall of more than 0.9 and all models with a recall of more
than 0.95 use the PV-DM algorithm. Also, in Category A, the
PV-DM models perform better and achieve better precision
values.

Different values of vector dimensions do not operate dis-
tinctly in the precision-recall space. In other words, in both
categories, all four values have a relatively equal share. It is

55825

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

0820

® Pv-DM
« PV-DBOW

Vector Size = 20
Vector Size = 40
Vector Size = 80
Vector Size = 160

4+ X

Window Size = 2
Window Size = 4
Window Size = 8
Window Size = 8

* + X

» Big Threshold
Medium Threshold
v Small Threshald

0B15s

0810 X, >, s >,
+
- X8 ¢ ¥ %‘H—x
5 pie ;s
@ 0805 X .
] ¢ - +
S R
0800 X 2 doare '*'!‘{e
0795
0790
0785
075 080 085 090 085 100 075 080 085 090 085 100

Recall Recall

(a) The precision and recall of our

software signature search engines
grouped by doc2vec model

(b) The precision and recall of our
software signature search engines
grouped by vector dimension

< Window Size =10
4
R T
=
* oy

o7s LiE:] 085 080 085 100 o7s LiR:] 08es 080 085 100
Recall Recall

{c) The precision and recall of our
software signature search engines
grouped by window size

(d) The precision and recall of our
software signature search engines
grouped by threshold value

FIGURE 5. The precision and recall of our S3E models against controlled machines grouped by design parameters.

also true for the window size parameter. Different threshold
values behave separately in the precision-recall space. All
members of category A are Big threshold models. Also,
almost all models with Big threshold are in category A.
Medium, and Small threshold models are in category B.
However, Small threshold models account for a larger share
of models with higher recall.

In short, the PV-DM algorithm performs better in our
software signature search engine, but the vector length and
the sliding window size have no noticeable effect on the
performance of our search engine. Moreover, we can say that
larger threshold values lead to greater precision, and smaller
values lead to better recall.

Search time
[
.
.

e
08
40 42 44 48 48 50 52 54 56
Train time

FIGURE 6. The training and searching times (in seconds) for different S3E
models.

As mentioned, the software signature search engine first
uses one of the doc2vec algorithms to train software signature
vectors. Then, when processing the query, it calculates the
cosine similarity of the query vector with each of the software
signature vectors. Figure 6 shows the training time and the

55826

query time for each of the S3E models. As can be seen,
the total training and query time in these models is not more
than 7 seconds. Therefore, in a short time, an S3E model can
detect software on a system.

Of course, before model training, it is necessary to convert
the target disk to DFXML format. For example, converting
a 4GB disk copy to DFXML format on a BitCurator virtual
machine with 8GB RAM takes about 2 minutes. It can be
estimated that this conversion takes about 40 minutes for an
80GB disk copy. This conversion is done much faster on a
powerful physical machine. Therefore, the presence of any
software by an S3E model can be checked in less than an hour.

However, working with conventional digital forensic tools
takes more time. For example, loading and indexing an 80GB
disk copy takes about 4 hours with AccessData FTK 4.2 and
about 10 hours with Encase Forensic 7 on a PC with 8GB
RAM [52]. Besides, after loading and indexing the copy,
the investigator needs to look for traces of various applica-
tions among a large number of files in the disk copy. For
example, the disk copy of Controlled Machine 1 in Table 3 on
Windows 7 has more than 100,000 files and folders. This
manual process is time-consuming and depends entirely on
the investigator’s experience.

Figure 7 shows the average neural network training time
for the search engine and the average query time for the
controlled machines for different design parameters.

In this figure, we see that the average training and search-
ing times for PV-DM models are longer than PV-DBOW
models. We also see that with increasing vector size and
window size, these two times increase. However, there is
only one exception in the size of the vector equal to 20.
Moreover, we see no difference in the average training and
query times for different threshold values. The reason is that
the threshold value does not affect training or testing the
model.

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

Doc2vec model Vector size

48

46

average of frain_time

44

42

average of search_time

aat®
e

002 e
=

e
=

i
e

ol
.

ot
o
o

e

soh
(o
TS

oav

Window size Threshold value

54

52

&0

48 4B

/

46 46

44 44

42 42

ot
ot
Lot
et
ot
e
e
ﬂ\"—“ﬁ

FIGURE 7. The average training and searching times (in seconds) for different design parameters.

2) EXPERIMENTAL RESULTS ON M57 MACHINES

Roussev and Quates [9] report a list of software in the
MS57 Patents corpus [21] that includes three of our test
software (Adobe Reader, Firefox, and Python). Firefox and
Python were running on Pat’s computer on November 16,
and Adobe Reader was running on Pat’s computer on Novem-
ber 19. In the following, we will examine Pat’s disk copy in
these two days to discover these software packages.

0’-.
060

058

Precision

056

054

052

o6 ar ae

Recall

oo 10

FIGURE 8. The precision and recall of our software signature search
engines against M57 machines.

Figure 8 shows the precision and recall distribution of
our S3E models against M57 machines. The precision of
S3E models is in the approximate range of (0.52, 0.63), and
the recall is in the range of (0.55, 1). None of the models
reach high precision. Nevertheless, some models have perfect
recall, and 67.5% of them have a recall greater than 0.8. High

VOLUME 9, 2021

recall means that these models have been relatively successful
in detecting applications running on M57 machines.

We can divide the points on the precision-recall space into
three categories: The models that have a precision of less than
0.57 and a recall of less than 0.8 (Category A), the models
with a precision of more than 0.57, and a recall of less than
0.8 (Category B), and the models with a precision of more
than 0.57 and a recall of more than 0.8 (Category C).

The diagrams in Figure 9 show the precision and recall
values for the various design parameters. We see that category
A consists mostly of PV-DBOW models, category B mostly
consists of PV-DM models, and category C consists of both
models equally. However, almost all of the top models in
this category are PV-DMs. So, the PV-DM models perform
better than the PV-DBOW models against the M57 in terms of
precision and recall, the same thing we had in the controlled
machines.

Although there is no clear distinction between different
vector size values in the above classification, category A
mostly includes models with smaller vector size, and category
B mostly contains models with larger vector size. In cate-
gory C, the number of models with different vector sizes is
almost the same. There is no significant difference between
the different values of window size in this categorization.

Regarding the threshold, we see that almost all category
A elements and all category B elements are big threshold
models. Category C includes models with medium and small
thresholds. However, most of the top models in this category
have small thresholds. So, we see that some models with a big
threshold have achieved relatively high precision and that the
small threshold has performed well in terms of both precision
and recall.

55827

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

¥ Pv-DM

064 « PV-DEOW

062

060

058

precision

056

5
054 + % Vector Size = 20
X -+ | Vector Size = 40

- e« Vector Size = 80

Vector Size = 160
1

10 06 or o8 og 10
Recall

052

(a) The precision and recall of S3E models
grouped by paragraph vector model

(b) The precisicn and recall of S3E models
grouped by vector dimension

‘(qu%
&x%x
X

”m -

- x XK
____..___+__$ -——-T---“—--! __________
I
+ 1 3 1
+ 1 X 1
+ ;F o ! X R
. % Window Size = 2 % :
X 4+ Window Size = 4 X !
X e Window Size =6 X % Big Threshold
- Window Size =8 W « Medium Threshold
= | Window Size = 10 Small Threshald
1 1
06 a7 08 og 10 06 a7 08 Lt 1.0

Recall Recall

(d) The precision and recall of S3E models
grouped by threshold value

(c) The precision and recall of S3E models
grouped by window size

FIGURE 9. The precision and recall of our S3E models against M57 machines grouped by design parameters.

v %y

g

oa

ar

Recall on M57 machines

6

o7s o8o 085 080 095 100
Recall on controlled machines

FIGURE 10. The recall rate of S3E models in both datasets.

3) EXPERIMENTAL RESULTS ON BOTH DATASETS

Figure 10 shows the recall rate of the S3E models against
controlled machines and M57 machines. We see that some
models perform well in both datasets. To see which design
values resulted in superior models for both datasets, we can
look at Table 4 and Table 5. Table 4 lists the top 20 S3E mod-
els based on recall on controlled machines, and Table 5 lists
the high recall models on M57 machines.

All of the top models in Table 4 are PV-DM and have a
medium or small threshold. Also, the small size of the vector
is more prominent than other sizes. Besides, the smaller sizes
of the sliding window are more prominent among the top
models. In Table 5, we see that all the top models are PV-DM
and have a medium or small threshold. However, the number
of models with a small threshold is more than the medium
threshold. Also, the small size of the vector is more prominent
than other sizes. Nevertheless, models with different window
sizes have the same presence. We also see that 15 out of the
20 models in Table 4 are also present in Table 5 and are among
the top models in both datasets.

55828

TABLE 4. Top 20 S3E models based on recall on controlled machines.

Recall on Recall on

Name controlled Name controlled

machines machines
1 P1-VI-WI-T3 1 11 P1-V3-W1-T2 0.997
2 P1-V2-WI-T3 1 12 P1-VI-W2-T3 0.996
3 P1-V3-WI-T3 1 13 P1-VI-W5-T3 0.993
4 P1-V4-WI-T3 1 14 P1-V4-WI1-T2 0.993
5 P1-V2-W1-T2 0.999 15 P1-VI-W4-T3 0.992
6 P1-VI-WI-T2 0.998 16 P1-V4-W2-T2 0.988
7 P1-V1-W3-T3 0.998 17 P1-V2-W2-T2 0.984
8 P1-V3-W2-T3 0.998 18 P1-V3-W2-T2 0.983
9 P1-V2-W2-T3 0.998 19 PI1-VI-W2-T2 0.983
10 P1-V4-W2-T3 0.998 20 P1-VI-W3-T2 0.983

TABLE 5. Top 20 S3E models based on recall on M57 machines.

Recall on Recall on
Name M57 Name M57
machines machines
1 P1-VI-WI1-T3 1 11 PI-VI-W2-T3 0.98
2 P1-V3-W1-T3 1 12 PI1-V2-W3-T3 098
3 P1-V3-W2-T3 1 13 P1-V2-W2-T3 0.97
4 P1-V4-W1-T3 1 14 PI-V3-W3-T3 0.96
5 P1-V4-W2-T3 1 15 PI-VI-W3-T3 0.95
6 P1-V4-WI1-T2 0.995 16 P1-V2-W4-T3 0.95
7 P1-V2-W1-T3 0.99 17 PI-V2-WI-T2 0.945
8 P1-V3-WI1-T2 0.985 18 PI-V3-W4-T3 0.945
9 P1-V4-W3-T3 0.985 19 PI1-VI-W5-T3 0.94
10 PI-VI-WI-T2 0.98 20 PI-V4-W2-T2 0.94

Figure 11 shows the precision rate of the S3E models
against controlled machines and M57 machines. Since the
precision changes of S3E models in controlled machines
are about 0.02%, we focus only on the precision of the
S3E models against the M57 machines. Table 6 lists the
top 20 S3E models based on precision on M57 machines.
All the top models in Table 6 are of the PV-DM type. All
three threshold values are among the top models, but the
small threshold has a more prominent presence. Also, all four

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

o o
2 5

@
& ‘_."‘.’.

o
o
®

Precision on M57 machines
=)
=
2

o
o
7

a52
Q790 Q795 0800 0805 o810 0815 0sz20

Precision on controlled machines

FIGURE 11. The precision rate of S3E models in both datasets.

TABLE 6. Top 20 S3E models based on precision on M57 machines.

Prec. on Prec. on
Name M57 Name M57
machines machines
1 P1-V3-W5-T1 0.629 11 P1-V3-WI-T2 0.621
2 P1-VI-W1-T3 0.625 12 P1-V4-W3-T3 0.621
3 P1-V3-W1-T3 0.625 13 P1-V4-W5-T1 0.621
4 P1-V3-W2-T3 0.625 14 PI1-V2-W3-T3 0.62
5 P1-V4-W1-T3 0.625 15 PI-VI-WI-T2 0.62
6 P1-V4-W2-T3 0.625 16 P1-VI-W2-T3 0.62
7 P1-V3-W4-T1 0.625 17 PI-V2-W2-T3 0.618
8 P1-V4-W4-T1 0.624 18 PI-VI-W3-T3 0.617
9 P1-V4-W1-T2 0.624 19 P1-V3-W2-T1 0.616
10 PI1-V2-WI-T3 0.623 20 P1-V3-W3-T1 _ 0.616

vector sizes and all five window sizes are among the top
models. However, smaller window sizes are more prominent.
As can be seen, 14 of these models are similar to the models
in Table 5.

Since achieving at or near 100% recall rates is often a
requirement in the digital forensics context [53], [54], we con-
sider the 15 common top models in Table 4 and Table 5 as the
best models. Table 7 lists these top models. In short, all the
top models are PV-DM. Also, most top models have small
thresholds and smaller window sizes.

TABLE 7. The top S3E models.

Name Name Name
1 PI-VI-WI-T3 6 P1-V1-W1-T2 11 PI1-V3-WI1-T2
2 P1-V2-WI1-T3 7 P1-V1-W3-T3 12 P1-V1-W2-T3
3 PI-V3-WI-T3 8 P1-V3-W2-T3 13 P1-V1-W5-T3
4 P1-V4-W1-T3 9 P1-V2-W2-T3 14 P1-V4-WI1-T2
5 PI-V2-WI1-T2 10 P1-V4-W2-T3 15 PI1-V4-W2-T2

The source code of our search engines, along with the
relevant data are available at https://github.com/Somayeh-
Soltani/Software-Signature-Search-Engine.

4) PERFORMANCE COMPARISON OF VECTOR
REPRESENTATIONS

As we described, our S3E models use the doc2vec model,
which is a shallow neural network method. However, there

VOLUME 9, 2021

are some other methods for the numerical representation of
textual data, such as frequency-based methods, similarity
hashes, and other neural network methods. In the following,
we compare the performance of the doc2vec model with
two other methods: the averaged word2vec model [45] and
the TF-IDF method [42]. A comprehensive comparison of
vector representations for software signature detection is left
to future work.

As mentioned, in our S3E models, we used the doc2vec
method to build signature vectors. Another solution is to
use the word2vec method to get the word vectors inside
each signature and then average them together. We design
some software signature search engines using the averaged
word2vec model and call them A_S3Es. To design A_S3Es,
we only need to change the vector construction component of
the signature detection subsystem.

.
080 o .. e Seenete .

=]
-
=]
+

S32E models on controlled machines
S3E models on M5T machines

tets

Precision

A_S3E models on controlled machines +
A_S3E models on M5T machines

o
=
&

060

0z o3 04 o5 06 ar o8 og
Recall

FIGURE 12. The precision and recall of S3E and A_S3E models in both
datasets.

We consider five CBOW models and five skip-gram mod-
els, with a vector size of 20, the Big threshold, and five win-
dow sizes of 2, 4, 6, 8, and 10. We compare these ten A_S3E
models with ten equivalent S3E models. Figure 12 shows the
precision and recall of these models against both datasets,
and Table 8 shows the average precision and recall of these
models. On controlled machines, while the average precision
of S3E models and A_S3E models is almost equal, the aver-
age recall of S3E models is much higher than A_S3E mod-
els. On M57 machines, the average recall of S3E models is
slightly higher than A_S3E models, and the average precision
of S3E models is less than A_S3E models. As stated, we pay
more attention to the high recall rate in event reconstruction,
and therefore we can say that S3E models performed slightly
better than A_S3E models.

Table 8 also shows the average training time and query
time for both models. While the average training time of
S3E models is longer than A_S3E models, the search time
of S3E models on both datasets is less than A_S3E models.
Since the model is trained only once and then queried many
times, we can say that the S3E models perform faster than the
A_S3E models.

55829

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

TABLE 8. The average precision, recall, train time, and search time of S3E and A_S3E models in both datasets.

Name Avg. train time Controlled machines _ M57 machines)
Avg.recall Avg.prec. Avg. search time Avg.recall Avg. prec. Avg. search time

S3E 4.564 0.808 0.807 1.124 0.646 0.555 1.116

A S3E 1.88 0.37 0.803 7.3 0.622 0.621 5.05

Moreover, we design some software signature search
engines using the TF-IDF model and call them F_S3Es. Gen-
erally, the TF-IDF for a term ¢ in a document d is computed
as:

TF_IDF (t,d) = TF (t, d) x IDF (1) . (16)

There are various ways of determining the TF factor. The
simplest form of TF is defined in (17).

TF (t,d) =f(t,d), a7

where f (¢, d) shows the frequency of ¢ in d. Another formula
for TF is a logarithmic one [55], which is represented by (18).

TF (t,d) = 1 +log (f (t,d)) . (18)

The IDF factor also has various possibilities [55], one of
them is represented by (19).

IDF (t) = log <%) + 1, (19)

where N is the number of documents in the collection, and
df (t) is the document frequency of ¢, which is the number of
documents that contain the term ¢. Another variation of the
IDF formula, called smooth IDF, adds the constant 1 to the
numerator and denominator of the IDF, as defined by (20).

N +1
—df(t)+l> + 1. (20)

We consider four F_S3E models. The first model uses the
simple TF in (17) and the IDF in (19). The second one uses
the TF in (17) and the smooth IDF in (20). The third one
uses the logarithmic TF in (18) and the IDF in (19). Finally,
the fourth one uses the logarithmic TF in (18) and the smooth
IDF in (20). We perform similar experiments on these F_S3E
models and compare their performance with S3E models.
Table 9 shows the average precision and recall of S3E and
F_S3E models on both datasets.

IDF (t) = log <

TABLE 9. The average precision and recall of S3E and F_S3E models in
both datasets.

Name Controlled machines MS57 machines
Avg. recall Avg. prec. Avg. recall Avg. prec.

S3E 0.888 0.802 0.818 0.586

F S3E 0.53 0.813 0.613 0.782

We can see that the average precision of the S3E and
F_S3E models on the controlled machines is almost equal.
The average precision of the S3E models is lower than that
of the F_S3E on M57 machines. However, S3E models have
a better average recall than F_S3E models in both datasets,

55830

and therefore, we can conclude that S3E models are better at
detecting software on the system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to identify the soft-
ware executed on the target system. This method is a digital
forensic triage solution, which narrows down the inspec-
tion scope. It consists of two subsystems: software signature
construction and software signature search engine. We pro-
posed a forensic differential analysis model to build the
software signature. Besides, we used the idea of semantic
search engines to build our software signature search engines.
We used paragraph vector models to calculate the correspond-
ing vectors of software signatures and queries. We designed
120 different S3E models and measured their performance
against some controlled and pseudo-real datasets. We also
determined the parameter values that lead to better per-
formance models. For both datasets, PV-DM led to better
models in terms of both precision and recall by spend-
ing more time and allocating more storage space. Also,
the small threshold worked well for software signature search
engines.

In this paper, we used the doc2vec model to represent the
software signatures and showed its superiority over TF-IDF
and averaged word2vec models. However, there are other
word or sentence embeddings. In future work, we can design
software signature search engines using different embeddings
and compare the performance of them.

Creating the software signature is a time-consuming pro-
cess because we need to take a copy of the disk before and
after running each software scenario. So, we use a limited
number of software signatures. As future work, we should
create a large database of software signatures. This database
should include multiple versions of various software on com-
mon operating systems.

In this work, we considered the signature of any software
as an input document. Therefore, the number of input doc-
uments is relatively small, and the number of words in each
document is large. In later works, we can consider different
granularities for paragraph vectors. For instance, we can
consider file paths inside the signatures as paragraphs. This
way, the number of input documents will be extensive, and
the length of each document will be short.

While we used the Windows file system metadata to build
the software signature, there are no restrictions on using this
method on other operating systems and other metadata. In this
work, we used file paths to create the software signature.
However, other file system metadata can also be consid-
ered. For instance, incorporating timestamps in creating the

VOLUME 9, 2021

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

IEEE Access

software signature highlights the chronological order of the
files created or modified.

REFERENCES

[1]

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

The RCFL Program’s Annual Report for Fiscal Year 2015. Accessed: 2015.
[Online]. Available: https://www.rcfl.gov/file-repository/rcfl-annual-
2015-160817-sc.pdf/view

D. Quick and K.-K. R. Choo, “Impacts of increasing volume of digital
forensic data: A survey and future research challenges,” Digit. Invest.,
vol. 11, no. 4, pp. 273-294, 2014.

P. Joseph and J. Norman, “Forensic corpus data reduction techniques
for faster analysis by eliminating tedious files,” Inf. Secur. J. A, Global
Perspective, vol. 28, nos. 4-5, pp. 136-147, 2019.

H. Studiawan, F. Sohel, and C. Payne, “Sentiment analysis in a forensic
timeline with deep learning,” IEEE Access, vol. 8, pp. 60664-60675, 2020.
P. H. Rughani, “Artificial intelligence based digital forensics framework,”
Int. J. Adv. Res. Comput. Sci., vol. 8, no. 8, pp. 10-14, 2017.

N. A. Adderley, “Graph-based temporal analysis in digital forensics,”
Air Force Inst. Technol., Wright-Patterson Air Force Base, OH, USA,
Tech. Rep. AD1073875, 2019.

J. S. Okolica, “Temporal event abstraction and reconstruction,” Air Force
Inst. Technol., Wright-Patterson Air Force Base, OH, USA, Tech. Rep.
AD1055588, 2017.

J. Kang, S. Lee, and H. Lee, “A digital forensic framework for automated
user activity reconstruction,” in Proc. Int. Conf. Inf. Secur. Pract. Exper.
Berlin, Germany: Springer, 2013, pp. 263-277.

V. Roussev and C. Quates, “Content triage with similarity digests:
The M57 case study,” Digit. Invest., vol. 9, pp. S60-S68, Aug. 2012.

J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen, and D. White,
“Inferring previously uninstalled applications from residual partial arti-
facts,” in Proc. ADFSL, 2017, pp. 113-130.

S. Mead, “Unique file identification in the national software reference
library,” Digit. Invest., vol. 3, no. 3, pp. 138-150, 2006.

Y. Chabot, A. Bertaux, C. Nicolle, and T. Kechadi, “An ontology-based
approach for the reconstruction and analysis of digital incidents timelines,”
Digit. Invest., vol. 15, pp. 83-100, Dec. 2015.

A.J. Nelson, “Software signature derivation from sequential digital foren-
sic analysis,” Ph.D. dissertation, Dept. Comput. Sci., Univ. California
Santa Cruz, Santa Cruz, CA, USA, 2016.

J. L. James, P. Gladyshev, and Y. Zhu, “Signature based detection of
user events for post-mortem forensic analysis,” in Proc. Int. Conf. Digit.
Forensics Cyber Crime. Berlin, Germany: Springer, 2010, pp. 96-109.

C. Hargreaves and J. Patterson, “An automated timeline reconstruc-
tion approach for digital forensic investigations,” Digit. Invest., vol. 9,
pp- S69-S79, Aug. 2012.

M. N. A. Khan, “Performance analysis of Bayesian networks and neu-
ral networks in classification of file system activities,” Comput. Secur.,
vol. 31, no. 4, pp. 391-401, 2012.

S. Kilber, A. Dewald, and F. C. Freiling, “Forensic application-
fingerprinting based on file system metadata,” in Proc. 7th Int. Conf. IT
Secur. Incident Manage. IT Forensics, Mar. 2013, pp. 98-112.

S. Soltani, S. A. H. Seno, and H. S. Yazdi, “Event reconstruction using
temporal pattern of file system modification,” IET Inf. Secur., vol. 13, no. 3,
pp. 201-212, 2019.

M. Khader, A. Hadi, and G. Al-Naymat, ‘““HDFS file operation fingerprints
for forensic investigations,” Digit. Invest., vol. 24, pp. 50-61, Mar. 2018.
Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188-1196.

K. Woods, C. A. Lee, S. Garfinkel, D. Dittrich, A. Russell, and K. Kearton,
“Creating realistic corpora for security and forensic education,” Dept.
Comput. Sci., Nav. Postgraduate School, Monterey, CA, USA, 2011.
[Online]. Available: https://calhoun.nps.edu/handle/10945/41311

N. Kanome, “Computer system capable of restarting system using disk
image of arbitrary snapshot,” Google Patents 6 205 450, Mar. 20, 2001.
R. M. Jenevein, H. S. Kramer, D. S. Shadel, A. V. Lawrence, and
V. A. Arbon, “Storing a computer disk image within an imaged partition,”
Google Patents 6615 365, Sep. 2, 2003.

B. D. Carrier and J. Grand, “A hardware-based memory acquisi-
tion procedure for digital investigations,” Digit. Invest., vol. 1, no. 1,
pp. 50-60, 2004.

L. Wang, “Providing access to physical memory allocated to a process by
selectively mapping pages of the physical memory with virtual memory
allocated to the process,” Google Patents 6477 612, Nov. 5, 2002.

VOLUME 9, 2021

(26]
(27]
(28]

[29]

(30]
(31]
(32]
(33]
(34]

(35]

(36]

(371

(38]

(39]

(40]

(41]
[42]

[43]

(44]

[45]

[46]

[47]
(48]

(49]

[50]

(51]

[52]

(53]

M. Cohen, “PyFlag—An advanced network forensic framework,” Digit.
Invest., vol. 5, pp. S112-S120, Sep. 2008.

F. Carbone, Computer Forensics With FTK. Birmingham, U.K: Packt,
2014.

S. Widup, Computer Forensics and Digital Investigation With EnCase
Forensic V7. New York, NY, USA: McGraw-Hill, 2014.

NIST. National Software Reference Library (NSRL). Accessed:
Apr. 8, 2021. [Online]. Available: https://www.nist.gov/itl/ssd/software-
quality-group/national-software-reference-library-nsrl

X. Lin, “File signature searching forensics,” in Introductory Computer
Forensics. Cham, Switzerland: Springer, 2018, pp. 235-244.

N. C. Rowe, “Identifying forensically uninteresting files in a large corpus,”
ICST Trans. Secur. Saf., vol. 3, no. 7, Dec. 2016, Art. no. 151725.

F. P. Buchholz and C. Falk, “Design and implementation of Zeitline:
A forensic timeline editor,” in Proc. DFRWS, 2005, pp. 1-7.

J. Olsson and M. Boldt, “Computer forensic timeline visualization tool,”
Digit. Invest., vol. 6, pp. S78-S87, Sep. 2009.

K. Gudjénsson, “Mastering the super timeline with log2timeline,” SANS
Inst., Bethesda, MD, USA, Tech. Rep., 2010.

J. Metz and K. Gudjoénsson. Plaso—Super Timeline all
the Things. Accessed: Apr. 8, 2021. [Online]. Available:
https://github.com/log2timeline/plaso

M. Debinski, F. Breitinger, and P. Mohan, “Timeline2GUI:

A Log2Timeline CSV parser and training scenarios,” Digit. Invest.,
vol. 28, pp. 34-43, Mar. 2019.

V. Roussev, “Data fingerprinting with similarity digests,” in Proc. IFIP
Int. Conf. Digit. Forensics. Berlin, Germany: Springer, 2010, pp. 207-226.
NIST. Diskprints. Accessed: Apr. 8, 2021. [Online]. Available:
https://www.nist.gov/itl/ssd/software-quality-group/national-software-
reference-library-nsrl/nsrl-subprojects/diskprints

D. Jeong and S. Lee, “Forensic signature for tracking storage devices:
Analysis of UEFI firmware image, disk signature and windows artifacts,”
Digit. Invest., vol. 29, pp. 21-27, Jun. 2019.

K. Park, J.-M. Park, E.-J. Kim, C. Cheon, and J. James, ‘“Anti-forensic
trace detection in digital forensic triage investigations,” J. Digit. Forensics,
Secur. Law, vol. 12, no. 1, p. 8, 2017.

T. Teofili, “Deep learning for search,” in Manning Early Access Program.
Shelter Island, NY, USA: Manning Publications, 2018.

A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

F. Lashkari, E. Bagheri, and A. A. Ghorbani, “Neural embedding-based
indices for semantic search,” Inf. Process. Manage., vol. 56, no. 3,
pp. 733-755, 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘“‘Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111-3119.

S. L. Garfinkel, “Automating disk forensic processing with SleuthKit,
XML and Python,” in Proc. 4th Int. IEEE Workshop Systematic
Approaches Digit. Forensic Eng., May 2009, pp. 73-84.

S. Garfinkel, “Digital forensics XML and the DFXML toolset,” Digit.
Invest., vol. 8, nos. 3—4, pp. 161-174, 2012.

L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579-2605, 2008.

B. S. Kumar and J. Prakash, “Precision and relative recall of search
engines: A comparative study of Google and Yahoo,” Singap. J. Library
Inf. Manage., vol. 38, no. 1, pp. 124-137, 2009.

D. Tiimer, M. A. Shah, and Y. Bitirim, “An empirical evaluation on seman-
tic search performance of keyword-based and semantic search engines:
Google, Yahoo, Msn and Hakia,” in Proc. 4th Int. Conf. Internet Monitor.
Protection, May 2009, pp. 51-55.

N. L. Beebe and L. Liu, “Clustering digital forensic string search output,”
Digit. Invest., vol. 11, no. 4, pp. 314-322, Dec. 2014.

K. Kroger and R. Creutzburg, “A practical overview and comparison
of certain commercial forensic software tools for processing large-scale
digital investigations,” in Mobile Multimedia/lmage Processing, Security,
and Applications, vol. 8755. Bellingham, WA, USA: International Society
for Optics and Photonics, 2013, Art. no. 875519.

N. L. Beebe, J. G. Clark, G. B. Dietrich, M. S. Ko, and D. Ko, “Post-
retrieval search hit clustering to improve information retrieval effective-
ness: Two digital forensics case studies,” Decis. Support Syst., vol. 51,
no. 4, pp. 732-744, 2011.

55831

IEEE Access

S. Soltani et al.: Developing S3Es Using Paragraph Vector Model

[54] V. K. Kota, “An ontological approach for digital evidence search,” Int. J.
Sci. Res. Publications, vol. 2, no. 12, pp. 409-414, 2012.

[55] A. Aizawa, “An information-theoretic perspective of tf—idf measures,” Inf.
Process. Manage., vol. 39, no. 1, pp. 45-65, 2003.

55832

SOMAYEH SOLTANI received the B.S. degree in
computer science from the Ferdowsi University
of Mashhad, Iran, in 2006, and the M.Sc. degree
in computer science from Islamic Azad Univer-
sity, Science and Research Branch, Tehran, Iran,
in 2010. She is currently pursuing the Ph.D. degree
with the Ferdowsi University of Mashhad. Her
research interests include digital forensics, mal-
ware detection, and formal verification methods.

SEYED AMIN HOSSEINI SENO received the
B.Sc. and M.Sc. degrees in computer engineer-
ing from the Ferdowsi University of Mashhad,
Mashhad, Iran, in 1990 and 1998, respectively, and
the Ph.D. degree from Universiti Sains Malaysia,
Malaysia, in 2010. He is currently an Asso-
ciate Professor with the Department of Computer
Engineering, Ferdowsi University of Mashhad.
His research interests include computer networks,
QoS, the 10T, and network security.

RAHMAT BUDIARTO received the B.Sc. degree
in mathematics from the Bandung Institute of
Technology, Indonesia, in 1986, and the M.Eng.
and Dr.Eng. degrees in computer science from
the Nagoya Institute of Technology, Japan,
in 1995 and 1998, respectively. He is currently a
Full Professor with the Department of Informat-
ics, Universitas Al-Azhar Indonesia. His research
interests include intelligent systems, brain mod-
eling, IPv6, network security, wireless sensor
networks, and MANETS.

VOLUME 9, 2021

