
Received March 19, 2021, accepted April 3, 2021, date of publication April 8, 2021, date of current version April 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071877

M-Array Based on Non-Zero Maps
XIAO ZHOU , YU KANG , TINGTING ZHANG, AND XINGANG MOU
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Corresponding author: Xingang Mou (sunnymou@whut.edu.cn)

ABSTRACT Two-dimensional maximum area array (m-array) is a typical pseudo-random arraywith specific
window property - all sub-windows are globally unique. M-array constructed by Formula-Method-Based
encoding algorithm features a big difference between the number of rows and columns. Enumeration-
Method-Based encoding algorithm only constructs small-size m-array with high computational complexity
and low success rate. Based on the characteristics of Galois Fields, a new method of m-array construction
based on non-zero maps theory is proposed and the theoretical proof is presented. Given symbols p and
sub-window size m× n as input, m-array with a large array size and close numbers of rows and columns is
constructed by dividing and splicing m-sequence. Comparing with existing methods, the advantages of the
algorithm include larger array size, more balanced number of rows and columns, and lower computational
complexity. If needed, the method in this paper is flexible enough that the number of rows and columns of
m-array can also be adjusted within a certain range, meaning that m-array with specific rows and columns
ratio can be constructed.

INDEX TERMS M-array, non-zero maps, pseudo-random array, window property.

I. INTRODUCTION
In the field of structured light 3D reconstruction, structured
light encoding is used to solve the problem of matching the
corresponding point, which will directly affect the accuracy,
resolution, and real-time performance of the measurement.
Pseudo-random codes with pseudo-random characteristics
being predetermined and repeatedly constructed include
pseudo-random sequences and pseudo-random arrays.
m-array is a typical pseudo-random array that is described as
U (u, v;m, n; p), meaning that each m × n sub-window with
symbols p appears only once in u× v array U .

Pseudo-random arrays have been studied for many years.
In 1976, McWilliams [1] proposed the diagonal algorithm
that m-array is obtained by writing the corresponding max-
imal length sequence (m-sequence) down the main diagonal
line of an u × v array and continuing from the opposite
side whenever an edge is reached. Based on the diagonal
algorithm, Lu [2] selected a square sub-array as themain body
and spliced the remaining sub-windows to m-array through
matching. Miao [3] tried to optimize the diagonal algorithm
by central symmetrizing the sub-array.

Another classic pseudo-random array construction method
is the perfect maps theory proposed by Etzion [4], which
constructs m-array by shifting De Bruijn sequence. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Nappi .

first column of the m-array is a De Bruijn sequence, and
other columns consist of cyclic shift of that sequence, with
each column shifting one position in the sequence.
Paterson [5], Mitchell [6], [7] and Ozturk [8] then conducted
a more in-depth study on the perfect maps theory. Using the
new definition of folding, Etzion [9] and Cui [10] constructed
multi-dimensional pseudo-random arrays of various shapes,
and further deduced the necessary and sufficient conditions
for the existence of any given shape of folding.

Morano [11] proposed the piece-growing algorithm and
pointed out that the m-array can be constructed more flexibly.
All sub-windows are treated as independent piece resources,
and the m-array is formed by splicing independent pieces
together. Claes [12] proposed only testing the promising
branches in the search tree, that is, when a piece cannot be
spliced, only one element is backtracked at a time. Mau-
rice [13] and Liang [14] then tried to optimize the piece-
growing algorithm in different ways.

The classic m-array construction methods are mainly
three types above, and other methods are constantly pro-
posed [15]–[18].

A common problem of the diagonal algorithm and the
perfect maps algorithm is that there is a fixed relation between
the size of the given sub-window m × n and the size of the
generated array u × v, and the difference between u and v is
significant especially when constructing large size m-array.
The problem with the piece-growing algorithm is that due

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58467

https://orcid.org/0000-0002-3591-0982
https://orcid.org/0000-0001-9472-4971
https://orcid.org/0000-0002-1265-8112
https://orcid.org/0000-0002-2517-2867

X. Zhou et al.: M-Array Based on Non-Zero Maps

to the high computational complexity, the execution time of
the piece-growing algorithm increases and the success rate
decreases dramatically with the increase of the array size.
To solve these problems, a method based on non-zero maps
theory is proposed in this paper. By dividing and splicing
m-sequence according to specific rules, m-array with large
array size and close number of rows and columns can be
constructed in a short time.

In section II, the proposed non-zeromaps theory is deduced
and demonstrated. In section III, m-array based on non-zero
maps theory is constructed. In section IV, the experimental
results are displayed and the window property of m-array is
verified. In section V, the method is compared with other
m-array construction methods. Section VI summarizes the
methods of this paper.

II. NON-ZERO MAPS THEORY
M-sequence is a typical pseudo-random sequence generated
by linear feedback shift register (LFSR). It is also called
the maximal-length shift-register sequence. A set of p-ary
w-order linear feedback shift registers includes w boxes, each
box has p symbols. The registers sequentially output back-
ward to construct a cyclic sequence with period T = pw − 1,
that is, m-sequence [1]. The construction process is shown
in Figure 1. The linear feedback shift register (LFSR) follows
the fixed primitive polynomial in Galois field GF(pw):

h(x) = xw + kw−1xw−1 + · · · + k1x1 + k0 (1)

where 0 ≤ ki < p, ki = 0, 1, 2, . . . and k0 6= 0.

FIGURE 1. Linear feedback shift register, which sequentially outputs
backward to construct M-sequence.

The feedback recursive equation describes the output
sequence:

ai+w = −kw−1ai+w−1 − · · · − k1a1 − k0 (2)

If the starting state is zero, all the state output by LFSR
would be zero. If not, all the state output by LFSR would not
be zero. Each non-zero state appears only once in a period of
LFSR (suppose the starting state is not zero), pw−1 non-zero
states correspond to pw − 1 non-zero numbers in GF(pw).

A. SHIFT AND SPLICE
In this paper, T is used to express the period of m-sequence,
Ai+k is defined as circularly shifting Ai to the left by k bits:

Ai = a0a1 . . . aT−1

. . .

Ai+k = ak . . . aT−1a0 . . . ak−1 (3)

Taking w = m× n, m-sequence with period T = pmn − 1
is circularly shifted left by k and then spliced down one by
one. Repeat this process until a two-dimensional array with
size m × T is generated, as Bk in (4). Array Bk contains
T = pmn−1 sub-windowswith sub-window sizem×n (Array
Bk is a horizontal circular array).

Bk =

Ai
Ai+k
. . .

Ai+(m−1)k

=

a0a1 ak−1ak aT−1
akak+1 . . . a2k−1a2k . . . aT−1a0 . . . ak−1
. . .

a(m−1)k . . . amk−1amk a(m−1)k−1

 (4)

Definition: The p-ary mn-order m-sequence is shifted and
spliced according to the above process, with k as the shift
number. Then a two-dimension array with size m× (pmn−1)
is constructed which is called the transitional array, withm×n
as the sub-window size. If eachm×n sub-window in the tran-
sition array can uniquely correspond to a mn sub-sequence in
m-sequence, the shift number k is called a positive factor.

When the shift number k is a positive factor, each sub-
window in the transition array uniquely corresponds to a
sub-sequence of the m-sequence, and each sub-sequence rep-
resents a state of LFSR. While LFSR is specified by the
primitive polynomial inGF(pmn), each state expresses a non-
zero number in GF(pmn) (the starting state is not zero). Such
a one-to-one correspondence represents the maps ofGF(pmn)
to the transition array, which is called non-zero maps.

1) TRANSITION ARRAY
By definition, k is an integer. Since the m-sequence is a
periodic sequence, when k ≥ T , k bits shift left is equal to
k − T bits shift left. When k < 0, k bits shift left is equal to
k + T bits shift left. Therefore, the actual value range of k is:

0 ≤ k < T , k = 0, 1, 2, · · ·

In the process of non-zero maps, the shift number k is a
crucial factor.

1) If the shift number k = n, the transition array is
constructed as Bn in (5):

Bn =

Ai
Ai+n
. . .

Ai+(m−1)n

=

a0a1 an−1 aT−1
anan+1 . . . a2n−1 . . . aT−1a0 . . . an−1
. . .

a(m−1)n . . . amn−1 a(m−1)n−1

 (5)

58468 VOLUME 9, 2021

X. Zhou et al.: M-Array Based on Non-Zero Maps

By connecting all rows end to end, each m × n sub-
window of Bn can be unfolded to obtain a mn sub-
sequence of the m-sequence in order. That is, each
sub-window has a one-to-one correspondence with
each sub-sequence in m-sequence. So k = n is a
positive factor.

2) If the shift number 0 ≤ k < n, in each m × n sub-
window, the last n− k elements of each row will be the
same with the first n−k elements of the following row.
For example, one m× n sub-window of Bn in (4) is as
follows:

a0a1 ak−1akak+1 an−1
akak+1 . . . a2k−1a2ka2k+1 . . . a2n−1
. . .

a(m−1)k . . . amk−1 amn−1

The elements in each sub-window are partially
repeated, resulting in the incorrect expression of some
sub-window code-words and duplicate sub-windows
in the transition array (Use a p-ary number defined
by all elements of the sub-window to represent the
sub-window code-word). This means that the process
of non-zero maps of transforming the GF(pmn) to the
transition array fails, and the shift number k is not a
positive factor.

3) If the shift number n < k < T , different values of k
would cause different mapping results.

There is another case that the sub-window code-word being
incorrectly expressed. Take the binary 4-order m-sequence as
an example:
Example 1: Take m = n = 2, a binary 4-order m-sequence

with period T = 2mn − 1 = 15 is generated. When the
shift number k = 3 > n, transition array with size 2 × 15
is constructed as D3 in (6):

Ci = a0a1a2a3 a14
Ci+3 = a3 a14a0a1a2

D3 =

(
Ci
Ci+3

)
=

(
a0a1a2a14
a3a4a5 . . . a14a0a1a2

)
(6)

The primitive polynomial is:

f (x) = x4 + x + 1 (7)

The feedback recursive equation is:

ai+4 = −ai+1 − ai (8)

In (6), the last element of each 2× 2 sub-window in array
D3 is defined by the first two elements. There are only three
valid elements that express the sub-window code-word.
Lemma 1: If the quantity of valid elements expressing the

sub-window code-word in eachm×n sub-window of the tran-
sition array is smaller than mn, non-zero maps failed causing
some of the numbers inGF (pmn) are mapped incorrectly and
others are mapped repeatedly.

Proof: Suppose that the quantity of valid elements in
eachm×n sub-window is a(a ≤ mn), these elements express

TABLE 1. Distribution of sub-windows in transition array.

pa different sub-window code-words. The quantity of invalid
elements in each sub-window is mn− a, which causes pmn−a

numbers in GF (pmn) to be mapped to the same sub-window.
The count of these repeated sub-windows in the transition
array is pmn−a.
For each sub-window of the transition array, there is

m rows, each row is a set of n consecutive elements in
m-sequence, and the interval between adjacent sets is k . The
count of n consecutive 0s set in m-sequence is always one
less than any other (This follows easily from that zero sub-
sequence does not appear in m-sequence). The count of zero
sub-window in transition array is one less than any non-zero
window, is pmn−a − 1. Table 1 shows the distribution of each
sub-window in the transition array, meeting (9).

(pa − 1)pmn−a + pmn−a − 1 = pmn − 1 (9)

Lemma 2: According to the count of zero sub-window in
the transition array, whether the shift number k is a positive
factor and whether the process of non-zero maps is successful
would be clarified.

Proof: If the shift number k is a positive factor, the
quantity of valid elements in each sub-window is a = mn, the
count of zero sub-window is pmn−a − 1 = 0, and the count
of non-zero sub-window is pmn−a = 1. If not, the quantity
of valid elements is a < mn, the count of zero sub-window
is pmn−a − 1 > 0, and the count of non-zero sub-window is
pmn−a > 1.
The count of zero sub-window is 0 and the count of each

non-zero sub-window is 1 in transition array, which is called
the window property.

2) POSITIVE FACTOR
The run: the run is a maximal string of consecutive identical
symbols. In each binary m-sequence, the number of runs of 0
is equal to the number of runs of 1 [1].

Whether the transition array contains zero sub-window
depends on the runs of 0. For each p-ary mn-order
m-sequence, if there are x(x ≥ m) sets of consecutive 0
with length y(y ≥ n) and k bits apart, the transition array
constructed with k would contain zero sub-window, which
means k is not a positive factor.

The properties of the run can be applied to calculate the
positive factor. When a p-ary mn-order m-sequence is con-
structed, the positions of all the 0 runs are maintained, then
all the positive factors can be calculated by traversing all

VOLUME 9, 2021 58469

X. Zhou et al.: M-Array Based on Non-Zero Maps

the 0 runs. In fact, the algorithm can be simplified without
calculating all the positive factors, but only verifying the
expected positive factor q (Use q to represent the expected
positive factor) according to the position of each 0 run. Then,
the best positive factor k close to q would be found in q area
(k may be slightly larger or smaller than q).

B. ARRAY TRANSFORMATION
When the best positive factor k is found, the transition array
is constructed by k with the numbers of rows and columns
differing greatly.

In (10), taking k as the division factor, the transition array
Bk in (4) with size m×T is divided into h = [T/k] segments
s1, s2, s3, . . . , sh, each segment with size m × k partially
overlaps with its neighbors. As T may not be an interal
multiple of k , se represents the rest of the elements, with size
m × (T − hk), where k > T − hk ≥ 0. When the subscript
value is greater than T , take the modulus of T .

Bk = s1 + s2 + s3 + . . .+ sh + se

=

a0a1 ak−1
akak+1 . . . a2k−1
. . .

a(m−1)k . . . amk−1

+

akak+1 . . . a2k−1
a2k a3k−1
. . .

amk . . . a(m+1)k−1

+ . . .

+

a(h−1)k . . . ahk−1
ahk . . . a(h+1)k−1
. . .

a(h+m−2)k . . .

+ se (10)

What can be found is that each two adjacent segments have
the common m− 1 rows, that is, the last m− 1 rows of each
segment are the same as the first m− 1 rows of the following
segment. Transition array can be transformed into a quasi
m-array by splicing these h segments one by one vertically
according to the overlap elements.

As shown in Figure 2, the transition array is divided into h
segments s1, s2, s3, . . . , sh, and a quasi m-array Mquasi with
size (h+m−1)×k is constructed by splicing these segments
one by one vertically (only the last segment is kept intact):

Mquasi =

a0 a1 . . . ak−1
ak ak+1 . . . a2k−1
a2k a2k+1 . . . a3k−1
.

a(h−1)k a(h−1)k+1 . . . ahk−1
ahk ahk+1 . . . a(h+1)k−1
.

a(h+m−2)k a(h+m−2)k+1 . . . a(h+m−1)k−1

(11)

In (11), when the subscript value is greater than T , take the
modulus of T . Mquasi retains the window property since all
sub-windows originate from the transition array.

III. M-ARRAY BASED ON NON-ZERO MAPS THORY
As proposed in section II, with given symbols p and sub-
window size m × n, m-sequence is generated first and the

FIGURE 2. Construction of quasi m-array Mquasi. Taking the positive
factor k as the division factor, transition array is divided and spliced to
obtain quasi m-array Mquasi. Mquasi with size (h + m − 1) × k is
described as (11).

positive factor k is calculated next. Then a quasi m-array
would be constructed by constructing and transforming the
transition array.

A. BASE ARRAY CONSTRUCTION
What can be found is that the process can be simplified with-
out explicitly constructing and transforming the transition
array but dividing and splicing m-sequence directly, as shown
in Figure 3. This follows easily from that before and after
replacement, almost the same quasi m-array is obtained.

In (12), taking the positive factor k as a division factor,
m-sequence Ai in (3) is divided into h = [T/k] segments
t1, t2, t, . . . , th. As the period of m-sequence T may not be
an interal multiple of k , te represents the rest of the elements,
with length T − hk , where k > T − hk ≥ 0.

Ai = t1 + t2 + t3 + . . .+ th + te
= (a0a1 . . . ak−1)+ (akak+1 . . . a2k−1)+ . . .

+
(
a(h−1)k . . . ahk−1

)
+ te (12)

58470 VOLUME 9, 2021

X. Zhou et al.: M-Array Based on Non-Zero Maps

FIGURE 3. Quasi m-array construction. (a) Construction method of quasi
m-array introduced in section II. (b) The process of constructing and
transforming transition array is replaced by dividing and splicing
m-sequence directly.

As shown in Figure 4, another quasi m-array Mbase with
size h × k is constructed by splicing these segments one by
one vertically, as (14). Mbase is named because m-array is
constructed based onMbase.

Mbase =

a0 a1 . . . ak−1
ak ak+1 . . . a2k−1
a2k a2k+1 . . . a3k−1
.

a(h−1)k a(h−1)k+1 . . . ahk−1

 (13)

There are minor differences between quasi array Mquasi in
(11) and Mbase in (13) (Mquasi contains more m − 1 rows).
Treating Mbase as a base array, m-array with larger size can
be constructed by adding sub-windows horizontally and ver-
tically toMbase.

B. BASE ARRAY EXPANSION
The transition array is a collection of m × n sub-windows,
including all non-zero sub-windows, and each of them
appears once (The transition array is a circular array). Mbase
in Figure 4 contains most of the sub-windows, but not all.

Without explicitly constructing transition array, but divid-
ing and splicing m-sequence directly, sub-windows in the
last segment of transition array are abandoned. As shown
in Figure 2 and Figure 4,Mquasi in (11) contains more m− 1
rows than Mbase in (13). In Figure 5 À, the extra m − 1
rows with the same form are found and added following the
original h rows, with all elements are continuous according to
m-sequence (m-sequence is a circular sequence). The number
of rows reaches h+ m− 1, as Figure 5(c)Mvert .
The process of array transformation results in the aban-

donment of the sub-windows connecting two adjacent seg-
ments. As shown in (10), (11) and (13), quasi m-arrayMquasi
and Mbase does not contain the sub-windows connecting two
adjacent segments. In Figure 5 Á, the length of each row is
extended to k+n−1 by appending extra n−1 elements along
m-sequence, as Figure 5(d)Mhori.

FIGURE 4. Construction of quasi m-array Mbase. m-sequence is divided
and spliced one by one to obtain Mbase.

FIGURE 5. Expansion method. À Append vertically. Á Append
horizontally. When the subscript value is greater than T , take the modulus
of T.

The final m-arrayMres as Figure 5(a) is described as:

Mres =

(
Mbase
Mvert

Mhori

)
(14)

VOLUME 9, 2021 58471

X. Zhou et al.: M-Array Based on Non-Zero Maps

As shown in Figure 5, m-array is expanded vertically and
horizontally to contain as many sub-windows as possible,
with size (h + m − 1) × (k + n − 1). That is, for m-array
Mres(u, v;m, n; p), u = (h+ m− 1) , v = (k + n− 1).

C. CONSTRUCTION PROCESS
Non-zero maps theory constructs m-array U (u, v;m, n; p)
with inputting symbols p, sub-windows size m × n and
expected ratio of columns and rows.

The complete construction process of m-array is shown
in Figure 6.
Step 1:According to given symbols p and sub-window size

m× n, m-sequence with period T = pmn − 1 is generated.
Step 2: Take q as the expected positive factor. According

to the property of the run, the best division factor k would be
found in q area (k may be slightly larger or smaller than q).
Step 3: Base array is constructed by dividing and splicing

m-sequence, the details are shown in Figure 4.
Step 4: Complete m-array is constructed by base array

expansion.
The expected positive factor q depends on the expected

ratio of columns and rows. For example: When the expected
ratio entered as 1:1, then q = [

√
T], k is found in q area, and

h = [T/k] is also close to
√
T , an m-array close to a square

is constructed by the process above; When the expected ratio
entered as 16:9, then q can be taken as [34

√
T], k in q area

and h = [T/k]. Since k is close to 3
4

√
T , h is close to 4

3

√
T ,

an m-array with the ratio of rows and columns close to 16 : 9
would be constructed.

IV. WINDOW PROPERTY VERIFICATION
In this section, an experiment is performed to verify the
window property of the m-array constructed by the proposed
method.

FIGURE 6. The complete construction process of m-array.

A. EXPERIMENTAL RESULTS
Some m-arrays constructed by non-zero maps theory under
different conditions are shown as Figure 7 (Take m-array
close to a square as a typical case).

FIGURE 7. M-array under different conditions. (a) 4× 6 m-array with
sub-window size 2× 2. (b) 25× 24 m-array with sub-window size 3× 3.
(c) 260× 258 m-array with sub-window size 4× 4. (d) 11× 9 m-array with
sub-window size 2× 2. (e) 140× 144 m-array with sub-window size
3× 3. (f) 27× 25 m-array with sub-window size 2× 2.

Take symbols p = 2, using awhite grid to represent symbol
1, and a black grid to represent symbol 0. In Figure 7(a), given
sub-window size m × n = 2 × 2, the period of m-sequence
T = 2mn − 1 = 15, division factor k = 5, and the number
of segments h = 3, m-array with size 4 × 6 is constructed.
In Figure 7(b), given sub-window size m × n = 3 × 3,
T = 511, k = 22, h = 23, m-array size is 25 × 24.
In Figure 7(c), given sub-window size m × n = 4 × 4,
T = 65535, k = 255, h = 257, m-array size is 260× 258.
Take symbols p = 3, using red, green and blue grids to

represent symbol 2, 1 and 0. In Figure 7(d), given sub-window
size m × n = 2 × 2, T = 3mn − 1 = 80, k = 8, h = 10,
m-array size is 11× 9. In Figure 7(e), given sub-window size
m × n = 3 × 3, T = 3mn − 1 = 19682, k = 142, h = 138,
m-array size is 140× 144.

Take symbols p = 5, in Figure 7(f), sub-window size
m × n = 2 × 2, T = 5mn − 1 = 624, k = 24, h = 26,
m-array size is 27× 25.

B. WINDOW PROPERTY VERIFICATION
The window property of m-array proven in section II is
described as eachm×n sub-window appears once in an u×v
m-array U (u, v;m, n; p). In fact, each sub-window m′ × n′

with m′ ≥ m and n′ ≥ n is also globally unique in m-arrays.

58472 VOLUME 9, 2021

X. Zhou et al.: M-Array Based on Non-Zero Maps

So, the window property can be verified by checking whether
each m× n sub-window is globally unique.

To verify the window property of m-array constructed
by non-zero maps theory, the count of each sub-window in
m-array is counted and displayedwith a histogram.Whenever
any sub-window appears more than once, the m-array is
considered not meeting window property.

A decimal number is used to represent the code-word of

each sub-window, for example, sub-window
(
0 1
1 1

)
(sym-

bols p = 2) is decoded as 0111 in binary and 7 in decimal;

sub-window
(
0 1
0 0

)
(symbols p = 3) is decoded as 9 in

decimal. By scanning the m-array and recording the count of
each sub-window, the pseudo-code for verifying the window
property of m-array is as follows.

Algorithm 1 Verify the Window Property of a m-Array
Input: mArray: m-array; m: sub-window rows; n: sub-
window columns; p: m-array symbols.
Output: true or false
1: function windowPropertyVerify (mArray, m, n, p)
2: create array histogram[pmn]← 0
3: for each sub-window in mArray
4: do compute codeword
5: histogram [codeword]← histogram

[codeword] + 1
6: for each codeword in histogram
7: do if histogram [codeword] > 1
8: then return false
9: return true

The window property of m-arrays in Figure 7 are all ver-
ified by the algorithm in the pseudo-code above. For easy
display, take the two smaller m-arrays Figure 7(a), (d) as
an example, Figure 8(a), (b) shows the decoding array, and
Figure 8(c), (d) shows the histogram.

In Figure 8(a), (b), sub-window code-word is decoded and
displayed in the center of each 2× 2 sub-window, the decod-
ing array shows that each sub-window is globally unique and
seems to be random. In Figure 8(c), (d), each non-zero sub-
window code-word is decoded to appear once inm-array, with
zero sub-window do not appear, which verifies the conclusion
drawn in section II.

V. COMPARED WITH OTHER ALGORITHMS
In this section, the method in this paper is mainly com-
pared with three existing algorithms. Formula-Method-Based
encoding algorithms include the diagonal algorithm [1]
and perfect maps algorithm [4]. Enumeration-Method-Based
Encoding Algorithm refers to the piece-growing algo-
rithm [11]. These three classic algorithms are the most repre-
sentative method of its types, are widely cited and referenced.
Other related methods are mostly based on these methods
with minor changes to adapt to specific applications, refer to
[2], [3], [12]–[14] et al.

FIGURE 8. Window property verification. (a) sub-window size 2× 2,
symbols p = 2, m-array decoding. (b) sub-window size 2× 2,
symbols p = 3, m-array decoding. (c) histogram of (a). (d) histogram of (b).

A. BALANCED NUMBER OF ROWS AND COLUMNS
The diagonal algorithm [1] constructs m-array by folding an
m-sequence. For an m-sequence with period T = pmn − 1,
the size of m-array u× v are u = pm− 1 and v = T/u, where
u and v are relatively prime. For example,

for p = 2,m = 2, n = 2,T = 15, then u = 3, v = 5 ;
for p = 2,m = 3, n = 3,T = 511, then u = 7, v = 73.
M-array is obtained by writing the m-sequence down the

main diagonal line of an u × v array and continuing from
the opposite side whenever an edge is reached. The diagonal
algorithm is restricted because the m-array size depends on
the prime factor decomposition of the period of the corre-
sponding m-sequences [15].

Let R1 be the ratio of columns and rows,

R1 =
v
u
=

pmn − 1
(pm − 1)2

>
pmn − 1
p2m

= pm(n−2) −
1
p2m
≈ pm(n−2) (15)

Perfect maps algorithm [4] constructed m-array by shifting
De Bruijn sequence. The first column of the m-array is a
De Bruijn sequence with length u = pm, and other columns
consist of cyclic shift of that sequence. Another De Bruijn
sequence with size v = un−1 is obtained to difine the number
of bits shifted of each column. For example,

for p = 2,m = 2, n = 2, then u = 4, v = 4 ;
for p = 2,m = 3, n = 3, then u = 8, v = 64.

VOLUME 9, 2021 58473

X. Zhou et al.: M-Array Based on Non-Zero Maps

TABLE 2. Compared with formula-method-based encoding algorithm.

Let R2 be the ratio of columns and rows,

R2 =
v
u
=
u(n−1)

u
= u(n−2) = pm(n−2) (16)

Non-zero maps theory constructs m-array U (u, v;m, n; p)
with u = (h+ m− 1) , v = (k+n−1), when inputting sym-
bols p, sub-window size m× n and expected ratio, as shown
in Figure 6. Let Ri be the ratio of columns and rows,

Ri =
v
u
=

k + n− 1
h+ m− 1

(17)

When the expected ratio entered as 1:1, k and h = [T/k] are
close to

√
T . With the increasing of m, n or p, the influence

of m, n on Ri decreasing, so Ri→ 1.
As R1 and R2 are power functions about p, exponen-

tial functions about m, n, the ratio of columns and rows of
m-array constructed by the diagonal algorithm or perfect
maps algorithm increase exponentially with the increase of
symbols p and sub-window size m, n. Piece-growing algo-
rithm constructs m-array with inputting u × v, so it is not
compared about the ratio of columns and rows.

A CR-ratio is calculated to show the differences on the
ratio of columns and rows of m-array, detailed comparison
data is shown in Table 2 (The method in this paper takes
the construction of m-array close to a square as a typical
case). The diagonal algorithm is restricted because m-array
size depends on the prime factor decomposition of the period
of the corresponding m-sequences [15], so it is not applicable
to some inputs. Within the limits of the diagonal algorithm,
different algorithms are compared through experiments when
inputting different symbols p and sub-window sizem×n. The
data is shown in Table 2.

According to the data in Table 2, the comparison of these
three methods regarding CR-ratio is shown in Figure 9.

In Figure 9(a), the CR-ratio of the m-array constructed
by the diagonal algorithm or the perfect maps algorithm
increases exponentially, while the method in this paper
always maintains around 0, and the larger sub-window size,
the more stable the CR-ratio is. In Figure 9(b), the CR-ratio
of the m-array constructed by the diagonal algorithm or the
perfect maps algorithm increases significantly as the symbols
increase, and is much higher than the method in this paper.

58474 VOLUME 9, 2021

X. Zhou et al.: M-Array Based on Non-Zero Maps

FIGURE 9. Comparison of CR-ratio. (a) Symbols p = 2 is fixed,
the abscissa indicates different sub-window sizes. (b) Sub-window size
m × n = 3× 3 is fixed, the abscissa indicates different symbols.

It can be seen that an evident advantage of the method in
this paper is that the ratio of columns and rows of the m-array
is much more balanced than the other two methods.

B. FLEXIBLE RATIO OF ROWS AND COLUMNS
According to formula (15) and (16), R1 and R2 are fixed with
given p,m, and n. So, when the symbol p and sub-window
size m× n are given, the size of the m-arrays constructed by
the diagonal algorithm or perfect maps algorithm are always
fixed, and the shape are always strip-shaped. Figure 10 shows
the differences on the ratio of columns and rows between
these three algorithms. The diagonal algorithm and perfect
maps algorithm construct m-array with fixed formula and
predictable ratio of columns and rows. The method in this
paper constructs m-arrays of different sizes, the selection of
m-array size ui × vi depends on input expected ratio.
In fact, when constructing m-array, the method in this

paper first calculates the positive factor k according to input
expected ratio, and then the array size ui × vi is determined.
For instance, take symbols p = 2, sub-window size m× n =
3×3, m-array constructed by the diagonal algorithm is shown
as Figure 11(a), with size 7× 73. M-array constructed by
perfect maps algorithm is shown as Figure 11(b), with size
8× 64.

Three examples of m-array constructed by the method in
this paper is shown as Figure 11(c), (d), (e). m-sequence with
period T = pmn − 1 = 23×3 − 1 = 511 is constructed first.

FIGURE 10. Comparison of construction formulas. (a) The diagonal
algorithm. (b) Perfect maps algorithm. (c) The method in this paper.

FIGURE 11. M-array by different methods when symbols p = 2 and
sub-windows size 3× 3. (a) 7× 73 m-array constructed by the diagonal
algorithm. (b) 8× 64 m-array constructed by perfect maps algorithm.
(c) 25× 24 m-array constructed by the method in this paper.
(d) 32× 19 m-array constructed by the method in this paper.
(e) 21× 28 m-array constructed by the method in this paper.

In Figure 11(c), inputting expected ratio as 1 : 1, then q =[√
T
]
= 22, the division factor k is calculated to be 23, h =

[T/k] = 22, then m-array with size 25× 24 is obtained as
u = h+ m− 1 and v = k + n− 1.
In Figure 11(d), inputting expected ratio as 16 : 9, then

q =
[
3
4

√
T
]
= 16, the division factor k is calculated to be 17,

h = [T/k] = 30, then m-array with size 32× 19 is obtained.
In Figure 11(e), inputting expected ratio as 3 : 4, then q =[
2
√
3

√
T
]
= 26, the division factor k is calculated to be 26,

h = [T/k] = 19, then m-array with size 21× 28 is obtained.

VOLUME 9, 2021 58475

X. Zhou et al.: M-Array Based on Non-Zero Maps

The method in this paper is flexible enough that the size of
m-array can be adjusted. M-array with specific expected ratio
of rows and columns can be constructed by selecting the most
suitable positive factor.

C. LARGER M-ARRAY SIZE
A size-ratio is calculated to compare the m-array size, which
is defined as the ratio of sub-windows in m-array and the
total number of sub-windows. Higher size-ratio means more
sub-windows are contained in m-array, representing larger
m-array size. According to the data in Table 2, the compar-
ison of these three methods regarding size-ratio is shown in
Figure 12.

FIGURE 12. Comparison of size-ratio. (a) Symbols p = 2 is fixed,
the abscissa indicates different sub-window sizes. (b) Sub-window
size m × n = 3× 3 is fixed, the abscissa indicates different symbols.

In Figure 12(a), size-ratio of these three methods gradually
increases with sub-window size, the method in this paper is
always close to 1 and gradually stabilizes, and the method
in this paper shows the highest size-ratio. In Figure 12(b),
size-ratio of these three methods increases with symbols, the
method in this paper shows the highest size-ratio.

With higher size-ratio, more sub-windows are contained,
the method in this paper constructs m-array with larger size
than the diagonal algorithm and perfect maps algorithm.

Piece-growing algorithm is a flexible method that m-array
size u × v is predetermined as input. Based on piece match-
ing, piece-growing algorithm constructs m-array with high
computational complexity. M-array is formed by splicing
independent pieces together, and each sub-window inm-array

TABLE 3. Compared with enumeration-method-based encoding
algorithm.

is obtained by matching independent pieces until the window
properties are followed. Once any one of the sub-windows
cannot be spliced, the algorithm would backtrack. According
to the method in this paper, m-sequence is generated first and
the positive factor k is calculated next, then m-array would be
generated at one time. So, the method in this paper has lower
computational complexity.

Due to high computational complexity and random fac-
tors when matching independent pieces, the piece-growing
algorithm always fails to construct large-size m-array. Take
symbols p = 3, Morano [11] showed that to construct an
m-array with size 45 × 45, the sub-window size needs to
be at least 4 × 4. When the sub-window size is fixed with
3× 3, Albitar [17] constructed a 27× 29 m-array, Liang [14]
constructed a 42× 42 m-array. Lu [2] combined the diagonal
algorithm with the piece-growing algorithm to construct a
48× 52 m-array.
As shown in Table 3, take symbols p = 3, the method in

this paper constructs 6565× 6563m-arraywhen sub-window
size is 4×4, 140×144m-arraywhen sub-window size is 3×3.
The method in this paper constructs m-array much larger than
piece-growing algorithm.

VI. CONCLUSION
Compared with the diagonal algorithm and perfect maps
algorithm, the method in this paper construct m-array with
smaller CR-ratio and larger size-ratio. Smaller CR-ratio
means closer rows and columns, larger size-ratio represents
larger array size, more sub-windows are included in m-array.
More importantly, the method in this paper is flexible enough
that the rows and columns of m-array can be adjusted within
a certain range. M-array with specific aspect ratio can be
constructed by selecting the most suitable division factor.

The method in this paper has lower computational com-
plexity and can construct m-array much larger than piece-
growing algorithm. When the sub-window size is fixed,
the method in this paper constructs m-array with larger array
size. When constructing m-array of the same size, the method
in this paper requires fewer symbols or smaller sub-window
size.

M-array is widely used in three-dimensional reconstruc-
tion, two-dimensional measurement, and many other fields.
M-array with large array size and close number of rows
and columns can be constructed in a short time, the method
proposed in this paper has practical value.

58476 VOLUME 9, 2021

X. Zhou et al.: M-Array Based on Non-Zero Maps

REFERENCES
[1] F. J. MacWilliams and N. J. A. Sloane, ‘‘Pseudo-random sequences and

arrays,’’ Proc. IEEE, vol. 64, no. 12, pp. 1715–1729, Dec. 1976, doi:
10.1109/PROC.1976.10411.

[2] J. Lu, J. Han, E. Ahsan, G. Xia, and Q. Xu, ‘‘A structured light vision
measurement with large size M-array for dynamic scenes,’’ in Proc. 35th
Chin. Control Conf. (CCC), Chengdu, China, 2016, pp. 3834–3839, doi:
10.1109/ChiCC.2016.7553951.

[3] Y.Miao, Y. Zhao, H. Ma, M. Jiang, J. Lin, and P. Jin, ‘‘Design of diffractive
optical element projector for a pseudorandom dot array by an improved
encoding method,’’ Appl. Opt., vol. 58, no. 34, pp. G169–G176, Dec. 2019.

[4] T. Etzion, ‘‘Constructions for perfect maps and pseudorandom arrays,’’
IEEE Trans. Inf. Theory, vol. IT-34, no. 5, pp. 1308–1316, Sep. 1988, doi:
10.1109/18.21260.

[5] K. G. Paterson, ‘‘Perfect maps,’’ in Proc. IEEE Int. Symp. Inf. Theory,
San Antonio, TX,USA, Jan. 1993, p. 408, doi: 10.1109/ISIT.1993.748724.

[6] C. J. Mitchell and K. G. Paterson, ‘‘Decoding perfect maps,’’ Des., Codes
Cryptogr., vol. 4, pp. 11–30, Jan. 1994.

[7] C. J. Mitchell, ‘‘Aperiodic and semi-periodic perfect maps,’’ IEEE Trans.
Inf. Theory, vol. 41, no. 1, pp. 88–95, Jan. 1995, doi: 10.1109/18.370116.

[8] C. Ozturk, J. Nissanov, and S. Dubin, ‘‘Generation of perfect map codes
for an active stereo imaging system,’’ in Proc. IEEE 22nd Annu. Northeast
Bioeng. Conf., New Brunswick, NJ, USA, Mar. 1996, pp. 76–77, doi:
10.1109/NEBC.1996.503225.

[9] T. Etzion, ‘‘Sequence folding, lattice tiling, and multidimensional coding,’’
IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4383–4400, Jul. 2011, doi:
10.1109/TIT.2011.2146010.

[10] J. Cui, J. Pei, and P. Yang, ‘‘Existence of a folding in multidi-
mensional coding,’’ Discrete Math., vol. 326, pp. 4–8, Jul. 2014, doi:
10.1016/j.disc.2014.02.019.

[11] R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissano,
‘‘Structured light using pseudorandom codes,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 20, no. 3, pp. 322–327, Mar. 1998, doi:
10.1109/34.667888.

[12] K. Claes, ‘‘Structured light adapted to control a robot arm,’’ Ph.D. disser-
tation, KU Leuven, Leuven, Belgium, 2008.

[13] X. Maurice, P. Graebling, and C. Doignon, ‘‘A pattern framework driven
by the Hamming distance for structured light-based reconstruction with
a single image,’’ in Proc. CVPR, Providence, RI, USA, Jun. 2011,
pp. 2497–2504, doi: 10.1109/CVPR.2011.5995490.

[14] Z. Liang, Y. Yu, and H. Xue, ‘‘A structured light encoding method for M-
array technique,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO),
Dali, China, Dec. 2019, pp. 415–421, doi: 10.1109/ROBIO49542.
2019.8961565.

[15] C. J. Kuo and H. B. Rigas, ‘‘2-D quasi m-arrays and gold code arrays,’’
IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 385–388, Mar. 1991, doi:
10.1109/18.75260.

[16] A. M. Bruckstein, T. Etzion, R. Giryes, N. Gordon, R. J. Holt, and
D. Shuldiner, ‘‘Simple and robust binary self-location patterns,’’ IEEE
Trans. Inf. Theory, vol. 58, no. 7, pp. 4884–4889, Jul. 2012, doi:
10.1109/TIT.2012.2191699.

[17] C. Albitar, P. Graebling, and C. Doignon, ‘‘Design of a monochromatic
pattern for a robust structured light coding,’’ inProc. IEEE Int. Conf. Image
Process., San Antonio, TX, USA, Sep./Oct. 2007, pp. VI-529-VI-532, doi:
10.1109/ICIP.2007.4379638.

[18] A. Elahi, J. Lu, Q.-D. Zhu, and L. Yong, ‘‘A single-shot, pixel encoded
3D measurement technique for structure light,’’ IEEE Access, vol. 8,
pp. 127254–127271, 2020, doi: 10.1109/ACCESS.2020.3009025.

XIAO ZHOU received the Ph.D. degree in pattern
recognition and intelligent system from Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2009. From 2010 to 2011, he did
his postdoctoral training with the School of Com-
puter Science and Technology, HUST. In 2017, he
was a Visiting Scholar with PATH, University of
California at Berkeley, where he was a Visiting
Associate Research Engineer, in 2018. He is cur-
rently an Associate Professor with the School of

Mechanical and Electrical Engineering, Wuhan University of Technology,
Wuhan. His teaching and research interests include machine vision and
intelligent systems.

YU KANG received the B.S. degree from the
Wuhan University of Technology, Wuhan, Hubei,
China, in 2018, where he is currently pursuing
the master’s degree. His research interests include
image processing and machine vision.

TINGTING ZHANG received the B.S. degree
from Sun Yat-sen University, Guangdong, China,
in 2009. She worked as a Researcher for compa-
nies, such as General Motors, China. From 2017 to
2020, she worked as an Associate Specialist with
PATH, University of California at Berkeley, USA.

XINGANG MOU received the B.S. degree in
communication engineering and the Ph.D. degree
in control science and engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2001 and 2010, respectively.
He is an Associate Professor with the School of
Mechanical and Electrical Engineering, Wuhan
University of Technology. His research interests
include image processing and parallel computing.

VOLUME 9, 2021 58477

http://dx.doi.org/10.1109/PROC.1976.10411
http://dx.doi.org/10.1109/ChiCC.2016.7553951
http://dx.doi.org/10.1109/18.21260
http://dx.doi.org/10.1109/ISIT.1993.748724
http://dx.doi.org/10.1109/18.370116
http://dx.doi.org/10.1109/NEBC.1996.503225
http://dx.doi.org/10.1109/TIT.2011.2146010
http://dx.doi.org/10.1016/j.disc.2014.02.019
http://dx.doi.org/10.1109/34.667888
http://dx.doi.org/10.1109/CVPR.2011.5995490
http://dx.doi.org/10.1109/ROBIO49542.2019.8961565
http://dx.doi.org/10.1109/ROBIO49542.2019.8961565
http://dx.doi.org/10.1109/18.75260
http://dx.doi.org/10.1109/TIT.2012.2191699
http://dx.doi.org/10.1109/ICIP.2007.4379638
http://dx.doi.org/10.1109/ACCESS.2020.3009025

