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ABSTRACT Effective intelligent fault diagnosis of rotating machinery using its vibrational signals has a
considerable influence on certain analysis factors such as the reliability, performance, and productivity of a
variety of modern manufacturing machines. Traditional intelligent approaches lack generalization schemes
and add the burden of extracting features from data-driven cases. On the other hand, the Deep Learning (DL)
studies have reported capabilities higher than the expectations of the researchers’ objectives. In this context,
this paper proposes a new deep architecture based on Stacked Variant Autoencoders for multi-fault machinery
identification with imbalanced samples. The proposed model starts with a Variational Autoencoder (VAE)
for facilitating data augmentation of small and imbalanced data samples using Gaussian distribution. After
the preparation of suitable samples based on quality and size, the preprocessed vibration signals obtained
are injected into the deep framework. The proposed deep architecture contains two subsequent unsupervised
Sparse Autoencoders (SAE) with a penalty term that helps in acquiring more abstract and essential features
as well as avoiding redundancy. The output of the second SAE is integrated on a supervised Logistic
Regression (LR) with 10 classes. This is utilized for the proposed classifier training to achieve accurate fault
identification. Experimental results show the efficiency of the proposed model which achieved an accuracy
of 93.2%. In addition, for extensive comparative analysis issue, the Generative Adversarial Network (GAN)
and triNetwork Generative Adversarial Network (tnGAN) were both implemented on the vibrational signal
data, where the proposed method reported better results in terms of training and testing time and overall
accuracy.

INDEX TERMS Fault diagnosis, imbalanced samples, logistic regression, rotating machinery, sparse

autoencoders, variational autoencoder, vibrational signals.

I. INTRODUCTION

Defects in rotating machinery are considered a core chal-
lenge during the analysis of causes of low productivity for
certain systems and applications. Generally, faulty gears lead
to irregular performance of the machine, where different
types of fault appear with different frequencies [1], [2]. The
literature has shown that tackling such problems successfully
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requires two major phases: feature extraction of the produced
signals and an intelligent classifier for the final diagnos-
tic mission [3]-[6]. Existing research on diagnosing faults
in rotating machinery can be divided into studies focusing
on traditional artificial intelligence techniques that include
fuzzy logic [7], [8], genetic algorithms [9], support vector
machines [10] and neural networks [11] or more recently,
deep learning artificial intelligence techniques [12], [13].
Researchers used traditional techniques for mainly small
samples of available data and minimized time complexity;
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however, they struggled with low efficiency and poor gener-
alization characteristics. In such techniques, feature extrac-
tion is a necessary phase that consumes effort and time,
with the possibility of not reaching optimality and affecting
overall performance. Therefore, it is essential to apply (1) a
reasonable data preprocessing method, (2) a suitable tradi-
tional algorithm, and (3) a heuristic algorithm for optimiza-
tion. To solve this problem, Zair et al. [8] used the fuzzy
entropy of empirical mode decomposition, Principal Com-
ponent Analysis (PCA), and a self-organizing map type of
neural network to diagnose rolling bearing faults. They first
decomposed the vibration signals into a series of intrinsic
mode functions to obtain the features. They then optimized
the features with fuzzy entropy, reduced their dimensionality
with PCA, and classified them with a self-organizing map
neural network. Ramos et al. [7] designed a new data-driven
based fault diagnosis system based on fuzzy clustering
techniques. The authors preprocessed the data for feature
extraction then used the Kernel Fuzzy C-means algorithm
to differentiate classes of faults. Their model was validated
on benchmark data sets and indicated the feasibility of this
approach. Cerrada et al. [9] built a multi-stage feature selec-
tion approach for vibration signals for fault diagnosis in
gearboxes. They used genetic algorithms, for optimization in
multiple stages, combined with a neural network for classifi-
cation. They reported levels of high accuracy in different run-
ning conditions of data parameters. Pan et al. [10] combined
the wavelet-packet approach with PCA to accurately extract
the important features. They then used the multiple kernel
function with a fusion method in a support vector machine to
classify the gear faults and reported high diagnostic accuracy.
MekKki et al. [11] used an artificial neural network to estimate
the output and detect faults of a photovoltaic module under
certain conditions. They then compared the estimated results
versus the ones measured. The authors showed the effective-
ness of the proposed method, using several shading patterns
and accurately detected module faults.

As an alternative to the traditional methods, deep learn-
ing techniques (DAs) [14]-[18] are recommended for more
efficient and accurate results. However, large data samples
are needed to avoid over-fitting, or flexible augmentation
is needed to increase the number of samples for train-
ing deep frameworks, if possible. Zhu et al. [12] proposed
a deep learning model based on a convolutional neural
network (CNN) that can efficiently and accurately recog-
nize vibration faults by automatically extracting rotor vibra-
tion features. They then diagnosed the faults and reported
enhanced results compared to traditional methods. To diag-
nose rotating machinery faults. Guan ef al. [13] devised a
novel combination of empirical mode decomposition (EMD),
sample entropy, and a deep belief network (DBN). This
approach was validated on fault signals and their comparative
experiments ydemonstrated superior performance using this
method.

Using deep learning techniques reduces the burden of
feature extraction, as it is achieved automatically and more
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efficiently. The researchers in this study were inspired to
attempt the advantages of a deep learning approach to solve
the challenge of accurate fault diagnosis for rotating machines
using vibration signals. Although a variety of modules have
been proposed in the literature, most require certain con-
straints on preparing the signal input and the problem still
highlights the need for a new framework that better fits
the defined problem and needs fewer complex parameter
adjustmentsy.

This paper proposes a novel deep learning architecture for
diagnosing rotating system faults using vibration signals. The
proposed architecture is composed of a Variational Autoen-
coder (VAE), followed by two spare autoencoders for fea-
ture extraction and elimination of unnecessary information,
followed by a fully connected layer that corresponds to a
Logistic Regression for fault classification.

The innovated contribution of this paper is proposing a
new Deep Predictive Model architecture based on two types
of autoencoders for signal diagnosing of multi-faults. The
first Variational autoencoder was used for accomplishing the
augmentation challenge and suitably enriching and preparing
data for the deep model. The Spare autoencoder was used
to control the abstraction of the signals valuable features to
reach an optimal performance. Another main contribution
of this paper is the supporting that could be provided for
several industries by using the proposed aided diagnostic
system for easily identifying the machine faults, even if they
do not have a great knowledge about machine utilization.
In addition, we presented a comparative analysis for different
classifiers motivated by solving identical issues. In addition,
we conducted various experiments, as shown in this paper,
to validate the proposed model.

The paper is organized as follows: Section II presents
some recent related work. Section III provides a detailed
understanding of the type of rotating machine included in this
study and its main nomenclatures and possible types of faults,
depicted in figures. The basic concepts and development sta-
tus of the proposed methodology with a hierarchical structure
for the deep framework are presented in Section I'V. The com-
putational tests, analysis, and discussion are accompanied by
the required preprocessing information on the dataset used
in Section V. The conclusion in Section VI summarizes the
research and its contribution.

Il. RELATED WORK

A variety of deep learning diagnostic models for rotating
machines has been proposed in the literature. These models
can be classified according to the type of neural architecture
used in their building. Most traditional usage of neural net-
works is built based on PCA. Howeyver, it is known that PCA
uses only forward learning and thus fails to solve nonlinear
problems. Hence, the use of back-propagation increases the
capability of neural network learning and generates different
models. In addition, the number of hidden layers in the archi-
tecture represents a key difference between the existing mod-
els and consequently affects performance. Deep Learning
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(DL) facilitates the automatic conversion of simple features
into a complex and abstract version.

A fault diagnosis approach based on a wavelet transform
scalogram and a Pythagorean spatial pyramid pooling CNN
was proposed by Guo et al. [19]. The vibration signals are
decomposed according to the spinning speed using the con-
tinuous wavelet transform. After that, the CNN receives the
various signal sizes. To compare the findings, they used
a spatial pyramid-pooling layer in the CNN. Accordingly,
adding the spatial pyramid-pooling layer in the CNN reached
a higher diagnostic accuracy. Hasan and Kim [20] converted
features of the vibration signal in the form of images, then
used conventional methods to classify the faults of bear-
ings. The effectiveness of their approach was verified by
the experimental data obtained. Huang et al. [21] designed a
deep decoupling convolutional neural network for discrim-
inative feature extraction from raw vibration signals. The
authors then combined this design with multi-stack capsules
as a classifier to accurately identify the faults. Finally, they
used the routing-by-agreement algorithm for optimization.
They validated their system by using gearbox fault tests and
reported promising results from the designed model.

Zhang et al. [22] proposed a fault diagnosis model using
raw sensor data and Deep Neural Networks (DNN) without
feature selection or signal processing. They measured the
classification accuracy after training their model until the
cost feature was reduced. The proposed model had the great-
est accuracy in distinguishing the various types of bearing
faults. Yang er al. [23] suggested a deep learning model for
clustering bearing signals automatically. First, they extracted
the signals’ frequency domain, then used the DNN to clas-
sify the signals. They showed that their model accurately
achieved automatic clustering for the vibration of faulty sig-
nals. He et al. [24] developed a deep belief network (DBN) for
unsupervised gear vibration fault diagnosis. They then used
a genetic algorithm for optimization of the network parame-
ters. The authors then compared their system with traditional
artificial intelligence methods (back-propagation neural net-
work and support vector machine) on the same dataset and
demonstrated promising results for the deep learning model.

Jiang et al. [25] developed a stacked denoising autoen-
coder based on a multivariate data-driven fault detection
framework. They also introduced a multilevel noising method
to enrich the generalization of their model. They eval-
uated their proposed framework on both simulated data
and real data and showed competitive levels of accuracy.
Liu et al. [26] built a stacked autoencoder based on a deep
learning model for solving early detection of gearbox faults
from data-driven analysis. Their model directly extracts
salient features from frequency-domain signals, which saves
the effort of handcrafting features. They confirmed signifi-
cant improvement using this method.

Generally, some neural network models, such as CNN,
require converting the raw signals into image data, whatever
the approach used (e.g., wavelets transform, acceleration-
time series, etc.). Some other models, such as deep belief
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networks, require a longer time for training, more complex
treatment for the input, and require a high probability to
fall into local optima. However, the autoencoder can handle
raw data more simply and precisely. Accordingly, based on
the results reported in the previous research, the autoen-
coders, with their variety of functions, recorded the highest
classification accuracy compared to Artificial Neural Net-
work (ANN), CNN, and other deep learning models. Hence,
the autoencoders advocated to use a different combination of
architectures and nominated to participate in the deep learn-
ing frameworks intended for diagnosing faults of machinery
infrastructures. The authors of this study were motivated by
the information concluded from related work and propose an
autoencoder-based framework to investigate the performance
in case of imbalanced small samples of data from the rotating
machine which that is described in the next section in this
paper. The methodology section then details the contents of
the proposed model.

In terms of not accurate data detection, the existing sam-
ples could not be considered as enough effective to train
the model. To address this problem, generative models are
proposed like the Generative Adversarial Networks (GANs)
and the Variational Autoencoders (VAEs). For ensuring
data reliability, Zhang et al. [27] proposed the mixedGANs
model (mixed generative adversarial networks) to generate
additional data by creating multitype generative networks
including heterogeneous parameters. This solution provides
several solutions and prevents the unexpected risks of unsta-
ble training.

Hu et al. [28] used the generative adversarial network
applied on triNetworks (tnGan) to resolve the leak detection
issues with incompletion sensor data. The proposed tnGAN
is employed to recuperate incomplete data by fully exploit-
ing similar features on the same level. The input data were
extracted from similar sensors, that were obtained from the
pipeline network. Then, in order to facilitate the integra-
tion of inherent information, they integrated it into their
model a multiview awareness strategy and in order to detect
pipeline status, they proposed dual-discriminative network
architecture.

Shao et al. [29], implemented a modified stacked auto-
encoder based on wavelet to diagnose different faults of
rotating machinery. Firstly, they accomplished a nonlinear
mapping between the raw vibration data and different fault
states. Secondly, they enhanced the cost function towards
enhancing the sparsity and the reconstruction results. In addi-
tion, an optimization was proposed for adjusting the param-
eters and enhancing the performance. The proposed method
was validated on two types of mechanical units (sun gear and
a roller bearing unit).

Hea et al. [30], targeted the treatment of few samples prob-
lem by proposing a deep transfer multi-wavelet auto-encoder.
Firstly, they designed a new deep multi-wavelet auto-encoder
for obtaining the most discriminative features from vibration
signals of gearbox. Secondly, they selected the samples that
were more similar to original samples for training. Finally,
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the knowledge from training was transferred to target model
using reduced set of samples. They proved reliability even
with significant changes.

Ill. DESCRIPTION OF ROTATING MACHINE DEFECTS

To perform an intended operation, a mechanical machine
employs power to apply forces and manipulate move-
ment [31]. Additionally, any rotating machine device that
rotates, is either a driving or driven system. Driving systems,
such as electric motors, combustion engines, and generators
convert rotational motion into translational motion and match
between speed and torque, as achieved through a pulley,
gearbox, and chain. As shown in Fig. 1, a complete rotating
machine contains a motor (driver), coupling and gearbox
(transmission speed device between driver and driven), and
pump (the driven part in the machine) [32].

Adapter Gear Box
Drive Motor

Flexible
Drive Shaft

Coupling
Structure

Base of Pump

FIGURE 1. Complete rotating machine [32].

The most common defects in rotating machines can be
summarized in ten types: motor defects, misalignment, gear
defects, unbalance, resonance, mechanical looseness, struc-
tural looseness, soft foot defects, oil whirl, and bearing
defects.

A. MOTOR DEFECTS

The spinning machine’s driver, the electric motor, transforms
electrical energy into mechanical energy, as shown in Fig. 2.
(a, b). It generates a linear or rotary force (torque) that is
intended for continuous rotation or linear movement over a
large distance relative to its size. The main defects that can
appear in electrical motor are a broken tooth on the sprocket
and a broken rotor coil, as shown in Fig. 2 (c, d) [33], [34].

B. MISALIGNMENT

The machine coupling is the device used to connect two
shafts of rotating machines together at their ends to transmit
power, as shown in Fig. 3 (a and b). Misalignment in machine
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coupling means eccentricity, where the axes or centerlines
of two coupled shafts do not coincide with each other [35].
Parallel, angular, and combined misalignments are shown
in Fig. 3 (c and d).

C. GEAR DEFECTS

Any rotating machine’s gear system is primarily dependent
on the gear. As shown in Fig. 4 (a and b) [36], the gear is
a part with cut teeth, each of which meshes with another
toothed part to transmit torque to adjust the speed, torque,
and direction of a power source. The Most gear faults occur
in the tooth surface, such as a pitted tooth, or in the breakage
of the gear tooth such as a cracked, chipped, or missing tooth,
as shown in Fig. 4 (¢).

D. MACHINE UNBALANCE

A rotating machine is unbalanced (or out of balance) where
there is an unequal distribution of mass, for example where
the center of mass (inertial axis) is out of alignment with the
center of rotation (geometric axis), which creates a centrifu-
gal force, as shown in Fig. 5 (a and b) [37].

E. RESONANCE

Resonance occurs when the natural frequency of the machine
is at or close to a forcing frequency coming from outside the
machine. Resonance defects produce vibration that has a bad
effect on the machine and on the whole structure [38].

F. MECHANICAL LOOSENESS

This fault appears when there is insufficient tighten-
ing between different mechanical elements. Loosening of
machine bolts or fracturing of fixations are examples of this
form of defect, which can lead to an increase in tolerances
caused by wear and tear, as well as excessive gaps in rolling
element bearings, sleeve bearings, and gears [39].

G. STRUCTURAL LOOSENESS

This fault refers to looseness in the machine’s mechanical
non-rotating parts, such as bench fixings, pipe joints, bearing
casings, and so on. It usually manifests itself more clearly in
the radial measurement directions than in the axial ones, with
the frequency spectrum containing several harmonics of the
shaft’s rotating speed. When the amplitude of the 2x and 3 x
harmonics is compared to the frequency at 1x, the severity
of looseness can be determined: If the amplitude of these
harmonics reaches 50% of the amplitude of the peak at 1x,
this happens. The explanation why this kind of looseness
manifests in frequency spectra with many harmonics of the
rotating frequency is shown in Fig. 6 [40] (1 x, 2%, 3%, 4X,
etc.). Due to loosening of the fixings between the bearing
supports and the seat, the motor poses a slight unbalance as
the driving force of the looseness. As the unbalanced heavy
spot rotates to complete a full revolution, we can see that
there are four forces or impulses, two of which are due to
the unbalance and the other two due to the return of each of
the sides of the support to the bench, as seen in the four stages
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Drive End

. Non-Drive End

(c) tooth on sprocket

(d) Broken rotor coil

FIGURE 2. Electrical motor [33], [34].
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A
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Paralle Misalignment - Augular Misalignment Combined Misalignment
() (d)
FIGURE 3. Coupling misalignment [35].

of Fig. 6. In the vibration spectrum, this can result in several
harmonics of the spinning frequency.

H. SOFT FOOT DEFECT

The effects of soft foot on machinery alignment are even more
harmful because it distorts and strains the machine’s frame.
As shown in Fig. 7 [41], the shafts’ rotational centerlines will
not be consistent, causing problems with coupling wear, rotor
air gap, bearing/seal fit, and clearance issues. Lasers have
made measuring misalignment simpler and easier since their
launch.
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FIGURE 4. Gear system [36].

I. BEARING DEFECTS

Fig. 8 (a) explains the purpose of the bearing system of any
rotating machine, as it is used for supporting the shafts of that
machine. The main components of the bearing are the inner
race, outer race, balls, and cage, as shown in Fig. 8 (b). Bear-
ing defects can be seen in these parts, as shown in Fig. 8. (¢).
Bearing failures result in a variety of issues, including
improper rotating machinery operation [42].

J. OIL WHIRL

This fault defines a form of subsynchronous vibration that
travels at about half-speed until the speed reaches two
times the first critical speed. The subsynchronous vibration
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TABLE 1. Machine defects samples.

Rotating Machines Defects

Motor Misalignment Gear Unbalance
defect defect defect
M2DEAV PMAV PMHV GB2HV GBAV BVBA
M2DEHV  PMISAV  PMISHV GB3AV  GBDEAV BVBV
M2DEVV  PMISVV PMVV GB3VV  GBDEHV
MDEAV P2MAV P2MHV  GB4HV  GBDEVV
MDEHV P2MVV P3MAV  GB5AV GBHA
MDEVV P3MHV P3MVV  GB2VV GBHV
GB4AV GB3HV  GB4VV GBVD
GBSHV GB5VV GBVV

Resonance

OWHV

Sl Sl sotioor e on
defect defect defect defect defect whirl
MechLVV PLAV SFFVV BGBAVDE 1(3)}\;]\1
SRHV PLHA SFFVV2 BGBHVDE
PLHV SFFVV3 BGBVVDE
SFFVV4

__Unbalance
S -

External mass

- l Balancing

Motor

weight

i Balancing

S :
‘Weights

(b)

FIGURE 5. Machine with unbalance [37].

Radial

Amplitude

[

Frequency

FIGURE 6. Structural looseness [40].

will remain near the first critical speed as the speed
increases [43].

IV. DIAGNOSTIC METHODOLOGY

This section describes the proposed intelligent fault diagnosis
model. First, the signals are extracted and preprocessed to
extract the features. Since the collected data is inadequate
for training, an augmentation phase is needed to produce
additional signals from the original data. The variational
autoencoder is used for this purpose. Following that, we sug-
gest using two unsupervised sparse autoencoders to train the
model with an emphasis on feature extraction, followed by a
supervised LR to locate the fault. Finally, the proposed model
is put to the test to see how effective it is. Fig. 9 represents the
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FIGURE 7. Soft foot defect [41].

Anged s

proposed model and the flowchart presented in Fig. 10 details
the steps taken to construct our system.

A. DATA COLLECTION

The data used in this research paper is real data obtained
from a company that provides monitoring and mainte-
nance services to factories and various industrial companies.
Table 1 shows the different types of defects in machines that
were discovered by using measuring devices that measure the
mechanical vibrations generated by the machines during their
operation and analyze them to determine the type of defects
in the machines for treatment and repair later.

Researchers have used a variety of criteria to identify flaws.
We gathered ten types of faults related to the machine type
mentioned in section three, as stated in Table 1, for this
analysis.

B. SIGNAL PREPROCESSING AND NORMALIZATION
Signal filtration, normalization, noise removal, and feature
extraction are some of the preprocessing steps that are for
data consistency and to minimize undesired time waste
while training the model. These crucial measures lighten the
autoencoder’s load and improve its efficiency in obtaining
the most useful features. The data is sampled at 64 kSa/s for
4 seconds, while the shaft is rotated at 1200 or 900 rpm, which
corresponds to 30 and 20 Hz, respectively.

The data used is insufficient to train the target model
because it has a long time and a high frequency. To increase
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FIGURE 8. Bearing system [42].

Data Acquisition

Fault Dataset

Normalization and
Feature Extraction

Deep Learning

Pretreatment

Variational autoencoder

(VAE)

Training and Classification

Unsupervised Stack
Spares Autoencoder

(SAEs)

Supervised Logistic
Regression (LR)

Fault Diagnosis Result

L],

Fault Name

{1 T T N Y T Y

Accuracy(100%)
3
e e o e e

FIGURE 9. Architecture of the proposed model.

the number of extracted features, we need a method to
improve the quality of the extracted signals by splitting them
into several segments. Due to the variety of faults and the
inadequacy of samples for each fault, the signals must be
segmented and supplemented in order to extract as many
features as possible in this work.

C. DATA AUGMENTATION USING VARIATIONAL
AUTOENCODER

Once the features are extracted, we apply the Variational
Autoencoder to generate and select more features by a
forwarding selection process (making combinations from
different features to obtain the best performance). In fact,
during training the of the VAE, if two features are considered
individually as input and the result is poor performance, then
combining these two features together will lead to better
results. This is referred as data augmentation.
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The quality and quantity of training samples influence
the efficiency of a deep learning model. Simulating data for
vibrational signals using traditional methods usually requires
effort and extra time, in the case of an unbalanced dataset or
limited availability of fault samples or even both situations
and could lead to complexity. However, when considering
deep learning as a solution, the variational autoencoder can be
used to accomplish data augmentation. Precisely, the decoder
part, with its ability to recover the original data, can be used
to generate pseudo-samples for the training and act as a good
initialization for other deep learning models. Fig. 11 repre-
sents a sample for different data augmentation techniques.

The variational autoencoder (VAE) is a type of autoencoder
that transforms input into latent variables and generates sam-
ples using a Gaussian distribution [44]. Fig. 12 depicts the
architecture of the VAE. It assumes that a sample, A, must be
produced from an input sample, B, using the distribution p(B)
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FIGURE 11. The data augmentation process of a two-dimensional feature map of a vibration signal.

(basically a Gaussian distribution N (0, I) as

a starting point.

A is then obtained using the conditional distribution p6(A|B),
where 6 represents the decoder parameters. In contrast to
standard autoencoders, Kingma et al. [14] proposed approx-
imating the true posterior p6 (B|A) by using the encoder
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to parameterize the mean p and the standard deviation, o,
of a diagonal Gaussian matrix qg(B|A) (where ¢ denotes the
parameters of the encoder).

In this way, samples can be generated by decoding the
sampling points in the Gaussian latent space N (u, diag(o 2)).
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FIGURE 12. VAE architecture.

Usually, the lower the difference is between g¢(B|A) and
pO(B|A) (KL), the better the approximation of the sam-
ples. In fact, pf(B|A) is unknown; hence, it cannot be
approximated directly, but indirectly by the evidence lower
bound (ELBO) function:

ELBO = logpt (A) — KL (99 (B|A) | [p6(B| A)) (D)

where log pf(A) is the log-likelihood on B. Since the first
term is a constant, the second term is supposed to be reduced
by maximizing ELBO. The acronym ELBO can also be
written as:

ELBO = Eqy (B|A) [logpt) (A|B)] — KL (q¢ (B|A) ||p (B))
@

where Eqe(B|A)[log pf (A|B)] is the expectation of the
conditional log likelihood of B, and — KL(qe(B|A)||p(B))
is the Kullback-Leibler divergence between qe(B|A) and
p(B), which indicates that VAE assumes consistency between
the learnable posterior and the prior p(B). However, sam-
pling from N(u,diag(o2)), produced difficulty in end-to-end
training. Fortunately, in literature [45] it was replaced by
uw+NQO,I)xo.

D. MODEL CONSTRUCTION FOR FAULT IDENTIFICATION
The basic autoencoder [18], [26] is a symmetric architecture
with at least three layers (input layer, hidden layer, and output
layer), where the model is converted to a deep characteristic
by adding more hidden layers. A simple explanation of its
behavior is that the input layer encodes what it receives to a
hidden representation and this is decoded again at the output
layer to generate the input information. If this architecture is
implemented successfully, then the optimal input features are
obtained in the form of hidden weights with a minimum error.
A variety of architectures and error minimization schemes
have proposed different names and categories of autoencoder,
as well as specifying their different functions. Fig. 13 details
graphically the proposed architecture that contains two unsu-
pervised SAEs, followed by a LR layer for classification.
The spare autoencoder (SAE) [46] is a category of AE
that limits the expression of hidden layer data with certain
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FIGURE 13. SAEs architecture.

constraints, to force the network to generate the output using
a low dimensional expression while keeping the most dis-
criminative features. Additionally, SAE adds a sparse penalty
term to the objective function of the hidden layer during a
concise expression generation. Accordingly, when a specific
node value is close to /, it is in an active state; otherwise, it is
in an inactive state. In fact, the SAE requires inactive hidden
nodes more than active ones. This is in turn forces fewer
nodes to provide the output and requires a greater number
of nodes in the hidden layer than in the input layer. Assume
that the input data vector Ao and size is Z; then the average
output value A\oj of the hidden layer node (j) is as follows:

soifRe) o

where a%hj)(xi) is the active unit corresponding to hy - a =
fa (WX +b), W is the weight matrix, f, is the activation
function and b is the vector offset. KL represents the sparse
penalty that consists of two Bernoulli distributions.

1—Ao

n n
— Ao
ZKL (Ao. Aoj) = ZAO logATOj + (1 —Ao) log1 — ZZJ-

j=1 J=1
“4)

If ZBj is very close to Ao, KL is almost equal to zero and the
average value of the hidden layer is zero as well; otherwise,
KL increases rapidly. The square value and mean value of
errors for the full samples are presented in equation 5. The
mean value is used to limit the weight towards reduction in
values (minimization). In addition, the objective functions
add a sparse penalty term, as in equation 6. ¢ is the weight
decay parameter, nk is the layer number of the network, sk
denotes the nuron number in layer k, and Wji is the connecting
weight between neuron & in layer k£ + 1

1 2
hw,b = 5 HAOI —AO,’ ‘

1
I:Z ZZZ=1 (hw,h)i|

0 nk—1 sk sk+1 2
50, Lo, () ©
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S2
Joparse(w, b) = J(w,b) + 8 Z KL (Ao — Ao) @)
j=1

where § is a sparse penalty term weight. Optimization of the
minimum value of the objective function is reached using the
back propagation algorithm and the gradient descent during
training, and the final weights are then updated. The sparse
penalty term is dependent on multiple factors. Using SAE
for dimension reduction and reaching the most important
features, a lower sparsity value is preferred.

The stacked sparse autoencoder (SSAE) [14] benefits from
multiple hidden layers to extract features, layer by layer,
where each hidden layer extracts features from a different
perspective and dimensions. This qualifies the model for
more generalization and enhances its capabilities.

The output features (that were learned using only unla-
beled data) of the highest layer are investigated through
the classification process by augmenting a Logistic Regres-
sion classifier after the high-level feature representations
of input data are extracted through the first SAE (such as
the Softmax regression classifier, as shown in equation 7)
above the stacked sparse autoencoder’s last hidden layer to
fine-tune the deep learning architecture and boost learned
features (using labeled data) in a supervised manner. To min-
imize the training error on the labeled training samples,
the fine-tuning enforces gradient descent from the current
setting of the parameters (i.e., labeled data may be used
to change the weights, allowing changes to the features
extracted by the layer of hidden units). Softmax regression,
in this sense, is an extended form of LR that can be used
for multiclass classification; it confirms that the activation
of each output unit amounts to one, and the output can be
thought of as a collection of conditional probabilities.

WiR+Db;

P(Y—i|R,W,b)—s(WR+b)—W

®)
where R is the performance of the stacked sparse autoen-
coder’s last hidden layer, and W and b are the LR layer’s
weights and biases. The deep learning system is also fine-
tuned [47] by taking into account very low learning rates on
the preceding autoencoder layers.

E. MODEL EVALUATION

To evaluate the performance of the constructed model,
we used different measures:

.. TP
Precision = —— O]
TP + FP
Sensitivi TP (10)
ensitivity = ————
4 TP + FN
Specifici ™ arn
ecificity = ——
Peciclly = Tp T FN
Precision x Sensitivity
F1 — score = — — (12)
Precision + Sensitivity
TN 4 TP
Accuracy = (13)

TP+ FP+TN + FN
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where TP (True Positive) denotes the number of positive sam-
ples correctly predicted as positive, and FP (False Positive)
denotes the number of negative samples incorrectly predicted
as positive; TN (True Negatives) and FN (False Negatives)
denote the negative type, respectively. In this case, sensitivity
refers to how well the model detects events in the positive
class, while specificity refers to how accurate the positive
class assignment is. Finally, the harmonic mean of sensitivity
and precision is the F-measure. After data augmentation,
Table 2 summarizes the number of samples for each fault
class.

TABLE 2. Number of training and testing samples.

Number of Number of Total
No.  Class Name samples for  samples number
Training for Testing of samples
1 Bearing 117 50 167
2 Misalignment 175 75 250
3 Gear 161 69 230
Assessment
4 Balancing 132 56 188
s Mech 114 48 162
Looseness
Motor
6 Monitoring 142 60 202
7 Oil Whirl 112 48 160
8 Resonance 126 54 180
9 Soft Foot 137 58 195
o Struct 168 72 240
Looseness
Total 1384 590 1974

V. COMPUTATIONAL EXPERIMENTS AND DISCUSSION
The effects of VAE and SAE parameters are discussed in
this section, followed by the results of the proposed classifier
models. In order to verify the proposed method’s detection
efficiency, the experiments are divided into two sections:
(1) checking the proposed method’s parameters, and (2) com-
paring it to three standard learning methods (LR, RF, and
NN), as well as three deep learning methods (autoencoder,
CNN and DNN).

o Logistic Regression (LR): this is used as a neural net-
work without a hidden layer and includes only two layers
(input and output).

« Random Forest (RF): this is a multiple classifications
method for dividing the dataset into several overlapping
subsets. RF is produced by training various Decision
Trees [44] with overlapping subsets of the initial set.
During the testing stage, using all the trained trees,
the input test sample is classified, and the final output
is created based on the voting of the output from all the
trees.

o Neuron Network (NN): this contains three layers (1 hid-
den layer, 1 input and 1 output).

« Basic Autoencoder

o« CNN: stands for convolutional neural network, and it
is a type of neural network used in computer vision.
Convolutional layers completely linked layers, pooling
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layers, and normalization layers are among the hidden
layers. As aresult, pooling and convolution functions are
used activation functions rather than using the normal
activation functions [19].

o DNN: this is a neural network with several layers
between the input layers and output layers. It maps
input to output by finding the correct mathematical
manipulation [22].

A. VAE EVALUATION

To evaluate the impact of data augmentation on the proposed
system, we trained the proposed model using the original data
in addition to the augmented data, separately.

TABLE 3. Comparison of the proposed system with and without data
augmentation samples.

Compared

without VAE With VAE
measurements

LR RF NN LR RF NN
Precision 0.64 0.6 0.61 0.85 0.79 0.8
Accuracy 0.64 0.6 0.61 0.85 0.79 0.8
Fl-Score 0.64 0.6 0.61 0.85 0.79 0.8
Sensitivity 0.644 0.603 0.62 0.856 0.794 0.801
Specificity 0.648 0.606 0.6 0.86 0.797 0.806

Table 3 summarizes the comparison of the proposed model
with and without VAE, using three traditional techniques for
classification. Without VAE, we noticed that the LR gave the
best results comparing to RF and NN.

When we used the VAE, the LR showed higher results
compared to the other methods for each case with or without
the use of VAE.

Additionally, for more validation of the efficiency of the
VAE in data augmentation, we compared it with five different
methods used in the literature for data augmentation. These
are briefly described below:

o Re-Sampling [48]: this is the straightforward technique
to solve the class skew problem in tabular data. Here,
we either under-sample or over-sample the available
data to meet the requirement of equal class distribution.

o Noise addition [49]: this is a fundamental tool for data
augmentation. Its main idea is based on adding different
noises to data and hence generating more samples from
the original sample.

o Sliding Window [50]: this model is mainly based on
sliding a window of a specified size over the sample and
applying some modification while sliding to produce
different samples.

« Fourier transformation [51]: this is a popular method for
augmenting signals. It is focused on imbalanced datasets
in transitional sleep stages.

o GAN [52]: Data from a source domain is generalized
to generate other within-class data objects using Gen-
erative Adversarial Networks. This generative process
can be extended to novel, previously unknown classes
of data since it is not based on the classes themselves.
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A comparison of the results of these methods can be found
in Fig. 14. We conclude that the highest accuracy can be
achieved by using the deep learning methods GAN (0.82) and
VAE (0.86). This result provides the effect of deep learning
on the data augmentation process, which helps in reducing
overfitting. Other methods also achieved a significant level
of accuracy, including Noise Addition (0.79) and Sliding
Window (0.78).

Accurray
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FIGURE 14. Accuracy of different data augmentation methods.

VAE and GAN are very similar techniques because they are
two generative models. We applied those techniques using the
proposed dataset to compare them and check their complexity
and accuracy as well. Table 7 summaries the obtained results,
where the training time represents the run time obtained for
each iteration in the training process, and testing time refers
to the data time during the test of one sample.

As shown in Table 7, VAE is faster to run and test than the
other techniques. GAN and tnGAN are expensive, since they
need a long time for training. Regarding testing time, values
are in the same range (0.09 to 0.12). Therefore, the testing
cost is the same for all the generative models. Regarding the
accuracy, although all the techniques produced very close
results, the VAE achieved the best result (0.86) comparing
to the other techniques (GAN and tnGAN).

B. SAE EVALUATION

In this section, we first developed one SAE for feature extrac-
tion and then we investigated if adding one more SAE will
enhance performance and then we added a third SAE. Table 4
presents the results obtained for each SAE. In fact, when
we used only one SAE, the precision, accuracy and F1-score
showed identical values of 0.87. When we added a second
SAE, the values of these measures were enhanced to 0.93, but
when we added the third SAE, the performance of the model
was disrupted and decreased to 0.9. Therefore, the proposed
architecture in Fig. 10 is proposed for obtaining better optimal
results. Adding a third SAE also enhances the results, but
with a tiny change that is inappropriate to training time and
complexity as shown in Table 4.
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TABLE 4. SAE evaluation.

Compared Stack SAE
measurements
1 SAE 2 SAEs 3 SAEs

Precision 0.87 0.93 0.932
Accuracy 0.87 0.93 0.933
F1-Score 0.87 0.93 0.931
Sensitivity 0.875 0.933 0.902
Specificity 0.88 0.936 0.904

TABLE 5. Evaluation of the classification method.

Compared VAE + Traditional Machine The proposed deep learning
measurements learning architecture (2 SAEs)
LR RF NN LR RF NN
Precision 0.85 0.79 0.8 0.93 0.84 0.87
Accuracy 0.85 0.79 0.8 0.932 0.84 0.87
F1-Score 0.85 0.79 0.8 0.93 0.84 0.87
Sensitivity 0.856 0.794  0.801 0.933 0.841 0.873
Specificity 0.86 0.797  0.806 0.936 0.844 0.877

In the second step, we evaluated the proposed frame-
work by integrating three methods for classification. Here,
we proposed two sets of experiences, as shown in Table 5;
the first set was to classify the samples directly after data
augmentation without using the stacked SAE and the sec-
ond set was conducted to establish the importance of using
SAE before classification to enhance the classification per-
formance. When classification was applied without using
a stacked SAE, by applying one of the three traditional
methods (LR, RF and NN) defined previously in section
five, we noticed that LR gave better results than the other
techniques. Therefore, a simple neural network without any
hidden layer is enough to obtain good results. The accuracy
of the neural network with one hidden layer (NN) was very
similar to that of the LR (accuracy = 0.8 for NN, 0.85 for LR);
thus, one hidden layer is insufficient to obtain the best per-
formance. In other words, an overly large number of neurons
in the hidden layers can increase the time required to train
the network to the point that adequate training is impossible.
Deep learning can help to improve the situation and improve
classification efficiency.

As shown in the second part of Table 5, using SAE showed
an excellent result when it was added to one of the three
classifiers, such as LR, where the accuracy, precision, and F1-
score achieved were 0.932, 0.93 and 0.93, respectively.

C. CROSS VALIDATION WITH DIFFERENT DEEP LEARNING
APPROACHES

In this stage, we compared the proposed framework with
other deep learning techniques (Basic autoencoder, CNN
and DNN). Table 6 shows the comparison between these
techniques and the proposed framework, which combines
two types of autoencoders (VAE and stacked SAE with RL)
using the same dataset. The classification time is just the time
between the fully connected layer and the output layer and
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TABLE 6. Cross validation of the proposed architecture versus
state-of-the-art deep learning approaches.

Compared Our Basic

P proposed CNN  DNN
measurements autoencoder

framework

Classification ) s 0.04 007 007
time(s)
Correct classes 10 8 9 10
Incorrect classes 0 1 1 0
Error rate 0.01 0.2 0.1 0.06
Accuracy 0.932 0.83 0.88 0.9

TABLE 7. The obtained results after applying VAE and GAN techniques
using the proposed dataset.

Methods Accuracy ;l;:;ei:n(i;g ;rifrf:r(ls%
VAE 0.86 1.01 0.09
GAN [52] 0.82 12 0.1
tnGAN [28] 0.84 1.8 0.12

does not include the training time. With the basic autoen-
coder, the classification is very fast, but the error rate is higher
compared to the other methods, since it achieved a smaller
number of correct classes compared to the other methods.
Regarding the accuracy, the basic autoencoder achieved the
lowest value (0.83). Both CNN and DNN had the same classi-
fication time (0.07) but different error rates (0.1 for CNN and
0.06 for DNN), because DNN achieves better accuracy than
CNN. Regarding the proposed model, it is faster than CNN
and DNN and slower than the basic autoencoder because it
contains more neurons. With our framework, we classified all
the signals with an error rate equals to 0.01 and an accuracy
equal to 0.932. This result is very important, since it supports
the efficiency of the proposed techniques used in constructing
our framework.

VI. CONCLUSION

In this paper, we have presented a new deep architecture
based on stacked variant autoencoders for multi-fault machin-
ery identification with imbalanced samples. The proposed
model begins with the data augmentation process, which was
employed using a Variational Autoencoder for increasing the
initial data samples from an imbalanced dataset with small
size using Gaussian distribution. The obtained preprocessed
vibration signals were then injected into a deep architecture
containing two consequent unsupervised sparse autoencoders
with a penalty term that helps in acquiring more abstract and
essential features as well as avoiding redundancy. The output
of the second SAE was integrated on a supervised Logistic
Regression with 10 classes to help in achieving accurate
fault identification. Several experiments have shown that our
framework can learn high-quality discriminative features and
achieve better performance in signal classification, where the
achieved accuracy of the proposed model is 93.2%.
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