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ABSTRACT Multitype quasi-cyclic (QC) low-density parity-check (LDPC) codes are a class of protograph
LDPC codes lifted cyclically from protographs with multiple edges, represented by two weight and slope
matrices. For a given weight-matrix, an approach is proposed to find the maximum-achievable girth
gmax of the corresponding multitype QC-LDPC codes by some inevitable chains having less complexity
than the existing methods. This advantage leads to some new patterns of the weight matrices such that
the corresponding codes have some improvements in terms of the maximum-achievable girths or the
minimum-distance upper-bounds. In continue, for a given weight-matrix with maximum-achievable girth
gmax, some slope-matrices are constructed by a depth-first search algorithm for which the corresponding
multitype QC-LDPC codes with even girth g, g ≤ gmax, have smaller lengths, higher rates, or larger
minimum-distances than the state-of-the-art achievements. Simulation results show that the constructed
codes have some error-rate advantages than PEG, random-like, CCSDS, and 802.11n/ac IEEE standard
LDPC codes.

INDEX TERMS Circulant permutation matrix, girth, QC-LDPC codes, Tanner graph.

I. INTRODUCTION
Low-density parity-check (LDPC) codes [1], as a main class
of error correcting linear codes, can be specified by their
sparse parity-check matrices (PCM’s) H and their associated
Tanner graphs TG(H ) [2]. Although the minimum-distance
of LDPC codes is less than that of the best known lin-
ear codes, due to their structures, they are suitable [3] for
low-complexity iterative decoding methods, such as Pearl’s
belief propagation (BP) algorithm, adopted in many practical
applications.

The performance of LDPC codes of small length may be
strongly affected by their cycle properties such as girth and
stopping set [4]. In fact, the girth, i.e., the shortest cycles in
the Tanner graph, is one important factor to design LDPC
codes [7]–[12], [18] with good error-correcting properties.
The progressive-edge-growth algorithm (PEG) construction
builds up a Tanner graph, or equivalently a parity-check
matrix, for an LDPC code by maximizing the local girth at
symbol nodes in a greedy algorithm [33]. In PEG construc-
tions, an algorithm is applied to find a PEG LDPC code
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with a given target girth, however the real girth is usually
less than the target. Moreover, it was shown in [13] that
the minimum-distance of an LDPC code can limit the error
performance at a high signal-to-noise ratio (SNR) and is
also important in understanding the likelihood of undetected
errors which are a critical concern in many applications.
Quasi-cyclic (QC) LDPC codes [14], [15] are the most

promising class of structured LDPC codes due to their ease
of hardware implementations using simple shift registers
and excellent performances over noisy channels when they
are decoded by message-passing algorithms. The PCM’s
of QC-LDPC codes are comprised of blocks of circulant
matrices, classified by the researchers as type-w QC-LDPC
codes if each nonzero block is a combination of at-most
w circulant permutation matrices (CPMs). For example, for
1 ≤ w ≤ 4, the readers are suggested to refer [7]–[12],
[14]–[21] for type-I QC-LDPC codes, [22]–[27], [31] for
type-II QC-LDPC codes, [6], [16], [27]–[29] for type-III
QC-LDPC codes, and [28], [29] for type-IV QC-LDPC
codes. In [6], the benefit of perfect difference families (PDF’s)
and quasi-perfect difference families (QPDF’s) is considered
to define a class of combinatoric-based 4-cycle free type-III
and type-IV QC-LDPC codes with shortest possible length.
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Lally presented an explicit construction for type-II
QC-LDPC codes with girth six whose PCMs include
weight-2 circulant entries [23]. Moreover, some combina-
torial methods based on Sidon sequences [24] and perfect
cyclic difference sets [25], [26] are used for the construction
of a class of type-II QC-LDPC codes with girth at least 6.
Some type-II, III QC-LDPC codes with girth at most ten are
presented in [27] based on a search algorithm. Recently, some
type-w QC-LDPC codes, 2 ≤ w ≤ 6, with girths at least 6,
were constructed by some explicit methods in [28].

Type-w, w ≥ 1, QC-LDPC codes are generalized to define
the class of multiple-edge protograph LDPC codes, called
briefly multitype QC-LDPC codes in this paper which can
potentially achieve larger minimum-distances compared to
type-I QC-LDPC codes [16], although, there is a hindrance
to construct multitype QC-LDPC codes with more flexibility
in some parameters, such as the regularity or the girth.

In linear algebra, a circulant matrix is a square matrix in
which each column vector is rotated one position to the down
relative to the preceding column vector. Especially, a circu-
lant permutation matrix (CPM) is a circulant matrix in which
each column contains precisely a single 1. Clearly, each cir-
culant matrix can be described a sum of some CPMs. A mul-
titype QC-LDPC code with CPM-sizem, can be described by
its PCM H = (Hi,j) in which each Hi,j is a circulant matrix
of size m or the m × m zero matrix. Corresponding to PCM
H = (Hi,j) of a multitype QC-LDPC code, a weight-matrix
is associated in which (i, j)th entry indicates the circulant
weight, i.e., the number of 1 in each column of Hi,j.
Alternatively, the PCM H of a multitype QC-LDPC code

can be shown in the polynomial formH (x) whose (i, j)th entry
is the polynomial representation of Hi,j. In [16], the authors
have presented two upper-bounds on the minimum-distance
of multitype QC-LDPC codes based on their weight-matrices
and the polynomial forms of their PCMs. Moreover, they
have shown that against weight matrices with entries 0, 1,
the weight matrices with the elements greater than 1 cor-
respond to some multitype QC-LDPC codes haveing larger
possible minimum-distances. Especially, for L = 4, 5,
some patterns for 3 × L weight matrices achieving
the minimum-distance upper-bounds have been presented
in [16].

For a given weight-matrixW , by the maximum-achievable
girth gmax = gmax(W ), we mean the maximum girth
achieved by the set of multitype QC-LDPC codes which
have the same weight-matrix W . Using the concept of pro-
tograph [30], the authors in [31] have investigated all of the
subgraph patterns (inevitable cycles) of multiple-edge pro-
tographs which prevent protograph QC-LDPC codes to have
girths exceeding than the maximum-achievable girth gmax,
gmax ≤ 20. Then, some constructions of regular multiple-
edge protograph QC-LDPC codes with maximum-achievable
girth 14 were presented in [31].

In this paper, we redefine each multitype QC-LDPC code
by two weight and slope matrices which are useful to pursue
each cycle in the Tanner graph by an admissible chain and

a linear modular equation between the slopes. Based on
the approach in [31], for a given weight-matrix W , finding
the maximum-achievable girth gmax = gmax(W ) needs a
complexity that increases exponentially when the size of the
matrix enlarges linearly, because the patterns corresponding
to the girth g, g < gmax, must be checked for all submatrices
of W . Inspired by the approach used in [10], we propose a
new method to find gmax based on inevitable chains which
are some admissible chains that exist regardless of slope
values and CPM-sizes. This approach is useful to generate
some new weight matrices by a random search in which
the corresponding multitype QC-LDPC codes have larger
maximum-achievable girths or minimum-distance upper-
bounds when they are compared with the weight matrices
in [31].

In [20], some slope values corresponding to type-I
QC-LDPC codes with girth at most 14 have been generated
by a greedy search algorithm being generalized in [31] to
construct some type-II QC-LDPC codes with girth at most 14.
In this paper, we present a depth-first search algorithm
which for a given weight-matrix W and even integer g,
g ≤ gmax(W ), efficiently generates a proper slope-matrix
such that the corresponding multitype QC-LDPC code has
girth gwith the CPM-size as small as possible. As the outputs
of the algorithm, some multitype QC-LDPC codes will be
constructed having some improvements in the parameters,
such as rates, lengths, minimum-distances, and cycle distri-
butions than the codes in [7], [8], [16], [18], [20], [23]–[25],
[29], [31]. Finally, simulation results show better bit-error-
rate performance of the constructed codes than PEG [33],
random-like [3], and codes in [16], [19], [25], [31], [34]–[36].

The outline of the paper is as follows: In Section II,
we discuss the structure of multitype QC-LDPC codes
and two upper-bounds on the minimum-distance are given.
Then the existence of cycles in the Tanner graph of a
QC-LDPC code will be investigated by a necessary and
sufficient condition. In Section III, this condition is used to
define inevitable chains which are useful to find maximum-
achievable-girth of a specific weight-matrix by an effi-
cient algorithm. Then, some weight-matrices with good
upper-bounds on minimum-distance are found for different
rates and girths. In Section IV, we apply a depth-first algo-
rithm to search the slope-vectors corresponding to multitype
QC-LDPC codes with a given weight-matrix and different
girths (not greater than the maximum-achievable girth), such
that the constructed codes have CPM-sizes as small as possi-
ble. In continue, algorithm outputs are given by introducing
some examples and tables. Some error-rate comparisons are
given between the constructed multitype QC-LDPC codes
and some other known constructions in Section V, and finally,
the conclusion is given in Section VI.

II. MULTITYPE QC-LDPC CODE
Let m, s be some positive integers with 0 ≤ s < m. By the
CPM with shift value s, denoted by Ism, or Is when m is
known, we mean the m×m permutation matrix (ai,j)1≤i,j≤m,
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in which ai,j = 1 if and only if i − j = s mod m. Moreover,
we accept this notation that I∞ is the m × m zero matrix.
Now, for positive integers J , L, J < L, let W = (wi,j)
be a J × L matrix of some nonnegative integers. By a
(J ,L) multitype QC-LDPC code with weight-matrix W and
CPM-size m, where m is greater than all elements of W ,
we mean the QC-LDPC code of length mL with PCM H =
(Hi,j)1≤i≤J ,1≤j≤L , in which Hi,j is the m × m zero matrix,
when wi,j = 0, or otherwise the sum of wi,j CPMs of size

m, i.e., Hi,j = Is
(1)
i,j + Is

(2)
i,j + · · · + Is

(wi,j)
i,j , for some shift

values 0 ≤ s(1)i,j < s(2)i,j < · · · < s
(wi,j)
i,j < m. In this case,

if si,j = (s(1)i,j , s
(2)
i,j , . . . , s

(wi,j)
i,j ) is the vector of shift values

appeared inHi,j, then the matrix S = (si,j) is called the slope-
matrix. Clearly, if wi,j = 0, thenHi,j is the zero matrix of size
m and si,j = () is the empty vector.

For each w ≥ 1, type-w QC-LDPC codes are a subclass
of multitype QC-LDPC codes in which each element of the
weight-matrix W = (wi,j) is at most w, i.e., wi,j ≤ w. In the
following, we give an example of a type-IV QC-LDPC code
with girth 6.
Example 2.1: For m = 19, the following matrices W and

S can be considered as the weight and slope matrices of
a girth-6 (2, 3) type-IV QC-LDPC code with PCM H ,
respectively.

W =
(
2 3 1
0 4 2

)
, S =

(
(0, 1) (0, 2, 5) (0)
() (0, 1, 7, 11) (3, 8)

)
,

H =
(
I + I1 I + I2

+ I5 I
0 I + I1

+ I7
+ I11 I3

+ I8

)
.

Hereinafter, to reduce the space limitation, sometimes,
the weight-matrixW = (wi,j) of a (J ,L) multitype QC-LDPC
code is denoted by two designs B = [B1,B2, . . . ,BL] and
W = [W1,W2, . . . ,WL], called block-design and weight-
design, respectively, where Bj = [i : wi,j 6= 0] and
Wj = [wi,j : wi,j 6= 0] are two lists containing of row
indices and values of nonzero elements in jth column of W ,
respectively. For example, in Example 2.1, the weight-matrix
W can be denoted by B = [[1], [1, 2], [1, 2]] and W =

[[2], [3, 4], [1, 2]]. In continue, we discuss some properties
of multitype QC-LDPC codes, such as minimum-distances,
girths, and CPM-sizes.

A. MINIMUM-DISTANCE
In [16], two upper-bounds onminimum-distance of multitype
QC-LDPC codes have been presented which can be used
when there is no way to find the actual minimum-distance
of a QC-LDPC code in a real-time. For multitype QC-LDPC
codes with a given weight-matrix W , the following
upper-bound on minimum-distance is presented based onW .

dmin(C) 6
∗

min
S ⊆ {1, . . . ,L}
|S| = J + 1

∑
i∈S

perm(WS\i), (1)

where operator min∗ gives back the minimum value of all
nonzero entries in a list of values and index S \ i for a

matrix W means the submatrix of W that contains only the
columns whose indices appear in the set S \ i. Moreover,
a permanent of anm×m square matrix B = (bi,j) is defined as
perm(B) =

∑
σ

∏
j∈{1,...,m}

bj,σ (j), where the summation is over

all m! permutations σ on the set {1, . . . ,m}.
Corresponding to the PCM H of a multitype QC-LDPC

code with CPM-size m, weight-matrix W = (wi,j), and
slope-matrix S = (si,j) (si,j = (s(1)i,j , . . . , s

(wi,j)
i,j )), the poly-

nomial form of the PCM, H (x) = (hi,j(x)), is associated,

in which hi,j(x) =
wi,j∑
t=1

xs
(t)
i,j ∈

F2[x]
< xm − 1 >

for wi,j 6= 0 and

hi,j(x) = 0 otherwise. Also the weight of each polynomial
hi,j(x), denoted by wt(hi,j(x)), is defined as the number of
nonzero terms in hi,j(x). Based on the PCM H = H (x),
represented in polynomial form, another upper-bound on
minimum-distance is reported in [16] as follows.

dmin(C) 6
∗

min
S ⊆ {1, . . . ,L}
|S| = J + 1

∑
i∈S

wt(perm(HS\i(x))). (2)

Hereinafter, we denote the upper-bounds on minimum-
distance given by (1) and (2) by the notations Udmin(W ) and
Udmin (H ), respectively. By (1), if the weight-matrix is fully-
one, then the constructed (J ,L) type-I QC-LDPC codes has
a minimum-distance at most (J + 1)!. This can be gen-
eralized easily to a fully-w weight-matrix as presented by
Proposition 2.2 (for w = 2, this is the same with the
bound in [23]). Before, for positive integers J ,L,w, J < L,
byW (J ,L;w) we mean a J ×L matrix that each entry equals
to w.
Proposition 2.2: For type-w QC-LDPC codes with

weight-matrix W = W (J ,L;w), we have Udmin (W ) =
wJ (J+1)!. Moreover, for the following J×L weight-matrices

W (1)
=


1 1 · · · 1
2 2 · · · 2
...
...

. . .
...

J J · · · J

, W (2)
=


1 2 · · · L
1 2 · · · L
...
...

. . .
...

1 2 · · · L

,
we have Udmin(W

(1)) = (J + 1)!J ! and Udmin(W
(2)) =

J !
∑J+1

i=1
(J+1)!

i .
Proof: To view Udmin (W ) = wJ (J + 1)!, the reader can

refer to [23]. For the rest, we note that the permanent of each
submatrixW (1)

S\{i}, S ⊆ {1, 2, . . . ,L}, |S| = J + 1, is the same
as the permanent of J first columns of W (1) which is equal
to (J !)2, because the permanent of the J × J fully-one matrix
is J !. Then,

∑
i∈S

perm(WS\i) = (J + 1)(J !)2 = (J + 1)!J !. For

the weight-matrixW (2), theminimum value of the summation
in (1) is achieved for S = {1, . . . , J + 1}. In this case,W (2)

S\{i},
for each i ∈ S, is the submatrix ofW (2) in which the columns
are fully-j vectors of length J , 1 ≤ j ≤ J+1, j 6= i. Therefore,
perm(W (2)

S\{i}) = J ! (J+1)!i and the proof is completed. �
Propositions 2.2 shows that there are weight matrices,

different from the all-one weight-matrices, such that the
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minimum-distance upper-bounds are larger than (J + 1)!,
in which J is the number of rows. In general, employ-
ing weight matrices with many large entries leads to some
QC-LDPC codes that have potentially large minimum-
distances. On the other hand, from the bound given by (2),
larger minimum-distances within a given J×L weight-matrix
can be achieved by constructing multitype QC-LDPC codes
with appropriate slope-matrices.

B. GIRTH
LetH be the PCM of a (J ,L) multitype QC-LDPC code with
weight-matrix W = (wi,j) and slope-matrix S = (si,j), si,j =
(s(1)i,j , . . . , s

(wi,j)
i,j ). The following proposition gives a necessary

and sufficient condition for the existence of cycles in TG(H ).
Proposition 2.3: [6] Each cycle of length 2l, l > 2,

in TG(H ) corresponds to a chain (i0, j0, t0); (i1, j0, t1);
(i1, j1, t2); (i2, j1, t3); . . .; (il−1, jl−1, t2l−2); (il, jl−1, t2l−1);
(il, jl, t2l) = (i0, j0, t0) in which wik ,jk 6= 0,wik ,jk+1 6= 0,
1 ≤ ik ≤ J , 1 ≤ jk ≤ L, 1 ≤ t2k ≤ wik ,jk , and
1 ≤ t2k+1 ≤ wik+1,jk , for each 0 ≤ k ≤ l − 1, such that
the following conditions are satisfied:

I. If ik = ik+1, then t2k 6= t2k+1 and if jk = jk+1, then
t2k+1 6= t2k+2.

II. If 1k := s(t2k )ik ,jk − s
(t2k+1)
ik+1,jk

, then we have

l−1∑
k=0

1k = 0 (mod m). (3)

Hereinafter, by an admissible chain of length 2l, wemean a
chain (i0, j0, t0); (i1, j0, t1); . . . ; (il, jl−1, t2l−1); (il, jl, t2l) =
(i0, j0, t0) satisfied in Condition I of Proposition 2.3. More-
over, an inevitable chain is an admissible chain for which
Condition II always holds, for all slope-matrices, i.e., the
equality in Eq. 3 is established (instead of a modular relation),
independently from the slope values. For example, corre-

sponding to each weight-matrix having submatrix
(
2 1
0 2

)
,

we have the following inevitable chain of length 12, shown
by Fig. 1.

(2, 2, 2); (1, 2, 1); (1, 1, 1); (1, 1, 2); (1, 2, 1); (2, 2, 2);

(2, 2, 1); (1, 2, 1); (1, 1, 2); (1, 1, 1); (1, 2, 1); (2, 2, 1).

(4)

In fact, corresponding to the inevitable chain in (4), the fol-
lowing relation holds, independently from the slope values.

(s(2)2,2 − s
(1)
1,2)+ (s(1)1,1 − s

(2)
1,1)+ (s(1)1,2 − s

(2)
2,2)+ (s(1)2,2 − s

(1)
1,2)

+ (s(2)1,1 − s
(1)
1,1)+ (s(1)1,2 − s

(1)
2,2) = 0.

In mathematics, a multiset is a modification of the concept
of a set that, unlike a set, allows for multiple instances for
each of its elements. For the admissible chain A satisfied in
Condition I of Proposition 2.3, letM1(A) = {(ik , jk , t2k ) | 0 ≤
k ≤ l − 1} and M2(A) = {(ik+1, jk , t2k+1) | 0 ≤ k ≤
l − 1} be the multisets containing indices listed in the
first and second parts of 1k , respectively. To determine

FIGURE 1. An inevitable cycle corresponding to the inevitable chain in
weight-matrix W1.

whether A is inevitable, it is sufficient to check M1(A) =
M2(A). For example, for the admissible chain A shown by
Eq.4, we have the following multisets:

M1(A)

= {(2, 2, 2), (1, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (1, 2, 1)},

M2(A)

= {(1, 2, 1), (1, 1, 2), (2, 2, 2), (1, 2, 1), (1, 1, 1), (2, 2, 1)}

which are equal to each other. Then, A is an inevitable
chain.

C. CPM-SIZE
In [5], the following lower-bound on the CPM-size of multi-
type QC-LDPC codes with girth 6 is presented.
Lemma 2.4: For J × L weight-matrixW = (wi,j), let

X = max{2
L∑
j=1

(
wi,j
2

)
; i ∈ {1, . . . , J}},

Y = max{2
J∑
i=1

(
wi,j
2

)
; j ∈ {1, . . . ,L}},

Z = max{
L∑
j=1

wi,j × wi′,j; i 6= i′; i, i′ ∈ {1, . . . , J}},

then, the lower-bound on the CPM-size of type-w, w ≥ 1,
QC-LDPC codes with girth 6 is LB = max{X ,Y,Z}.

III. MAXIMUM-ACHIEVABLE GIRTH OF MULTITYPE
QC-LDPC CODES
By Proposition 2.3, a necessary and sufficient condition for
TG(H ) to have girth at least 2(l + 1) is as follows.

p∑
k=0

1k 6= 0 (mod m), (5)

for each 2 < p < l and each admissible chain (i0, j0, t0);
(i1, j0, t1); . . . ; (il, jl−1, t2l−1); (il, jl, t2l) = (i0, j0, t0). Note
that inevitable chains are independent from the slope values,
but they depend on the weight-matrix. Here, we show that the
maximum-achievable girth of a given weight-matrix, can be
derived by the length of the minimum inevitable chain.
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Lemma 3.1: For the weight-matrix W , the maximum-
achievable girth gmax(W ) is equal to the length of the min-
imum inevitable chain.

Proof: Clearly, corresponding to each QC-LDPC code
with girth gmax(W ), there is no inevitable chain of length
2l, l < gmax(W )/2. Then, gmax(W ) is a lower-bound on
the length of minimum inevitable chains. On the other hand,
if Lmin is the length of the minimum inevitable chain, then
each admissible chain of length 2l, 2l < Lmin, is not
inevitable, thus Eq. 3 does not hold, i.e., there are some
slopes s(t2k )ik ,jk and s

(t2k+1)
ik+1,jk

, such that
∑l−1

k=0(s
(t2k )
ik ,jk − s

(t2k+1)
ik+1,jk

) 6= 0.
However, clearly, the system of such nonzero linear equa-
tions has a common solution, for enough large slopes
(the union of hyperplanes can not cover the whole space).
Therefore, the corresponding QC-LDPC code C constructed
from such slope values has no cycle of length 2l, 2l <

Lmin, then gmax(W ) ≥ girth(C) ≥ Lmin. Therefore,
Lmin = gmax(W ). �
In [31], the authors have proposed some matrices P2i,

i ≥ 3 which prevent QC-LDPC codes from having large
girth by inducing inevitable cycles. For example P6 = (3) ,
P8 = (2 2), and

P10 =
(
2 1
1 1

)
,

P12 =
(
2 1
0 2

)
,

(
2 1 1
0 1 1

)
,

(
1 1 1
1 1 1

)
,

P14 =

2 1 0
1 0 1
0 1 1

 ,
1 1 1
1 1 0
1 0 1

 .
For each even g, to have a weight-matrix W with

maximum-achievable girth at least g, we must designW such
that it does not contain submatricesP2i, i < g/2 or their trans-
poses. For example, in [31], the authors have presented the
following patterns of the weight-matrices to avoid inevitable
cycles of length less than 12.

W1 =


2 1 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 2 1 1 1 0 0 0
0 2 0 0 0 1 0 0 0 1 1 1
0 0 2 0 0 0 1 1 0 1 1 0
0 0 0 2 0 0 1 0 1 1 0 1
0 0 0 0 2 0 0 1 1 0 1 1

, (6)

W2 =


2 0 0 0 0 1 1 0
0 2 0 1 0 0 1 0
0 0 2 0 1 0 1 0
1 0 0 2 0 0 0 1
0 1 0 0 2 0 0 1
0 0 1 0 0 2 0 1

.

However, this method has a high complexity, especially
when g increases. Because, on one hand, finding all P2i,
i < g, needs a computer search whereas the numbers enlarge
exponentially by increasing i, on the other hand, all of the row
and column permutations of P2i, i < g, and their transposes
must be checked as the submatrices of the weight-matrix.

Based on Lemma 3.1, we now give an algorithm that
finds the maximum-achievable girth of a weight-matrix by
inevitable chains with minimum lengths.

Algorithm 1 Finding Maximum-Achievable Girth of a
Weight-Matrix
l ← 2.
loop
for each admissible chain A associated to the
weight-matrixW do

ifM1(A) =M2(A) then
return 2l

end if
end for
l ← l + 1.

end loop

In fact, in Algorithm 1, a depth-first search is used to
find all admissible chains satisfied in Condition I of Proposi-
tion 2.3. Then, to determine whether the constructed admissi-
ble chain A is inevitable, it is sufficient to check the equality
between multisets M1(A) and M2(A). Finally, Lemma 3.1
is used to find gmax(W ) by the length of the shortest inevitable
chain.

A. COMPLEXITY OF THE ALGORITHM
For positive integers J ,L, J < L, let W = (wi,j)J×L be the
weight-matrix with w = max{wi,j : 1 ≤ i ≤ J , 1 ≤ j ≤ L}.
Clearly, all admissible chains of length 2l can be generated in
at most J lL lw2l ways. Moreover, for each admissible chain
A of length 2l, the equality of multisetsM1(A) andM1(A)
will be checked in at most o(l log l). Then, the overall com-
plexity is

∑lmax
l=2 J

lL lw2lo(l log l), where lmax is the maximum
number of iterations used to find gmax(W ). Although the
complexity is still high when lmax enlarges, applying software
Maple on a 2.6 GHz CPU and 4 GB RAM, Table 1 shows
a prominent gap between the running-time of Algorithm 1
in terms of seconds, denoted by T1, rather than the method
in [31], denoted by T2. By the outputs of Table 1, it can be
seen that the method in [31] to find the maximum-achievable
girth is still superior for gmax(W ) ≤ 12.
In continue, applying Algorithm 1, we give some examples

of weight matrices whose corresponding QC-LDPC codes
have more flexible column-weights, rates, or minimum-
distance upper-bounds (given by Eq.1) than type-I and type-II
QC-LDPC codes in [31].
Example 3.2: LetW1,W2, andW3 be the following 6× 8,

6× 12, and 9× 12 weight matrices, respectively.

W1 =


0 0 0 1 1 1 1 0
0 1 1 0 0 2 0 1
2 0 0 1 0 1 1 0
1 0 1 0 2 0 0 1
0 2 0 1 1 0 1 0
1 1 1 0 0 0 0 1

 ,
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TABLE 1. A comaprison between the running times of Algorithm 1 and the method in [31] to find gmax (W ).

W2 =


1 2 0 1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1 1 1 1 1
1 0 2 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 1 0 1 0 1
0 0 0 2 0 1 1 0 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 0

 ,

W3 =



0 2 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 1 1 0 1 1 0
0 0 2 1 1 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 1 0 0 1 0 0 0
2 0 0 0 0 1 0 1 0 0 0 1
1 0 0 1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 1 1 0 0 0 0


Applying Algorithm 1, it is easy to check that W1

and W2 have maximum-achievable girth 12 and W3 has
maximum-achievable girth 14, where Udmin(W1) = 248,
Udmin(W2) = 72, and Udmin(W3) = 446. On the other
hand, for the weight matrices with the same size and the
same maximum-achievable girth in [31], the authors have
obtained bounds 174, 68, and 416 which are less than the
bounds reported for W1, W2, and W3, respectively. It is
noticed that the column-weight of the constructed codes var-
ied from 3 to 4, which is not smaller than the column-weight 3
of the codes in [31]. Besides, increasing the column-weight
often leads to decreasing the girth which did not happen for
the constructed weight-matrices.

In Table 2, applying Algorithm 1, some weight-matrices
W are constructed randomly such that the corresponding
Udmin (W ) is better than the bound (given by Eq. 1) on
the weight-matrices in [31] with the same size J × L
and maximum-achievable girth gmax. It is noticed that the
column-weight dv of the constructed codes is at least 3,
which is not smaller than the column-weight d ′v = 3
of codes in [31]. Moreover, Table 3 has provided some

randomly-constructed J × L weight matrices such that the
design-rate R = 1 − J

L of the generated type-w QC-LDPC
codes is better than the design-rate R′ of the codes in [31],
whereas the maximum-achievable girth gmax is the same and
the column-weight dv is not smaller than d ′v [31].

IV. A DETERMINISTIC ALGORITHM TO GENERATE
MULTITYPE QC-LDPC CODES
In this section, a depth-first search algorithm is presented in
which for a given weight-matrix W with the corresponding
maximum-achievable girth gmax(W ) and even integer g, 2 ≤
g ≤ gmax, the outputs are a slope-matrix S and a CPM-sizem,
such that the corresponding multitype QC-LDPC code has
girth at least g. In each step, the algorithm finds the minimum
proper slope value such that there is no cycle smaller than g
between this slope and the slopes recursively constructed in
the previous steps. For this, Eq. 3 must not hold for the case
that the CPM-size is infinity, i.e., all of the modular relations
between the slopes are replaced with equality equations.
After completing the whole elements of the slope-matrix S,
the algorithm finds the minimum CPM-size m such that the
corresponding QC-LDPC code has girth at least g. In fact,
to find m, we collect the left-hand side of all such equations
with their common divisors in P which can be considered
as the set of all nonproper CPM-sizes. Now, the proper
CPM-sizem is chosen as the smallest nonnegative integer not
belong to the set P.

To address the details, for positive integers J , L, J < L, let
W be a J × L weight-matrix with maximum-achievable girth
gmax and 2 ≤ g ≤ gmax is even. Before, we noticed that the
construction of the slope-matrix S = (si,j), si,j = (s(1)i,j , . . . ,

s
(wi,j)
i,j ), is based on a recursive method by constructing the
nonempty elements of the matrix S (with the corresponding
nonzero elements in W ) from left to right in each entry, then
traversing column-by-column in thematrix, i.e., forw1,1 6= 0,
finding the proper slopes in s1,1 starting from s(1)1,1 till s

(w1,1)
1,1 ,
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TABLE 2. U = Udmin
(W ) and dv of some constructed weight-matrices of type-w QC-LDPC codes against U ′ = U ′

dmin
(W ) and d ′

v of the patterns in [31].

TABLE 3. Some weight matrices with larger rate and column-weight rather than the patterns in [31].

then, for w2,1 6= 0, the slopes in s2,1 beginning from s(1)2,1 till

s
(w2,1)
2,1 , finally, for wJ ,L 6= 0, ends to find the proper slopes

in sJ ,L , from s(1)J ,L to s(wJ ,L )J ,L , sequentially. The part of S which
are constructed till step k , are denoted by S(k). For example,
S(1) = (s(1)t1,1), where t1 is the first position in whichwt1,1 6= 0.

Then, S(2) = (s(1)t1,1, s
(2)
t1,1

), if wt1,1 > 1, otherwise S(2) =

(s(1)t1,1, s
(1)
t2,1

), where t2 is the second position greater than t1
in which wt2,1 6= 0. In step k + 1, when S(k) is constructed
inductively, S(k+1) is an expansion of S(k) together with the
new slope s(rk+1)pk+1,qk+1 , where qk+1 is the greatest integer satis-
fied in A =

∑qk+1−1
j=1

∑J
i=1 wi,j ≤ k + 1, pk+1 is the greatest

integer satisfying in B =
∑pk+1−1

i=1 wi,qk+1 ≤ k + 1 − A and
rk+1 = k + 1− A− B, which is emphasized by the notation
S(k+1) = S(k) ∪ {s(rk+1)pk+1,qk+1}.

In Algorithm 2, it is noticed that to find S(k+1) = S(k) ∪
{s(rk+1)pk+1,qk+1}, Proposition 2.3 is used (where Eq. 3 is applied
for m = ∞, i.e., the equality is used instead of a modular
relation) to investigate all nonproper slopes s

′(rk+1)
pk+1,qk+1 such

that for1k ′ defined in Proposition 2.3, we have
l−1∑
k ′=0

1k ′ = 0

for an l < g/2, in which the slopes are limited in S(k) ∪
{s
′(rk+1)
pk+1,qk+1}. After finding the slope-matrix S, we need to

find proper CPM-size m, such that the constructed code with

slope-matrix S and CPM-size m has girth at least g. To do
this, we need to generate P as the set of all nonproper candi-
dates for CPM-sizes. In fact, it can be seen easily that such

nonproper values are all of the integers
l−1∑
k=0

1k , 2 ≤ l ≤ g/2,

together with their common divisors, because Eq. 3 holds in
modulus of such integers.

Now, to justify Algorithm 2, an example is given to express
the details more clear.
Example 4.1: Applying Algorithm 2 on the weight-matrix

W = W (2, 3, 2), we have the following slope-matrix with
CPM-size 16 corresponding to a type-II QC-LDPC code with
girth 6.

S =
(
(0, 1) (0, 2) (0, 3)
(0, 2) (5, 6) (10, 14)

)
For example, in Step 8 of the algorithm, we have constructed
(s(1)1,1, s

(2)
1,1, s

(1)
2,1, s

(2)
2,1, s

(1)
1,2, s

(2)
1,2, s

(1)
2,2) = (0, 1, 0, 2, 0, 2, 5) so

far. Now, to find a proper s(2)2,2, it is sufficient to construct

S8 as all nonproper slopes s(2)2,2 such that s(2)2,2 − s(t1)i1,2
+

s(t2)i1,j1
− s(t3)2,j1

= 0, in which (i1, 2, t1), (i1, j1, t2), (2, j1, t3)
∈ {(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 2, 1), (2, 2, 2)}, and t1 6= 2 and t2 6= t3 if i1 = 2, and
t1 6= t2 and t3 6= 2, if j1 = 2. Then, nonproper slopes are as
follows.
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Algorithm 2
Input: weight-matrix W = (wi,j)J×L and desired girth g,
g ≤ gmax(W ).
Output: slope-matrix S and CPM-size m.
k ← 1, A ← Z≥0, S1 ← ∅, select s(r1)p1,q1 ∈ A = A \ S1
arbitrary and set S(1) = {s(r1)p1,q1}.
for j from 1 to L do
for i from 1 to J do
for t from 1 to wi,j do
Let Sk+1 be the set of all slopes s

′(rk+1)
pk+1,qk+1 ∈ A such

that for 1k ′ defined in Proposition 2.3, we have
l−1∑
k ′=0

1k ′ = 0 for an l < g/2, in which the slopes

are limited in S(k) ∪ {s
′(rk+1)
pk+1,qk+1}.

Select s(rk+1)pk+1,qk+1 ∈ A \ Sk+1 arbitrary and set
S(k+1)← S(k) ∪ {s(rk+1)pk+1,qk+1}, k ← k + 1.

end for
end for

end for

Let P be the set of all
l−1∑
k=0

1k , 2 ≤ l ≤ g/2, together with

their commom divisors and m 6∈ P be the smallest.
return The slope-matrix S and CPM-size m.

S8 = {s
(1)
1,2 − s(1)1,1 + s(1)2,1, s

(1)
1,2 − s(1)1,1 + s(2)2,1, s(1)1,2 −

s(2)1,1 + s
(1)
2,1, s

(1)
1,2 − s

(2)
1,1 + s

(2)
2,1, s

(1)
1,2 − s

(2)
1,2 + s

(1)
2,2, s

(2)
1,2 − s

(1)
1,1 +

s(1)2,1, s
(2)
1,2−s

(1)
1,1+s

(2)
2,1, s

(2)
1,2−s

(2)
1,1+s

(1)
2,1, s

(2)
1,2−s

(2)
1,1+s

(2)
2,1, s

(2)
1,2−

s(1)1,2 + s(1)2,2, s
(1)
2,2 − s(1)2,1 + s(2)2,1, s

(1)
2,2 − s(2)2,1 + s(1)2,1, s

(1)
2,2} =

{−1, 0, 1, 2, 3, 4, 5, 7}.
Therefore, a proper value for s(2)2,2 is 6. On the other

hand, to find CPM-size m, we notice that the set of values∑1
k=01k = s(t1)i0,j0

− s(t2)i1,j0
+ s(t3)i1,j1

− s(t4)i0,j1
, for all addmissible

chains (i0, j0, t1), (i1, j0, t2), (i1, j1, t3), (i0, j1, t4) is Q =
{±1,±2, . . . ,±15}. Then, P, the set of common divisors of
elements of Q, is equal to Q and so the smallest CPM-size is
m = min(Z≥0 \ P) = 16.

A. THE COMPLEXITY OF THE ALGORITHM
In Algorithm 2, we accept the notions w(k+1)

max , J (k+1)max and
r (k+1)max to be the maximum values of entries in the weight-
matrix, maximum column-weight and maximum row-weight
of W , respectively. Now, in step k , when S(k) is con-
structed, to construct S(k+1), we must generate all of
the chains (i0, j0, t0); (i1, j0, t1); (i1, j1, t2); (i2, j1, t3); . . .;
(il−1, jl−1, t2l−2); (il, jl−1, t2l−1); (il, jl, t2l) = (i0, j0, t0)
which are listed as the indices of the slopes in S(k) ∪
{s(rk+1)pk+1,qk+1}, starting from (i0, j0, t0) = (pk+1, qk+1, rk+1).
However, after assumption (i0, j0, t0) = (pk+1, qk+1, rk+1),
to generate all possible (i1, j0, t1), two cases can be consid-
ered. If i1 = i0, then t1 6= t0, which is enumerated at most
w(k+1)
max − 1, and if i1 6= i0, enumerated at most J (k+1)max − 1,

then the possible values for t1 is at most w(k+1)
max . These two

cases are enumerated in at most (w(k+1)
max − 1) + (J (k+1)max − 1)

w(k+1)
max = J (k+1)max w(k+1)

max − 1. After selection (i1, j0, t1), to gen-
erate all possible (i1, j1, t2), two cases can be considered.
If j1 = j0, then t2 6= t1, which is enumerated at most
(w(k+1)

max − 1), and if j1 6= j0, selected at most r (k+1)max − 1, then
the possible values for t1 is at most w(k+1)

max . These two cases
are combined in at most (w(k+1)

max − 1)+ (r (k+1)max − 1)w(k+1)
max =

r (k+1)max w(k+1)
max − 1.

This process repeats l times successively to traverse all
admissible chains in at most lw(k+1)

max (r (k+1)max + J (k+1)max )o(2l),
because the complexity to find nonproper slopes s(rk+1)pk+1,qk+1
in Eq. 3 is at most o(2l). Then, the overall complex-
ity to accept a slope-matrix as the solution is at most∑g−2

l=2
∑n

k=1 lw
(k)
max(r

(k)
max + J (k)max)o(2l), where n =

∑
i,j wi,j,

because 2 ≤ l ≤ g − 2 and the required steps to
find the solution is n. But, this is at most w(n)

max(r
(n)
max +

J (n)max)o(ng2) which shows a polynomial complexity, i.e., the
algorithm is efficient. It is noticed that, if one uses a
depth-first search to find a proper slope-matrix as the solution
when the CPM-size m is given, the complexity is at most
w(n)
max(r

(n)
max + J

(n)
max)o(ng2mn+2) which enlarges exponentially,

when n enlarges.
It is noticed that the approach of Algorithm 2 is not a

backtracking search, because otherwise if there is not any
candidate for s(rk+1)pk+1,qk+1 in Step k + 1, i.e., Sk+1 = Z, then
we have an inevitable chain in S(k) ∪ {s(rk+1)pk+1,qk+1} which is
a contradiction, because there are no inevitable chains of
length 2l, l ≥ g/2. Moreover, although the approach to
find slope values or the CPM-size is to find the smallest
nonnegative integers not belonging to the sets Sk+1, k ≤
0, and P, respectively, we can select the values arbitrar-
ily in the complement of the sets which may have some
advantages to achieve smaller CPM-sizes. Applying this ran-
dom approach by Algorithm 2, Tables 4-12 provide some
proper J × L slope-matrices S such that the corresponding
multitype QC-LDPC codes with CPM-size m have girth g,
g ≤ 16. In tables, each weight-matrix W is denoted by the
block-design B and the weigh-designW . Moreover, because
of the space limitation, the desired slope-matrix S = (si,j) is
denoted by the following slope-vector.

S = (s(2)b1,1,1, . . . , s
(wb1,1,1)
b1,1,1

, s(1)b1,2,1, . . . , s
(wb1,2,1)
b1,2,1

, . . . ,

s(1)b1,m1 ,1
, . . . , s

(wb1,m1 ,1
)

b1,m1 ,1
, . . . , s(1)bL,mL ,L

, . . . , s
(wbL,mL ,L

)

bL,mL ,L
),

in which s(1)bi,1,i = 0, 1 ≤ i ≤ L, which are not appended to S.
Example 4.2: ApplyingAlgorithm 2 for the weight-matrix

W , a type-II QC-LDPC code with girth g = 8 and CPM-size
m = 24 can be derived with PCM H .

W =


2 1 1 1 0
2 1 1 0 1
0 2 0 1 2
0 0 2 2 1

 ,
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TABLE 4. Some constructed type-II QC-LDPC code with girth g = 6, 8 against type-I QC-LDPC code in [18].

H =


I0 + I1 I0 I0 I0 0
I0 + I3 I7 I13 0 I0

0 I0 + I2 0 I5 I4 + I10

0 0 I0 + I5 I9 + I22 I18

 .
In this case, the corresponding slope-vector is

S = [1, 0, 3, 7, 0, 2, 13, 0, 5, 5, 9, 22, 4, 10, 18].

B. SOME RESULTS AND ALGORITHM OUTPUTS
Related to the design of multitype QC-LDPC codes, improv-
ing some of the parameters, such as the CPM-size, rate,
minimum-distance, or cycle distribution, is desirable. In fact,
in the class of QC-LDPC codes with the same girths and
column-weight distributions, finding codes with smaller
CPM-sizes, larger rates orminimum-distances, or better cycle
distributions is of favor. In continue, applying Algorithm 2,
we give some examples of multitype QC-LDPC codes having
better parameters than the codes in [7], [8], [16], [18], [20],
[23]–[25], [29], [31]. Moreover, some 4-cycle free multitype
QC-LDPC codes are constructed whose CPM-sizes are close
to the lower-bound proposed recently in [5]. To find the
minimum-distance of the constructed codes, Magma soft-
ware [37] is used. As Algorithm 1 and Algorithm 2 produce
a variety class of the weight and slope-matrices, the outputs
have the potential to attain codes with flexibility parameters,
such as length, rate, and minimum-distance.

1) TYPE I,II QC-LDPC CODES
Example 4.3: Applying Algorithm 2 on the following

weight-matrix W , matrices H1 and H2 are constructed as the
PCM of two girth-6 (3,4)-regular type-II QC-LDPC codes
with CPM-size 23 and CPM-size 21, respectively.

W =

2 0 1 1
1 2 0 1
0 1 2 1

 ,
H1 =

I + I13 0 I I
I8 I + I11 0 I19

0 I18 I5
+ I9 I1

 ,
H2 =

I + I6 0 I I
I I + I13 0 I5

0 I8 I2
+ I17 I18

 .
The corresponding code with PCM H1 has minimum-
distance 24, whereas the (3,4)-regular type-I QC-LDPC code
in [18] with the same CPM-size, column-weight, and girth
has minimum-distance 22. Moreover, the code with PCM H2
has CPM-size 21which is shorter than the (3,4)-regular type-I

TABLE 5. Cycle multiplicities of the constructed QC-LDPC code of length
n against the code in [16].

QC-LDPC code in [18] with the same minimum-distance,
column-weight, and girth having CPM-size 23.

In addition to the codes in Example 4.3 (shown as the
first two rows of Table 4), Table 4 provides some other
comparisons between type-II QC-LDPC codes constructed
by Algorithm 2 and type-I QC-LDPC codes presented in [18]
with the same column-weight, rate, and girth. As the table
shows, the constructed codes have smaller CPM-size m or
larger minimum-distance dmin rather than those of codes
in [18], denoted by m′ and d ′min, respectively.
Example 4.4: In [16], a [184, 47] type-II QC-LDPC

code with rate 0.2554 and CPM-size 46 is constructed
which attains the optimal minimum-distance 32. Against,
Algorithm 2 can be used to generate a girth-6 [184, 49, 32]
type-II QC-LDPC code with the following PCM.

H =

 I + I2 I + I30 0 0
I16 I37 I I
0 0 I37

+ I34 I17
+ I44

 ,
The constructed code has rate 0.2663 and dimension 49which
are better than those parameters of the code in [16] with the
same CPM-size and minimum-distance.
Example 4.5: The structure of the code’s Tanner graph and

especially the distribution of short cycles, are very effec-
tive factors in the code performance. Applying Algorithm 2,
the following matrix is generated as the PCM of a type-II QC-
LDPC code C with CPM-size 46 and girth 8.

H =

 I + I31 0 I I
I34 I I17

+ I29 0
0 I28

+ I3 0 I4
+ I39

 ,
Table 5 provides the (6, 8)−cycle multiplicities of code C
in comparison with a type-II QC-LDPC code with the same
counterparts in [16]. As the table shows, the number of short
cycles of code C is less than the corresponding code cycle
enumerations in [16].

Tables 6 and 7 provide a CPM-size comparison between
the constructed type-II QC-LDPC codes with weight-matrix
W (J ,L; 2), and some type-II QC-LDPC codes with the same
weight-matrix in [23], [24] and [25]. As the outputs show, not
only the constructed codes have smaller CPM-sizes than the

VOLUME 9, 2021 59733



F. Abedi, M. Gholami: On the Construction of Multitype QC LDPC Codes

TABLE 6. CPM-size m of the constructed codes against CPM-sizes m′ and m′′ of the codes in [23] and [24], respectively and a lower-bound LB on
CPM-size in [5].

TABLE 7. CPM-size m and rate R of the constructed codes against CPM-size m′ and rate R′ of codes in [25].

TABLE 8. CPM-size m of the constructed type-I QC-LDPC codes against CPM-size m′ of the codes in [20].

TABLE 9. Some type-II QC-LDPC codes with girth 8 achieving the upper-bound U = Udmin
(H) on the minimum-distance.

codes in [23]–[25], but also the rate of our codes in Table 7 is
better.

Moreover, for type-I QC-LDPC codes with the following
block-designs B1, B2, and B3 associated to the base matrices
in [20], a comparison is provided in Table 8 between the
CPM-size of the constructed codes and the CPM-size of the
codes in [20]. As the table shows, the constructed codes have
a smaller CPM-size.

B1 = [[1, 3, 5], [2, 4, 6], [1, 3, 6], [2, 4, 5], [1, 4, 5], [2, 3,
6], [1, 2], [1, 2], [3, 4], [3, 4], [5, 6], [5, 6]],

B2 = [[1, 2, 4], [1, 3, 5], [4, 5, 6], [2, 3, 6], [1, 4, 6], [2, 3,
5], [1, 2, 4], [3, 5, 6], [1, 2, 5], [3, 4, 6], [1, 2, 5], [3, 4, 6], [1,
3, 5], [2, 4, 6], [1, 4, 5], [2, 3, 6], [1, 3, 6], [2, 4, 5], [1, 2], [2,
3], [3, 4], [4, 5], [5, 6], [1, 6]],

B3 = [[1, 3, 5], [2, 4, 6], [1, 3, 5], [2, 4, 6], [1, 2, 4], [3,
5, 6], [1, 2, 5], [3, 4, 6], [1, 2, 4], [3, 5, 6], [1, 2, 3], [4, 5,
6], [1, 4, 6], [2, 3, 5], [1, 2, 4], [3, 5, 6], [1, 4, 5], [2, 3, 6],

[1, 2, 3], [4, 5, 6], [1, 4, 5], [2, 3, 6], [1, 5, 6], [2, 3, 4], [1,
4, 5], [2, 3, 6], [1, 2, 6], [3, 4, 5], [1, 2, 4], [3, 5, 6], [1, 3,
4], [2, 5, 6], [1, 2, 4], [3, 5, 6], [1, 4, 5], [2, 3, 6], [1, 3, 5],
[2, 4, 6], [1, 3, 5], [2, 4, 6], [1, 2, 6], [3, 4, 5], [1, 2, 4], [3, 5,
6], [1, 5, 6], [1, 4], [2, 5], [3, 6], [1, 2], [2, 3], [3, 4], [4, 5],
[5, 6], [1, 6]].

According to the minimum-distance of multitype
QC-LDPC codes, Eq. 1 and Eq. 2 present two upper-bounds
on the minimum-distance in [16]. By the way, the exper-
iments show that these upper-bounds are very close
to the minimum-distance when the CPM-size is large
enough. In fact, by increasing the boundary of the
minimum-distance, we hope to gain a larger minimum-
distance. For example, according to the PCM H of
some type-II QC-LDPC codes with girth 8, Table 9 pro-
vides some codes whose minimum-distances achieving the
bound Udmin(H ).
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TABLE 10. Some irregular type-II QC-LDPC codes with girths g, column-weights dv , and minimum-distance upper-bound U = Udmin
(H).

In [31], some column-weight three type-II QC-LDPC
codes with girth at most 14 are constructed based on some
regular block designs, such as balanced ternary designs, pair-
wise balanced design, and difference triangle sets. In gen-
eral, increasing the column-weights often leads to decreasing
the maximum-achievable girth. Table 10 has provided some
irregular type-II QC-LDPC codes with girths at most 16 and
column-weights dv > 3.

In continue, we give some examples in which the con-
structed codes have smaller CPM-size rather than the codes
in [31] with the same weight matrices.
Example 4.6: For the 6 × 12 and 6 × 8 weight-matrices

W1 andW2 given by (6), Algorithm 2 can be used to generate
the slope-vectors S1 = [1,0,0,4,0,6,0,9,0,11,13,33,44,67,
75,72,103,148,85,171,109,272,196,62] and S2 = [46,0,2,32,
12,52,47,52,47,15,44,29,38,40,21,36], corresponding to
some type-II QC-LDPC codes with girth 12 having
CPM-sizes 322 and 55, respectively. Against, two type-II
QC-LDPC codes in [31] with the same weight matrices have
constructed with CPM-sizes 600 and 100, respectively, which
are larger than the constructed codes.
Example 4.7: Consider the following 9 × 12 and 9 ×

15 weight matrices W3 and W4, respectively, reported

in [31].

W3 =



2 0 0 0 0 0 0 0 0 1 0 1
0 2 0 0 0 0 0 0 1 0 1 0
0 0 2 0 0 0 0 1 0 0 0 1
0 0 0 2 0 0 0 1 1 0 0 0
0 0 0 0 2 0 0 0 1 1 0 0
0 0 0 0 0 2 0 0 0 1 1 0
0 0 0 0 0 0 2 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0


, (7)

W4 =



2 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 2 0 0 0 0 0 1 0 0 0 0 1 0 1
0 0 2 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 2 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 2 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 2 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 2 0 0 0 0 1 0 1 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0


Applying Algorithm 2, two type-II QC-LDPC codes C3

and C4 with girth 14 are constructed with the slope-vectors
S3= [92, 81, 82, 104, 158, 58, 63, 60, 67, 98, 113, 85, 95, 107,
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TABLE 11. The rate of some 4-cycle free type-w , w = 3, 4, QC-LDPC codes with CPM-size m and lower-bound LB of CPM-sizes in [5].

140, 88, 148, 154, 44, 69, 107, 29, 76, 33] and S4=[366, 587,
332, 555, 481, 617, 205, 563, 256, 358, 388, 617, 250, 604,
390, 541, 15, 154, 430, 442, 66, 623, 535, 248, 124, 305, 52,
328, 209, 233], with CPM-sizes 165 and 650, respectively,
whereas the CPM-sizes of the corresponding codes in [31]
with the same weight-matrix and the same girth are 300 and
1000, respectively, which are larger than CPM-size of C3
and C4.
Example 4.8: In [7], the authors have constructed some

symmetric type-I QC-LDPC codes with girth 8, for example
a (4, 5)-regular code with weight-matrix W = W (4, 5, 1),
CPM-size 23 and minimum-distance 24. Against, using

Algorithm 2 for weight-matrix W =


1 2 1 1 0
2 1 1 0 1
1 0 2 1 1
0 1 0 2 2

, the

slope-vector S = [7, 13, 17, 13, 8, 17, 11, 2, 1, 10, 1,
19, 1, 2, 21] is generated in which the corresponding code
with CPM-size 23 has minimum-distance 33. Then, the con-
structed code has better minimum-distance than the code
in [7], where length, column/row weight, and girth are the
same.
Example 4.9: Applying Algorithm 2 on the 3 × 4

weight-matrix W =

 2 0 1 1
0 1 2 1
1 2 0 1

, three slope-vectors [1,

1, 1, 2, 0, 1, 2, 2], [8, 5, 7, 5, 2, 6, 4, 1] and [18, 25,
14, 15, 7, 18, 5, 0] are generated such that the correspond-
ing type-II QC-LDPC codes with girths 6, 8 and 10 and
CPM-sizes 3, 9 and 28 have minimum-distances 6, 8 and 24,
respectively. This is whereas the minimum CPM-sizes and
minimum-distances of the corresponding type-I codes in
[8] with the same column/row weights and girths are 3,
9, 37 and 6, 6, 14, respectively. Moreover, for the 3 × 6

weight-matrix W =

 1 1 1 1 1 1
1 1 1 0 2 1
1 1 1 2 0 1

, the slope-vector [4,

14, 5, 6, 10, 4, 8, 9, 1, 9, 6, 12] is generated by Algorithm 2
with CPM-size 18 and girth 8, for which the constructed
code has minimum-distance 12, whereas the corresponding
code in [8] with the same column/row weight, girth, and
length hasminimum-distance 10. Then, the constructed codes
have better minimum-distance, whereas the CPM-sizes of the
constructed codes are not greater.

2) TYPE-III, IV QC-LDPC CODES
First, we know that the existence of element 3 in the
weight-matrix induces inevitable 6-cycles in the Tanner
graph of the corresponding code [31], therefore, in this
subsection, we consider type-III, IV QC-LDPC codes
with girth 6. Interestingly, increasing the type of the
constructed QC-LDPC codes usually cause to increase
upper-bounds on the minimum-distance and for some proper
CPM-sizes, we can find QC-LDPC codes with larger
minimum-distances. In fact, applying Algorithm 2 on the
weight-matrix W (1,L,T ), T = 3, 4, 2 ≤ L ≤ 10,
some slope-vectors corresponding to 4-cycle free type-III and
type-IV QC-LDPC codes with different rates are provided
in Table 11, in which much effort has been made to bring
CPM-size m of the constructed codes as close enough to the
lower-bound LB reported in [5]. As Table 11 shows, the rate
of the constructed codes tends to 1 when L enlarges, while
the construction of type-I QC-LDPC codes with the same
column-weights and lengths usually leads to lower rates.
Example 4.10: For a given weight-matrix, although

Algorithm 2 can be used to generate some slope vec-
tors randomly to achieve a given girth, there are some
explicit methods to generate proper slope-matrices. The main
drawback is that the CPM-size of the explicitly constructed
codes is not small, although they may have good cycle mul-
tiplicities. For example, for positive integer L, let CL be the
type-III QC-LDPC code with weight-matrixW = W (1,L, 3)
and slope-matrix S = (s1,j)1≤j≤L , s1,j = (0, j, (L + 2)j).
By Proposition 2.3, CL has girth 6, for enough large CPM-
size. Table 12 provides a (6,8)-cycle multiplicities compari-
son between CL , 4 ≤ L ≤ 8, of girth 6 and some 4-cycle
free type-III QC-LDPC codes in [29] with the same weight
matrices and lengths. As the table shows, the constructed
codes have better (6,8)-cycle multiplicities than codes in [29].

V. SIMULATION RESULTS
In continue, we provide some bit-error-rate (BER) per-
formance comparisons between the proposed multitype
QC-LDPC codes with different girths, on one hand,
and random-like QC-LDPC codes [3], progressive edge
growth (PEG) LDPC codes [33] and some codes in [16], [19],
[25], [31], [34]–[36], on the other hand. The simulated codes
have been decoded by the sum-product algorithm [32] with

59736 VOLUME 9, 2021



F. Abedi, M. Gholami: On the Construction of Multitype QC LDPC Codes

TABLE 12. (6,8)-cycle multiplicities of the constructed type-III QC-LDPC
codes of length n against the codes in [29].

different maximum iterations after transmitting over binary
phase-shift keying-modulated additive white Gaussian noise
channel. Simulations show that the constructed multitype
QC-LDPC codes outperform the mentioned codes, in some
cases they are as well as the constructed codes.In the figures,
constructed type-I and type-II QC-LDPC codes lifted from a
weight matrix of size J × L with girth b and CPM-size m are
denoted by CI (J × L; gb) and CII (J × L; gb), respectively.
Moreover, a PEG LDPC code of size J × L with target girth
b is denoted by PEG(J × L; tgb) or PEG,Tg = b if the size
is known.
Example 5.1: In [31] four codes with good performances

are presented two of which have girth 12 and sizes 6×12 and
6×8with weight-matricesW1 andW2 in (6), respectively, and
the other two have girth 14 and sizes 9× 12 and 9× 15 with
weight-matrices W3 and W4 in (7), respectively. Applying
Algorithm 2 over weight matricesW1, . . . ,W4, the following
slope-vectors S1, . . . , S4 with CPM-sizes 600, 100, 300, and
1000, can be obtained to construct some codes, denoted C1
andC2 with girth 12 andC3 andC4 with girth 14, respectively.
S1 = [285, 180, 372, 458, 505, 551, 187, 436, 179, 126,

491, 152, 264, 366, 532, 382, 595, 519, 304, 412, 33, 141,
27, 494],
S2 = [96, 4, 44, 14, 35, 49, 29, 88, 84, 65, 77, 60, 0, 83,

83, 40],
S3 = [62, 107, 278, 156, 138, 151, 96, 134, 255, 64, 273,

41, 35, 132, 190, 235, 122, 202, 44, 200, 224, 100, 268, 34],
S4 = [659, 823, 598, 704, 738, 132, 407, 641, 616, 294,

529, 659, 453, 822, 206, 251, 268, 323, 176, 410, 750, 123,
453, 241, 875, 734, 249, 715, 184, 865]

Fig. 2, parts (a), (b), present BER/FER comparisons
between C1, . . . ,C4, on one hand and type-II QC-LDPC
codes in [31] and PEG LDPC codes with target girth
14 and 12, on the other hand, where weight-matrices and
lengths are the same. As the figures show, for maximum
iteration 20, the constructed type-II QC-LDPC codes perform
better than codes in [31] and the corresponding PEG LDPC
codes. Moreover, the constructed code C2 has 5600 cycles
of length 12, whereas the number of 12-cycles of the corre-
sponding code in [31] is 6000 which is larger.
Example 5.2: Corresponding to the weight matricesW1 =

W (2, 3, 2) andW2 = W (2, 5, 2), the following slopematrices
S1 and S2 are constructed to generate two girth-6 type-II
QC-LDPC codes with CPM-sizes 133 and 381, respectively.

S1 =
(

(0, 2) (0, 91) (0, 90)
(127, 42) (35, 79) (98, 30)

)
,

S2 =
(

(0, 206) (0, 273) (0, 357) (0, 104) (0, 377)
(251, 355) (129, 147) 79, 257) (172, 62) (22, 177)

)
Two comparisons between the constructed codes and

corresponding type-II QC-LDPC codes in [25], PEG LDPC
codes and some random-like LDPC codes are provided
in Fig. 2, parts (c), (d), with maximum iteration 50. All of the
constructed codes have girth 6 and regular column-weight 4.
As the figures show, the constructed type-II QC-LDPC codes
perform better than the codes in [25], PEG and randomLDPC
codes with the same lengths, rates and girths.
Example 5.3: LetW be the following (3, 4) weight-matrix

with slope-matrix S corresponding to a type-II QC-LDPC
code with girth 8 and CPM-size 46.

W =

 2 0 1 1
1 1 2 0
0 2 0 2


S =

 (0, 9) () (0) (0)
(41) (0) (27, 42) ()
() (34, 35) () (19, 24)


The constructed code with girth 8 is compared in Fig. 2,

part (e), with a girth-8 type-II QC-LDPC code in [16], PEG
code with target girth 8 and a 4-cycle free random-like LDPC
code, with maximum iteration 64. All of the constructed
codes have column-weight 3 and length 184. As the fig-
ure shows, the constructed type-II QC-LDPC code performs
better than the code in [16], PEG and random-like LDPC
codes with the same lengths and rates.

Moreover, to have an insight about the error-rate behav-
ior of codes in different iterations, Figure 3 has provided
BER and FER comparisons between the constructed type-II
QC-LDPC code with the code in [16] in dB = 5.5. As the
figure shows, the constructed code outperforms the code
in [16] for iterations greater than or equal to 20.
Example 5.4: Applying Algorithm 2 on the base matrices

of four IEEE 802.11n/ac standard codes with rates 2/3, 3/4
and 5/6 presented in [34], some of the proper slopes are
presented in Table 13 with CPM-size 27. Fig. 2, parts (f),
(g) show that the constructed type-I QC-LDPC codes of vari-
ous rates R performBER/FER as well as the IEEE 802.11n/ac
standard codes and PEG codes of the length 648 when the
maximum iteration is 20.
Example 5.5: Applying Algorithm 2 on the weight-matrix

W = W (2, 16, 2), the following slope-vector S1 is generated
to have a girth-6 type-II QC-LDPC code with CPM-size 511.
S1 =[143, 215, 416, 133, 232, 463, 56, 479, 501, 109, 508,
510, 185, 40, 304, 390, 60, 492, 220, 183, 224, 44, 244, 407,
297, 54, 425, 396, 198, 480, 207, 278, 325, 397, 108, 414,
197, 476, 496, 412, 106, 443, 180, 359, 462, 105, 49, 131]

Then, the constructed code from S1 is compared with
a CCSDS standard code in [35] for different maximum
iterations 10 and 50, whereas the weight matrix, girth and
length are the same. Fig. 2, Part (h) shows that the constructed
codes perform BER/FER as well as the code in [35] and
PEG code with the same length and girth.
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FIGURE 2. Some BER/FER comparisons between the codes in (a),(b) Example 5.1 (c),(d) Example 5.2 (e) Example 5.3, (f),(g) Example 5.4, (h) Example 5.5
(i) Example 5.6, (j) Example 5.7.

Example 5.6: The 3GPP agreed to consider two rate-
compatible weight-matrices of sizes 46 × 68 and 42 × 52,
denoted by BG1 and BG2, respectively [36]. Each

weight-matrix supports all CPM-sizes a × 2j, for a ∈
{2, 3, 5, 7, 9, 11, 13, 15} and 0 ≤ j ≤ 7. We consider
weight-matrix BG1 for a = 3 and j = 5 (CPM-size
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FIGURE 3. A BER/FER comparison of the codes in Example 5.3 for dB = 5.5 with different iterations.

TABLE 13. Some constructed codes with weight-matrices given by 802.11n/ac IEEE standard.

3× 25 = 96) to construct the PCM of a 5G QC-LDPC code,
denoted byR11711982BG1S2, with rate 0.323529 and length
6528. Now, applying Algorithm 2 on BG1, the following
slope-vector can be generated to construct a type-I QC-LDPC
code with CPM-size 96.
S = [30, 42, 90, 13, 26, 6, 73, 25, 30, 68, 31, 64, 91, 26, 20,
39, 34, 27, 88, 19, 44, 59, 89, 33, 55, 39, 66, 58, 90, 12, 28,
70, 36, 62, 90, 74, 35, 86, 30, 10, 56, 85, 11, 69, 29, 40, 3, 69,
45, 78, 80, 6, 5, 72, 9, 25, 51, 10, 10, 87, 4, 18, 71, 83, 83, 89,
21, 82, 16, 22, 89, 89, 34, 47, 54, 20, 84, 92, 81, 32, 65, 40,
10, 50, 88, 89, 62, 33, 89, 18, 4, 67, 52, 0, 75, 39, 76, 29, 64,
49, 50, 42, 31, 5, 77, 15, 93, 92, 3, 89, 5, 95, 47, 13, 28, 43,
35, 55, 4, 8, 14, 0, 7, 70, 31, 95, 67, 7, 92, 60, 83, 28, 59, 32,
19, 57, 87, 33, 71, 50, 6, 14, 33, 72, 37, 27, 76, 20, 34, 84, 33,
26, 38, 86, 63, 28, 29, 6, 57, 40, 16, 94, 94, 47, 56, 72, 74, 77,
1, 54, 89, 80, 95, 21, 15, 48, 57, 27, 93, 90, 14, 61, 42, 41, 43,
57, 84, 33, 11, 58, 25, 20, 49, 6, 22, 70, 82, 48, 28, 23, 35, 13,
56, 20, 41, 29, 55, 69, 42, 25, 13, 76, 60, 15, 13, 49, 37, 76,
49, 9, 57, 34, 54, 33, 19, 54, 84, 91, 15, 22, 9, 23, 56, 32, 8,
47, 93, 77, 22, 38, 34, 45, 48, 55, 22, 70, 2, 60]

Fig. 2, Part (i) shows that the constructed code, denoted
by CI (46 × 68; g6), has the BER performance close to
R11711982BG1S2 for maximum iteration 20. Moreover,
if nl(C) is the number of cycles of length l in the Tanner graph
of code C and n6,8 = n6 + n8, then we have n6,8(CI (46 ×
68; g6)) = 5, 523, 696 and n6,8(R11711982BG1S2) =
5, 577, 648. Then, the constructed code has fewer total (6, 8)
cycle multiplicities than the code in [36]
Example 5.7: In [19], some 4-cycle free algebraic

type-I QC-LDPC codes are constructed based on Reed-
Solomon (RS) codes, denoted by RS-QC-LDPC codes.
For weight-matrix W = (4, 64, 1) and CPM-size 73,

Algorithm 2 is applied to generate the following slope vector
corresponding to a type-I QC-LDPC code with girth 6.
S = [34, 26, 3, 13, 53, 67, 30, 56, 20, 27, 17, 51, 57, 57,

11, 65, 72, 44, 11, 49, 58, 19, 51, 40, 28, 47, 5, 48, 32, 35, 67,
19, 49, 33, 63, 28, 46, 14, 57, 3, 46, 22, 17, 39, 39, 58, 30, 38,
9, 69, 19, 15, 27, 31, 41, 38, 24, 18, 0, 53, 53, 3, 68, 4, 70, 16,
14, 34, 18, 32, 9, 33, 29, 58, 36, 50, 21, 6, 0, 24, 64, 36, 41,
29, 35, 36, 69, 22, 28, 30, 20, 29, 34, 69, 43, 42, 72, 12, 48,
25, 5, 23, 8, 45, 66, 60, 64, 13, 64, 1, 21, 68, 59, 65, 51, 20,
37, 59, 2, 27, 70, 68, 10, 42, 44, 0, 63, 48, 55, 2, 10, 7, 54, 15,
9, 12, 11, 12, 6, 37, 63, 49, 4, 52, 44, 25, 15, 10, 66, 4, 62, 6,
61, 39, 33, 14, 38, 16, 26, 5, 8, 43, 16, 31, 59, 40, 13, 60, 37,
23, 62, 21, 60, 72, 66, 7, 2, 45, 40, 8, 1, 62, 41, 26, 61, 32, 56,
52, 45, 7, 55, 46].

Fig. 2, part (j) shows that the constructed code C1, denoted
by CI (4 × 64; g6), has BER/FER performance as well as
the counterpart code C2 in [19], denoted by RS-QC(4× 64),
for maximum iteration 50. Moreover, we have n6,8(C1) =
11, 284, 778 and n6,8(C2) = 11, 339, 820. Then, the con-
structed code has fewer total (6, 8) cycle multiplicities than
the code in [19].

VI. CONCLUSION
The class of protograph LDPC codes lifted cyclically from
the protographs with multiple edges are referred to as
multitype QC-LDPC codes presented by two weight and
slope-matrices. In this paper, the maximum-achievable girth
of multitype QC-LDPC codes with a given weight-matrix
is determined efficiently by some inevitable chains.
Using this approach, some weight matrices with a given
maximum-achievable girth can be found by a simple ran-
dom search. To continue, for a given weight-matrix, some
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slope-matrices are found by a depth-first search algorithm
such that the corresponding multitype QC-LDPC codes have
some advantages over the existing codes in terms of CPM-
sizes, minimum-distance upper-bounds, cycle distributions,
and girths. Simulation results show that the constructed codes
have a good BER/FER performance in comparison with the
state-of-the-art achievements.
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