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ABSTRACT Alternative models of the electrical resistivity of the soil to the well-known constant piecewise
multilayermodel are presented in this paper. By their special features, the proposedmodels lead to reasonably
simple semi-analytical expressions for the electric potential. The parameters associated with these models
are obtained from apparent resistivity measurements using an optimization procedure. The proposed models
allow obtaining a continuous piecewise resistivity profile as a function of depth from the soil surface. From
the full definition of the models, the grounding resistance of several electrodes is calculated and compared
with that obtained from the classic multilayer model. Finally some application examples including data from
field measurements are considered in this paper.

INDEX TERMS Functionally graded multilayered soil model, continuous piecewise soil resistivity, ground-
ing resistance calculations.

I. INTRODUCTION
Determining the conductive properties of the soil is a fun-
damental requirement when designing a grounding system.
In the theoretical calculation stage, it is necessary to choose
a model for the electrical conductivity of the soil in order to
calculate the grounding resistance that the chosen electrode
will have [1]. From a general point of view, it would be
necessary to solve the equation E∇ · (σ (Er) E∇φ(Er)) = 0 together
with some boundary conditions, where φ(Er) is the absolute
potential at the sourceless point Er and σ (Er) is the function that
represents the point conductivity of the ground. For a generic
σ (Er) function, the above equation can only be approached
by numerical methods, FEM, BEM and others, while for
some specific models of conductivity it is possible to find
acceptable semi-analytical solutions. Such is the case with
the commonly used multilayer model. This model assumes
that conductivity is just a function of depth z, which is a
non-continuous piecewise constant function. Thus, the soil
is composed of horizontal layers of infinite extension and
defined thickness in which the electrical conductivity takes a
constant and different value in each layer. It is quite obvious
that a real soil does not generally have such a behavior,
being only an approximation that will be the more accu-
rate, the more different layers with different conductivity
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are considered. Thus, the actual conductivity is replaced by
a step function although in practice, due to the difficulty of
the calculations, only a few layers are considered [2].

The choice of a constant conductivity in each layer allows
calculating the potential in the region of space occupied by
each layer from a Laplace/Poisson equation arising from the
equation for a generic conductivity. The connection between
the solutions corresponding to each layer is made by impos-
ing the continuity of the potential at the different inter-
faces φi(Eri,i+1) = φi+1(Eri,i+1) as well as the continuity of
the normal component of the current density through inter-
faces σi · E∇φi · En

∣∣
Eri,i+1 = σi+1 ·

E∇φi+1 · En
∣∣
Eri,i+1 , where En

stands for the normal vector to the interface shared by layers
i and i + 1.

Thanks to the cylindrical symmetry of the potential, which
is associatedwith conductivity dependent only on the depth as
the z coordinate, the common procedure to solve the equation
for the potential is to use themethod of separation of variables
in a cylindrical coordinate system. Thus, the potential created
in layer j by an electric point current source of strength I in
layer i could be written as

φij =
ρiI

4π
∣∣Eri − Erj∣∣ +

∞∫
0

(fij(λ)e−λ(zi−zj) + gij(λ)eλ(zi−zj))

× J0(λr)dλ (1)
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where ρi is the constant resistivity of layer i, r =√
(xi − xj)2 + (yi − yj)2 and J0 is the zero-order Bessel func-

tion [3]–[5]. In (1) the functions fij(λ) and gij(λ) must be cal-
culated from the boundary conditions at the interfaces above
mentioned. Despite the apparent simplicity of the method,
the calculation of the functions f and g can be quite difficult
and the evaluation of the integral in (1) is only approximate
due to the oscillatory character of the Bessel function together
with the singularities of the f and g functions themselves [6].
To carry out everything described above, it is necessary to

assign values to the resistivity of the considered layers. This
part of the problem is of great importance since the calcula-
tions of the grounding resistance depend on the assignment
of resistivity to the different layers of the model. The method
used to find the multilayer resistivity profile starts from the
direct measurement in the field of the apparent resistivity of
the soil by means of a vertical electrical sounding (VES) with
some device such as the Wenner or Schlumberger array [7].
The apparent resistivity is closely related to the soil model,
and therefore to the resistivity profile of the different layers.
Thus, it is in principle possible to deduce this profile from
the apparent resistivity measurements [8]–[10]. This problem
falls into the category of so-called inverse problems, which
are very often ill-conditioned [11], [12], which means in
practice that uncertainties in the measurements of apparent
resistivity can produce very dramatic changes in the profile
of resistivity of the multilayered model. Consequently, there
is no single solution to the resistivity profile from the apparent
resistivity of a soil.

In this paper, an alternative multilayered model will be
presented. Although it contains many of the difficulties found
in the model described above, it presents some characteristics
that provide a more realistic description of the soil structure.
To begin with, the electrical conductivity in the layers is no
longer constant but can be adjusted to specific continuous
functions in the z coordinate that will be described later.
In addition, sometimes the function in each layer can be
chosen so that the conductivity is globally continuous in the z
coordinate. Also, the functions that represent the conductivity
in each layer give rise to simple solutions for the potential,
as will be seen later. The proposed model will be called
Functionally Graded Multilayered Soil model (FGMS). The
model is based on the seminal background that can be found
in references [13], [14], which will be briefly described in
the next section. The objectives of this paper are, namely,
to present the FGMS model and its characteristics, to set
its fundamental parameters from measurements of apparent
resistivity, to establish the method for calculating potentials
in the soil and finally to apply the theoretical framework to
practical cases.

To achieve these objectives, the paper is organized as fol-
lows. Following the present introduction, the foundations of
the FGMS method are presented in section 2. In section 3,
the procedure for setting the conductivity parameters in each
layer from the apparent resistivitymeasurements is described.

The calculation of the grounding resistance of some simple
electrodes in soils with synthetic FGMS models and some
others coming from real apparent resistivity profiles are pre-
sented in section 4. A comparison with the results coming
from equivalent conventional multilayer models is also per-
formed in the same previous section. Finally, in section 5 the
conclusions of this work are summarized..

II. FUNCTIONALLY GRADED MULTILAYER SOIL MODEL
BACKGROUNDS
Let us consider a point current source of strength I located
at ErP in a semi-infinite soil (z ≥ 0) whose conductivity is a
function σ (Er). The potential φ(Er) generated at point Er , also
called Green’s function, is the solution of the boundary value
problem (BVP)

E∇ · (σ (Er) E∇φ(Er)) = −Iδ(Er − ErP)
E∇φ · Enz |z=0 = 0

φ(Er →∞) = 0 (2)

The BVP (2) is difficult to solve in general. By the change
u = φ ·

√
σ , (2) becomes in the following equation for the

new variable u(Er) [14], [15],

E∇
2u(Er)−

E∇
2(
√
σ (Er))√
σ (Er)

u(Er) = −
I√
σ (Er)

δ(Er − ErP) (3)

When the conductivity σ (Er) only depends on the z coordinate,
the second term from the left hand side of (3) becomes

1
√
σ (z)

d2
√
σ (z)

dz2
Eu = FEu where the operator F acting on Eu will

be forced to take a constant value. Three interesting situations
can be considered.
Case-1: The constant value F is set to zero. By solving

for σ (z), it is found that σ (z) = (C1 · z + C2)2 which will
be called as parabolic model. In this case (3) becomes a
Poisson equation in the u(Er) variable. The solution for a single
point current source of strength I in an infinite medium is
straightforward, and also for the potential φ(Er),

E∇
2u(Er) = −

I√
σ (Er)

δ(Er − ErP)

u(Er) =
I

4π
√
σ (ErP) |Er − ErP|

φ(Er) =
I

4π
√
σ (ErP)

√
σ (Er) |Er − ErP|

(4)

Case-2: Next the constant value F is set toβ2, for which the
conductivity is σ (z) = (C1 · eβ·z + C2 · e−β·z)2, which will
be called as exponential model and (3) becomes a modified
Helmholtz equation [16]. The solution for u(Er) and φ(Er) in an
infinite medium is,

E∇
2u(Er)− β2u(Er) = −

I√
σ (Er)

δ(Er − ErP)

u(Er) =
I exp(−β |Er − ErP|)

4π
√
σ (ErP) |Er − ErP|

φ(Er) =
I exp(−β |Er − ErP|)

4π
√
σ (ErP)

√
σ (Er) |Er − ErP|

(5)
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Case-3: Finally, if the constant value F is set to −β2, the
conductivity of the soil is found to be σ (z) = (C1 · cos
(β · z)+C2 · sin(β · z))2, which will be called as trigonometric
model and (3) becomes a Helmholtz equation [17]. This time,
a solution for u(Er) and φ(Er) in an infinite medium is,

E∇
2u(Er)+ β2u(Er) = −

I√
σ (Er)

δ(Er − ErP)

u(Er) =
I cos(β |Er − ErP|)

4π
√
σ (ErP) |Er − ErP|

φ(Er) =
I cos(β |Er − ErP|)

4π
√
σ (ErP)

√
σ (Er) |Er − ErP|

(6)

Note that (6) could admit complex solutions as well as real
ones. Only real solutions stand for a physical potential, but
the one shown in (6) is not the only possible. Due to its special
features which give it great complexity, this model will not be
considered initially in this work, deserving a separate study.

As already mentioned before, (4)-(6) are valid to describe
the potential created by a single point current source I
in an infinite medium, since no boundary condition has
been imposed. When a semi-infinite medium is consid-
ered, the general solution must contain the solutions for the
homogeneous equations derived from (4)-(6) to which the
boundary conditions must be imposed.

For a semi-infinite medium composed by horizontal lay-
ers where a conductivity of the type described in cases 1-3
can be defined in each layer, what in this paper is called
FGMS model, a cylindrical coordinates system can be used
to solve the homogeneous equations associated to (4)-(6). For
instance, referred to the exponential model of case 2 for a
point current source located in the i layer at ErP, the potential
at any point Er of the j layer φij(Er) can be expressed as

φij(Er) =
I exp(−β |Er − ErP|)

4π
√
σi(ErP)

√
σj(Er) |Er − ErP|

δij

+

∞∫
0

(fij(λ)e
−

√
λ2+β2i (z−zP)+gij(λ)e

√
λ2+β2i (z−zP))J0(λr)dλ

(7)

where δij is the Kronecker delta and the unknown functions
fij and gij need to be calculated by imposing the boundary
conditions at each interface, namely E∇φi1 · Enz |z=0 = 0 stands
for the null current flux through the soil surface and

φij(Erj,j+1) = φij+1(Erj,j+1)

σj · E∇φij · En
∣∣∣Erj,j+1 = σj+1 · E∇φij+1 · En ∣∣∣Erj,j+1 (8)

guarantees continuity of potential and normal current flux
conservation through the interface separating the layers j and
j+ 1. In (7)-(8), σi(z) = (Ci1 · eβi·z + Ci2 · e−βi·z)2 stands for
the exponential model conductivity.

In order to properly implement the boundary condi-
tions (8), it is necessary to convert the first term on the right
hand of (7) to an integral form so that the entire expression is

in an integral form. The integral forms of Lipschitz (9) [18],
allow such a conversion to be carried out.

1
|Er − ErP|

=

∞∫
0

e−λ·|z−zP|J0(rλ)dλ

e−β·|Er−ErP|

|Er − ErP|
=

∞∫
0

λ√
λ2 + β2

e−
√
λ2+β2·|z−zP|J0(rλ)dλ (9)

Thus, the boundary conditions (8) lead to a linear system in
the unknowns fij and gij that is solved by symbolic calculus
using the software Wolfram-Mathematica.

With the help of the point current source potentials (7),
the potential acquired by an active electrode can be cal-
culated using the superposition law as will be seen next.
Thus, the grounding resistance as well as the step and touch
potentials can be obtained. Similar expressions to (7) can be
found when the other conductivity models are considered.

The expression (7) stands for the potential generated by
a single point current source. When an extended electrode
leaking a fault current to the ground is considered, expres-
sions like (7) can be used under some conditions imposed to
the electrodes. The electrodes are assumed as composed by
thin wire pieces assembled to conform the entire electrode.
Thus, each thin wire could be considered as a distribution
of point current sources located in the axis. For a soil of the
type defined in case 2, the potential at point Er of the layer j
generated by a thin wire of length L located in the layer i,
is given by

φij(Er) =
∫
L

µ(ErP) exp(−β |Er − ErP|)

4π
√
σi(ErP)

√
σj(Er) |Er − ErP|

dlP · δij

+

∫
L

µ(ErP)

4π
√
σi(ErP)

√
σj(Er)

[

∞∫
0

(f̂ij(λ)e
−

√
λ2+β2i (z−zP)

+ ĝij(λ)e

√
λ2+β2i (z− zP))J0(λr)dλ]dlP (10)

where µ(ErP) stands for the point current sources density
along the thin wire axis and the functions f̂ij and ĝij need
to be calculated, again imposing the boundary conditions at
each interface. In practice, the thin wire is segmented in M
short pieces each of them with constant point current sources
density {µk}k=1···M , which are used to calculate the potential
of the electrode itself by imposing a constant value of such
potential along the entire electrode. This procedure, known
as moment method, gives rise to a system of linear equations
whose unknowns are the constant densities of point current
sources in each segment [19], [20]. The knowledge of these
densities allows the calculation of the potential at any point
on the ground by superposition.

III. FITTING THE SOIL TO FGMS MODEL FROM
APPARENT RESISTIVITY PROFILES
As seen in the previous section, once the FGMS model has
been defined, the calculation of the potential generated by a
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point current source is given by (7) if the exponential model
is chosen. Expressions similar to (7) can be proposed for the
other two FGMSmodels, parabolic and trigonometric. In this
section the problem of setting the constants associated with
the chosen model will be addressed. Focusing on the expo-
nential FGMS model, from the apparent resistivity measure-
ments using a Wenner linear quadrupole array, it is possible
to find the three parameters associated with each layer of the
model. Indeed, for point-like electrodes as Wenner probes
separated a distance a, the measured apparent resistivity is
given by

ρmeasapp (a) =
1V (a)
I

2πa (11)

where 1V (a) is the potential difference between the mea-
suring electrodes when the active electrodes are powered by
a current I. From the FGMS exponential model, it is not
difficult to show that

ρapp(a; {Ci1,Ci2, βi})

= 4πa(φ11(a; {Ci1,Ci2, βi})− φ11(2a; {Ci1,Ci2, βi}))

(12)

where it has been enhanced that the potential depends on the
parameters of the model used, in this case the exponential
model. The model parameters can be found by an algorithm
that minimizes

χ2
= [ρmeasapp (a)− ρapp(a; {Ci1,Ci2, βi})]2 (13)

by using the Matlab routine fminsearch in a code designed
for this calculation. This procedure allows obtaining the
parameters that define the function that represents the elec-
trical conductivity in each layer. Note that conductivity is
non-continuous piecewise in general since no supplementary
conditions have been imposed on the interfaces. The variable
conductivity model proposed here in each layer is only an
approximation somewhat closer to real world than the well-
known multilayer model. Nevertheless, it is possible to add
conditions to the parameters in the minimization process
described above, to ensure that the discontinuity at the inter-
faces is the minimum possible. Such models will be classi-
fied as quasi-continuous models. The Lagrange multipliers
method can be used to force continuity of conductivity at
interfaces by expanding (13) to

χ2
= [ρmeasapp (a)− ρapp(a; {Ci1,Ci2, βi})]2

+

∑
i

λi · (σi({Ci1,Ci2, βi} ; z)

− σi+1({Ci+11,Ci+12, βi+1} ; z))2 (14)

where λi stand for the Lagrange multipliers whose number is
equal to the number of interfaces, σi and σi+1 are the con-
ductivities on both sides of the interface i and z takes the
value of the interface depth. This will not always improve the
results obtained with the associated non-continuous model,
although it is obvious that if the real conductivity behaves like
a continuous FGMS model, continuity will arise by itself.

FIGURE 1. Apparent resistivity profile from a conventional three-layer
model defined in the text (red stars). The subfigure shows the resistivity
profile ρ(z) of different FGMS models giving rise to the apparent
resistivity profile shown.

Here are some examples. Let us first consider a synthetic
soil, labeled as S1, whose apparent resistivity profile is
obtained from a conventional three-layermodel of parameters
ρ1 = 200 �m, ρ2 = 100 �m, ρ3 = 50 �m, h1 = 3 m,
h2 = 3 m.
Figure 1 shows on the left panel the apparent resistivity

profile from the three-layer model (red stars) together with
the calculated apparent resistivity profile from (10) when the
different three-layer FGMS models that are shown in the
right panel are considered. In the right panel the resistivity
profile as a function of the z coordinate for a non-continuous
exponential FGMS model, a quasi-continuous exponential
FGMS model and a non-continuous parabolic FGMS model
are shown, all of them giving rise to the apparent resistivity
profile shown in the left panel

Consider next a second apparent resistivity profile, this
time obtained from a real soil located at Yepes, Toledo (Spain)
and labeled as S2. The measurement was carried out with a
Chauvin-Arnoux model CA6472 tellurometer. The measured
data corresponds to an electrode spacing ranging from 0.5 m
to 15 m. The profile is shown in the left panel of Fig. 2 with
green diamonds. The superimposed curves correspond to the
calculated apparent resistivity by using (12) when the param-
eters of a conventional three-layer model and those corre-
sponding to the listed three-layer FGMSmodels are used. The
resistivity profiles of the FGMSmodels are shown in the right
panel which correspond to a non-continuous exponential,
quasi-continuous exponential and non-continuous parabolic
model. The conventional three-layered model parameters are
found to be ρ1 = 85.6 �m, ρ2 = 173.2 �m, ρ3 = 51.7 �m,
h1 = 1.8 m, h2 = 2.5 m.
Finally, Fig. 3 shows another example of apparent resistiv-

ity measured in the field in a place located at San Sebastián
de los Reyes, Madrid (Spain) and labeled as S3. The device
used for measurement was a Geohm-c (Gossen Metrawatt)
tellurometer. Here, the measured data also corresponds to an
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FIGURE 2. Apparent resistivity profile (green diamonds) from a Wenner
sounding located at Yepes, Toledo (Spain). The right panel shows the
three-layered FGMS models for ρ(z) of the soil obtained from such an
apparent resistivity profile by (13) and (14).

FIGURE 3. Apparent resistivity profile from a Wenner sounding located at
San Sebastián de los Reyes, Madrid (Spain). The right panel shows the
three-layered FGMS models for ρ(z) of the soil obtained from such an
apparent resistivity profile by (13) and (14).

electrode spacing ranging from 0.5 m to 15 m. As in the
previous example, the left panel shows the measured appar-
ent resistivity profile (green diamonds) together with those
calculated by using (10) from the conventional three-layer
model with parameters ρ1 = 223.4�m, ρ2 = 54.3�m, ρ3 =
19.0 �m, h1 = 0.8 m, h2 = 1.2 m, and the parameters of
a non-continuous exponential, quasi-continuous exponential
and non-continuous parabolic model whose resistivity pro-
files are shown in the right panel. Although the first layer in
the quasi-continuous model shows increasing resistivity with
depth, the measured apparent resistivity decreases because
the first spacing considered is 0.5m while the width of the
layer is only 0.22 m.

Table 1 and Table 2 summarize the parameter values for
the exponential FGMS models used. In both tables, soils are

TABLE 1. Non-continuous FGMS exponential model parameters for soils
s1 to s3.

TABLE 2. Quasi-continuous FGMS exponential model parameters for
soils s1 to s3.

labeled S1 for synthetic soil, S2 for soil located at Yepes,
and S3 for soil located at San Sebastian de los Reyes. The
parameters in Table 1 correspond to the unconstrained mini-
mization process giving rise to non-continuous FGMS expo-
nential models. The SI units of parameter Ci1 are (�m)1/2
while those of Ci2 are (�m)1/2 and m−1 for βk . When
the continuity at the interfaces is introduced by means of
Lagrange multipliers, other values for the parameters are
obtained which are collected in Table 2.

Table 3 shows the parameter values for the FGMS
parabolic model of the same soils S1 to S3. No conditions
are imposed at the interfaces, thus the conductivity results
non-continuous piecewise. The SI units of parameter Ci1 are
(�/m)1/2 while those of Ci2 are (�m)1/2.
Finally, Table 4 shows the parameter values of a conven-

tional multilayer model for the considered soils. Regarding
the parameters of Table 4, the SI units are the usual ones, this
is �m for ρi and m for hj.

IV. MODEL TEST: GROUNDING RESISTANCE AS A
FUNCTION OF THE BURIAL DEPTH
In this section, the grounding resistance of several simple
electrodes will be calculated as a function of the burial
depth. In addition to the conventional multilayer model,
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TABLE 3. Non-continuous FGMS parabolic model parameters for soils
s1 to s3.

TABLE 4. Multilayer model parameters for soils s1 to s3.

FIGURE 4. The electrodes used for testing the FGMS models.

the exponential FGMSmodel and the parabolic FGMSmodel
will be considered. The soils that will be used are those used
in the previous section to discuss the procedure to find the
parameters of the soil models from the apparent resistivity
measurement. It is a synthetic soil previously labeled as
S1 and two soils measured in the field S2 and S3, whose
conductivity parameters are shown in Table 1 to Table 3.
Three types of electrodes will be used: a unit length vertical
rod, a horizontal grid and a squared horizontal frame with
vertical rods from the corners (Fig. 4).

The electrode labeled A of Fig. 4 is a vertical rod of unit
length and radius r = 0.008m. Burial depth is measured
from the soil surface to the top of the rod and ranges from
d = 0.01 m to d = 5 m. The electrode B of Fig. 4 used for
the test is a regular horizontal square grid with a 2 m edge and
composed of straight conductors with a radius of 0.008 m.
Just like before, burial depth is measured from the ground
surface to the grid plane and again ranges from d = 0.01 m
to d = 5 m. Finally, the electrode C of Fig. 4 combining hori-
zontal and vertical conductors is considered. It is a horizontal
square frame of 2.6m on a sidemade of rectilinear conductors
with a radius of 0.008m, in whose corners vertical conductive
rods of the same radius and 1.5 m in length are placed. The
burial depth is measured from the soil surface to the frame
plane and also ranges from d = 0.01 m to d = 5 m.

Those electrodes are buried into the soils S1 to S3 and
the theoretical grounding resistance for the three soil mod-
els, constantmultilayeredmodel, non-continuous exponential
FGMS model and non-continuous parabolic FGMS model is
calculated as a function of the burial depth.

Figure 5 summarizes the results in a matrix form. Each
row refers to a soil type, from S1 in the top row to S3 in
the bottom row. The columns show the grounding resistance
profile for each soil associated to the same test electrode.
In each element of the matrix, the three mentioned models are
used to find the grounding resistance profile of the electrode
as a function of the burial depth.

For soils S1 and S3, a great accordance in the grounding
resistance profiles is found. Figures (a) to (c) in the top
row and Figures (g) to (i) in the bottom row, shows very
close profiles. However, there are significant differences in
grounding resistance values for some depths.

The aforementioned similarity in the grounding resistance
profiles is closely related to the almost total agreement in
the apparent resistivity profiles of Fig. 1 and Fig. 3. Thus,
the different soil models used give rise to calculated values
of grounding resistance that are not very different between
them.

On the other hand, for the S2 soil, there are clear dif-
ferences in the apparent resistivity profiles obtained from
the different models. Observing the resistivity values in
each layer provided by the different models, it is seen that
the FGMS models somewhat smooth out the large oscilla-
tion that the conventional multilayer model presents. There-
fore, it is expected that the grounding resistance profiles
show significant differences between the different models.
Figures (d) to (f) show such a different profiles. Regarding
the validity of the different models, it can be said that all
the models compatible with an apparent resistivity profile are
valid. The grounding resistance calculated with the different
models represents an approximation to the real resistance,
which could only be found from the exact knowledge of the
true resistivity profile of the ground.

Thus, there is an intrinsic uncertainty in the theoretical
calculation of the grounding resistance of an electrode. The
inability to find a single model soil model that gives rise to
the measured apparent resistivity profile is at the origin of
such uncertainty. Therefore, being able to have models other
than the commonly used multilayered model is very useful in
order to have a measure of the uncertainty in the theoretical
calculation of grounding resistance.

Next we will discuss the differences between using an
interface-continuous and non-continuous FGMS models of
the same soil. The soil S2 is used for testing several exponen-
tial FGMS models whose parameters are shown in Table 5.
The model labeled as NC corresponds to the non-continuous
piecewise FGMS model (NC) and the rest correspond to
quasi-continuous models QC1 (Quasi-Continuous 1) and
QC2 (Quasi-Continuous 2) whose resistivity profiles are
shown in Fig. 6.
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FIGURE 5. Grounding resistance as a function of the burial depth for the electrodes A to C of Fig. 4, when are buried into the soils S1
(top row), S2 (middle row) and S3 (bottom row). For each type of soil, three models have been considered, the conventional multilayer
soil, the exponential FGMS model and the parabolic FGMS model.

TABLE 5. FGMS Exponential model parameters for the soil s2.

Figure 6 also shows the apparent resistivity profile for all
the considered models as well as the grounding resistance
versus the burial depth using the electrode C as a probe. As it
can be appreciate, neat differences arise between the models
in the grounding resistance profile.

In some sense, the classic multilayer model is a closed
modelmeaning that once the apparent resistivity data is given,

the constant and different values of the resistivity in each
layer could be calculated. Small differences in the appar-
ent resistivity data can give rise to very different values in
the resistivity and thickness of the layers, but no continuity
between adjacent layers can be obtained. Thus, a resistivity
non-continuous piecewise step-type is obtained. In contrast,
the FGMSmodels allow exploring the possibility of obtaining
a continuous piecewise model by imposing the continuity
of resistivity at the interfaces. In each layer, the resistivity
is a function of the depth that could correspond to the true
resistivity or not at all, but it is a candidate for resistivity
with the same validity as the classic constant multilayer
model.

A final test in the field on the S2 soil is performed.
A conductive rod of 19 cm length and 8 mm radius is
vertically buried and the grounding resistance is measured
by the potential fall-off method using the Chauvin Arnaud
P01126506 tellurometer. A grounding resistance of 212 �
is measured. When using the constant multilayer model for
the soil S2, a calculated grounding resistance of 256 � is
obtained. However, using the Non-continuous exponential
FGMSmodel, results a calculated resistance of 211�. For the
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FIGURE 6. Apparent resistivity profile, grounding resistance profile and
the exponential FGMS resistivity profile ρ(z) of the soil S2 for three
different but equivalent FGMS models.

two other FGMS models the calculated grounding resistance
is 235 � for QC1model and 291 � for QC2 model.
Finally, another conductive rod of 20 cm length and 6 mm

radius is also buried in other site of the previous S2 ground
and the grounding resistance is again measured obtaining a
value 221 �. The four theoretical models give rise to the cal-
culated resistance, 267� for the multilayer model, 235� for
the NC exponential FGMS model, 262 � for the QC1 model
and 324 � for the QC2 model. Again, the exponential NC
exponential FGMSmodel is the one that gives the best results
for the calculated ground resistance.

V. CONCLUSION
Starting from an apparent resistivity profile, it is not possi-
ble to propose a unique model that defines resistivity as a
function of depth. Among the resistivity models for which the
calculation of the potential is relatively simple there are the
classic multilayer model and the FGMS models introduced
in this paper. The common characteristic of all of them is to
define resistivity as a piecewise function. In the multilayer
model, a constant non-continuous piecewise resistivity is
found while a variable non-continuous piecewise function is
on the basis of the FGMS models. A very interesting feature
of FGMS models is the possibility of imposing continuity
on the interfaces to obtain a continuous piecewise function.
It will not always be possible to obtain strict continuity, but
this expands the number of possible models of a given soil.

Among the soils studied in this paper, the synthetic soil
S1 is the one that shows the greatest agreement in the ground-
ing resistance profiles for the different models used. One of
the possible explanations for this fact is the extreme regularity
in the apparent resistivity profile as a result of the synthetic
character of the soil. On the other hand, the real soil S2 is the
one that presents the lowest agreement between the apparent

resistivity curves of the different models tested since very
significant differences in the non-continuous piecewise func-
tion that represents the resistivity are found and therefore
appreciable differences in the grounding resistance profiles
are expected.

Numerical experiments and measurements made in the
field suggest that the true value of grounding resistance of
an electrode belongs to an interval in which the calculated
grounding resistance values from the available models of
the soil are included. Soils with a smooth and accurately
measured apparent resistivity profile are the ones that will
provide a calculated resistance closest to the actual resis-
tance of electrodes regardless of the model adopted for soil
resistivity.

Finally, it must be added that although only three-layer
FGMS models have been considered here, many soils that
would only admit classic multilayer models with three or
more layers could be modeled with two-layer FGMS mod-
els, thus reducing the number of parameters and simplifying
somewhat later calculations.
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