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ABSTRACT Fifth-generation (5G) cellular networks are being developed to meet the ever-growing data
traffic across mobile devices and their applications. The core of 5G cellular networks is leveraging
wider and higher frequencies available at millimeter wave frequency (mmWave) bands, thus providing
very high data rates for mobile devices. Multi-input multi-output (MIMO) is an essential technology for
overcoming the high propagation loss at mmWave communications. In non-orthogonal multiple access
(NOMA), multiple cellular user equipments (CUEs) communicate over the same time-frequency resources
using a multiplexed power domain. In device-to-device (D2D) communications, two D2D user equipments
(DUEs) communicate without passing through the base station. In the underlaying scenario, DUEs reuse the
frequency resources allocated to CUEs for spectrum utilization but DUEs cause interferences for cellular
and D2D communications. Integrating D2D communications with other 5G technologies has great potential
for spectral efficiency improvement. Unfortunately, interference management and resource allocation are
becoming increasingly challenging due to aggressive frequency reuse. In this paper, D2D communications
at mmWave underlayingMIMO-NOMA cellular network systemmodel is developed. Consequently, a novel
resource allocation for D2D communications underlaying MIMO-NOMA cellular network is proposed.
A resource allocation optimization problem is formulated for spectral efficiency maximization. To solve
this NP-hard problem, the problem is decomposed into three subproblems: interference-aware graph-based
user clustering, MIMO-NOMA beamforming design, and optimized power allocation based on particle
swarm optimization. Simulation results demonstrate that the proposed algorithm for D2D communications
at mmWave underlaying MIMO-NOMA cellular network delivers a greater spectral efficiency compared
to the conventional D2D communications that operate underlay MIMO-orthogonal multiple access cellular
networks.

INDEX TERMS Device-to-device communication, interference management, millimeter wave communi-
cation, MIMO, NOMA, power allocation, resource allocation.

I. INTRODUCTION
Currently, the massive growth in the number of mobile
devices and their high-speed applications has accelerated
the ever-growing flow of mobile data traffic. Monthly
global mobile data traffic will reach 77 exabytes per month
in 2022, and this trend will continue, as estimated by
Cisco [1]. As this growth occurs, the demands for high data
rate, low latency, and highly reliable wireless communica-
tions are dramatically increasing [2]. Fifth-generation (5G)
cellular networks have promised to satisfy these demands
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for future applications and services. The key technolo-
gies required for enabling 5G cellular networks essentially
include millimeter wave frequency (mmWave) communi-
cations, multi-input multi-output (MIMO), non-orthogonal
multiple access (NOMA), and device-to-device (D2D) com-
munications. The microwave frequency bands have become
highly congested and cannot accommodate the exponen-
tial increase in communication capacity due to the limited
frequency resources [3]. For this reason, mmWave is becom-
ing the core of 5G cellular networks. mmWave leverages a
wider bandwidth at high frequencies (ranging from 24 to
300 GHz) [4], thereby offering enormous amount of band-
width that can be utilized not only to accommodate increased
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communication capacity but also to satisfy the increasing
demand for high data rates communications. Different from
microwave propagation characteristics, the mmWave signals
are prone to high path-loss propagation [3], [5]. Fortunately,
the short wavelengths of mmWave signals allow large-scale
antennas to be positioned in a limited physical area, and
this can be obtained by MIMO technology [6], [7]. These
directional antennas are capable of transmitting or receiving
signals through beamforming techniques in specific direc-
tions [6], thereby offering high beamforming and spatial
processing gains that can overcome the high path-loss propa-
gation [7]. Another way to overcome the high path-loss is the
deployment of large-scale small cells in an urban environment
over a coverage range of approximately 150-200 meters,
as demonstrated by recent channel measurements [8].

In MIMO, the maximum number of multiplexed data
streams that can be transmitted simultaneously over a wire-
less channel is determined by the number of Radio Frequency
(RF) chains. The spectral efficiency is thus proportional to the
number of multiplexed data streams [9]. Digital beamforming
is a well-developed technique for conventionalMIMO, where
the number of RF chains is equal to the number of antennas,
and these systems are equipped with few antennas (approxi-
mately 10) [7], [10]. However, the use of large-scale antennas
in mmWave networks tends to result in an equally large
number of RF chains involving higher hardware and energy
consumption [3]; therefore, it is not practical to use digital
beamforming for mmWave networks. Furthermore, analog
beamforming has only one RF chain to serve the transmission
of a single data stream and is therefore not feasible for multi-
user or multi-stream scenarios [8]. Analog beamforming is
supported by phase shifters that control the signal phase at
each antenna [8]. It is currently a de-facto solution for indoor
mmWave networks [11]. In contrast, hybrid beamforming
(HB) is recently proposed for outdoor mmWave networks
by enabling mmWave-MIMO to achieve the performance of
MIMO digital beamforming with fewer RF chains [10].

In downlink power-domain NOMA, different cellular user
equipments (CUEs) are assigned different power levels
according to their channel gains, whereas multiple CUEs
reuse the same time-frequency resources [12]. Thus, NOMA
is beneficial for supporting a huge number of CUEs in
spectrally efficient communications [13]. At the base sta-
tion (BS), NOMA invokes the superposition coding for
multiple streams and then transmits the superimposed signal
over the same time-frequency resources via power multi-
plexing [14], [15]. Different CUEs as receivers adopt the
successive interference cancellation (SIC) technique to elim-
inate the intra-beam interference and recover their desired
signals [14]. In contrast, each CUE is delegated to orthogonal
resources in the time-domain, frequency-domain, code-
domain, or their combinations in conventional orthogonal
multiple access (OMA) [12]. In MIMO-NOMA beamform-
ing, multiple transmission antennas at the BS are employed
to generate various beams in the spatial domain where each
beam adopts the fundamental NOMA technology [14]. This

involves designing multi-user beamforming with a single
beamforming vector to support multiple CUEs in a NOMA
cluster. The number of RF chains in MIMO-NOMA beam-
forming is reduced, where each beam is served by a single RF
chain. InMIMO-OMAbeamforming, only oneCUE is served
by each beam, which is orthogonal to other beams in terms
of frequency. This leads to increased hardware and energy
consumption since the maximum number of CUEs that the
BS can serve simultaneously is equal to the number of RF
chains, and the number of beams cannot exceed the number
of RF chains [16]. Due to the high demand for the band-
width needed to support large-scale users with high data rate
communications and lower energy consumption, employing
MIMO-NOMA at mmWave becomes a natural choice for 5G
cellular networks.

D2D communication is a direct link between two nearby
D2D user equipments (DUEs) without transmitting data via
a BS [17]. In the D2D communications underlaying cellular
network, DUEs are allowed to reuse the licensed frequen-
cies allocated to CUEs for spectrum utilization, but in the
meantime they cause interference to both cellular communi-
cations and other D2D communications. Therefore, careful
interference management and resource allocation are needed
in the underlaying scenario to improve the performance
of the network. D2D communications promise significant
improvements to the cellular network [18], [19]. Due to the
direct communication between DUEs at low levels of trans-
mitted power, D2D communications can provide ultra-low
latency, increased data rate, offloaded BS traffic, and reduced
energy consumption. In addition, D2D communications can
reuse the same frequency resources allocated to CUEs,
thereby facilitating dense spectral utilization and improving
the spectral efficiency of the network. Furthermore, D2D
communications can extend the coverage of the current cel-
lular network without additional infrastructure expenses. The
technology of D2D communications has promised to launch
several new proximity-based applications and services into
cellular networks, such as public safety, social and commer-
cial services, coverage extension, BS data and computation
offloading, and vehicle-to-vehicle communications [20].

A. MOTIVATION
Although large bandwidth is available at mmWave bands,
the number of RF chains is limited since they cause high hard-
ware and energy consumption atmmWave bands [21]. In such
a situation, the number of CUEs that can be served under
one resource block is no greater than the RF chains [21].
To overcome this limitation and increase the number of
CUEs, NOMA is necessary to be implemented into mmWave
communications. In addition, the integration of D2D com-
munications with MIMO-NOMA at mmWave is required to
provide services capable of handling the data streaming con-
nection of the expected large number of connected devices
in dense networks. This integration is capable of offloading
significant pressure on BS and utilizes the available spec-
trum by providing proximity-based applications and services.
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One potential application scenario of D2D communications
at mmWave underlaying MIMO-NOMA cellular network is
serving density live content streaming, such as in a stadium.
The massive traffic flows place tremendous pressure on the
BS and spectrum resources. Thus, D2D communications can
provide media servers that deliver media services in D2D
mode to large number of DUEs. In addition, DUEs can use
D2D communications to get the media content from nearby
DUEs that have acquired media content services. In this way,
the downlink transmission pressure of cellular network BS
can be offloaded. This has motivated the integration of D2D
communications at mmWave underlaying MIMO-NOMA
cellular network to improve the spectral efficiency and energy
efficiency of the network by utilizing the least number of
resource blocks under certain constraints to serve all CUEs
and DUEs in the coverage area.

B. RELATED WORK
Although comprehensive studies have been conducted on
resource allocation in cellular networks, studies on the
integration of D2D communications at mmWave with
MIMO-NOMA are very limited.

A game-based interference management algorithm for
D2D communications underlaying mmWave small cell net-
work was developed by the authors in [22]. The algo-
rithm was developed to optimize D2D communications
power allocation and to minimize interference caused
by D2D communications while taking full advantage of
mmWave bandwidth. Their simulation results showed that
the proposed algorithm converged rapidly, retained a high
range of signal-to-interference-plus-noise ratios (SINRs), and
obtained excellent throughput performance.

In a downlink cellular network with underlaying D2D
communications, the authors in [23] proposed beamforming
based multi-user MIMO-NOMA. Two algorithms for multi-
user MIMO beamforming were developed. The first algo-
rithm was intended to eliminate the inter-beam interference,
while the second was intended to eliminate the interference
from the BS to D2D communications. To maximize the
sum throughput, an optimization problem was formulated.
A suboptimal sequential algorithm was developed to solve
this non-deterministic polynomial-time (NP)-hard problem
by designing a zero-forcing (ZF) beamforming matrix for
multi-user MIMO and then employing user grouping and an
optimal power allocation algorithm. The simulation results
showed that the integration of multi-user MIMO beamform-
ing, NOMA, and D2D communications improved signifi-
cantly the throughput of the network.

In [2], the authors studied the outage probability and the
ergodic capacity in downlink MIMO-NOMA at mmWave
cellular network with D2D communications. Analytical
results indicated that NOMA outperforms time division mul-
tiple access (TDMA). The performance factors, including
the transmission power and the number of antennas
were analyzed. Higher transmission power and more
antennas in the BS have been found to decrease the

outage probability and enhance the ergodic capacity of
NOMA.

The authors in [24] considered cellular and D2D com-
munications underlaying NOMA. They aimed to provide
interference management against inter-cluster and intra-
cluster interferences. In addition, they provided algorithms
for optimized user clustering and power allocation with
the objectives of maximizing the sum-rate of the network.
In terms of the average sum-rate, simulation results revealed
that the proposed algorithm achieved up to 70% and 92%
of gains compared with the fundamental NOMA and con-
ventional orthogonal frequency division multiple access
(OFDMA), respectively. Furthermore, the results showed
that in terms of the number of admitted users, the pro-
posed algorithm significantly increased network connectivity.
In addition, the integration of D2D communications with
cloud-RAN networks was considered in [25] to solve the
delay issue caused by increasing mobile traffic.

The authors in [10] and [26] investigated the application of
NOMA at mmWave with downlink a HB architecture. In par-
ticular, a user grouping algorithm was first proposed accord-
ing to the user channel correlations with the aim of mitigating
the interference between different clusters. Then, a joint HB
and power allocation problem was formulated to maximize
the spectral efficiency [10] in sum-rate in [26]. They adopted
ZF to eliminate the inter-beam interference. In addition, they
used SIC to eliminate the intra-beam interference. Simulation
results showed that the mmWave NOMA system surpasses
mmWave OMA in terms of sum-rate, spectral efficiency,
and energy efficiency. Furthermore, the proposed multi-beam
NOMA scheme at mmWave in [27] provided a greater flex-
ibility in serving multiple CUEs compared to the conven-
tional single-beam mmWave-NOMA scheme. In addition,
mmWave-NOMA systems were considered in [28] to achieve
high data rates in 5G ultra dense networks.

In [29], the authors proposed a beamwidth control tech-
nique to increase the number of admitted NOMA clusters
supported by widening the beamwidth that can further exploit
the energy efficiency gain of NOMA. A joint user pair-
ing and power allocation problem was considered in [30]
to optimize the achievable sum-rate in a downlink NOMA
network and a joint beamforming and power allocation for
mmWave-NOMA network was proposed in [31].

C. PROBLEM STATEMENT
An illustration of D2D communications underlaying 5G
macrocell cellular network is shown in Fig. 1, the macrocell is
divided into small cells (i.e., microcells). The BSs are placed
at the centers of small cells and connected to the macrocell
BS via gateways. Each small cell BS serves cellular and D2D
communications at mmWave underlaying MIMO-NOMA
cellular network. In this model, sets of CUEs are grouped
into clusters, where different clusters within the same BS are
assigned orthogonal frequency resources, and each cluster is
served by a beam with a single RF chain. By using power-
domain NOMA, CUEs in the same cluster operate within the
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FIGURE 1. Illustration of D2D communications underlaying 5G macrocell
cellular network.

same time-frequency mmWave resource block with different
power coefficients. For spectrum utilization, multiple D2D
pairs (i.e., DUETx as transmitter and DUERx as receiver) are
matched with CUE clusters, where D2D pairs are allowed to
reuse the same frequency resources allocated to CUEs in the
same cluster. For energy efficiency purposes, MIMO-NOMA
HB is designed for the BS to steer the beams in specific
directions with a limited number of RF chains.

The main challenge of this model is the existence of great
interference due to aggressive frequency reuse. As shown
in Fig. 1, downlink D2D communications in mmWave under-
laying MIMO-NOMA cellular network cause four cases of
interference:

• Case (1) is intra-beam interference, where the signal
transmitted by a beam from a BS to a CUE causes
interference to other CUEs served by this beam.

• Case (2) is inter-beam interference, where the signal
transmitted by a beam from a BS to a CUE causes
interference to other CUEs served by adjacent beams.

• Case (3) is intra-cluster interference, where a DUETx
causes interference to CUEs and DUERxs within the
same cluster.

• Case (4) is inter-cluster interference, where a DUETx
causes interference to CUEs and DUERxs in different
clusters.

However, it is highly desired tomathematically develop a sys-
temmodel for D2D communications at mmWave underlaying
MIMO-NOMA cellular network. Consequently, proposing a
novel resource allocation design for intelligent management
and mitigation of various interference cases under all above-
mentioned network assumptions and capabilities. The joint
integration of D2D communications at mmWave underlay-
ing MIMO-NOMA cellular network is considered for the
first time in this paper, and these four interference cases
are also examined and managed jointly for the first time.
Optimizing the resource allocation problem to maximize the
spectral efficiency while guaranteeing the quality-of-service

(QoS) of both CUEs and D2D pairs and providing interfer-
ence protection for CUEs and DUERxs results in non-convex
mixed-integer non-linear programming (MINLP) problem.
A non-convex MINLP problem is considered to be NP-hard
and is not appropriate for realistic real-time implementa-
tion. To solve this problem, the resource allocation problem
is decomposed into three subproblems: interference-aware
graph-based user clustering, MIMO-NOMA HB design,
and optimized power allocation based on particle swarm
optimization (PSO).

D. CONTRIBUTIONS
The contributions of this paper are summarized as follows:
• A system model for single-cell downlink D2D com-
munications at mmWave underlaying MIMO-NOMA
cellular network is developed. In this model, CUEs are
grouped into clusters and MIMO-NOMA beamforming
signals are transmitted to these clusters. Moreover, D2D
pair clusters are matched to CUE clusters, where D2D
pairs are allowed to reuse the same mmWave resource
blocks occupied by CUEs in the same cluster.

• The resource allocation optimization problem for D2D
communications underlaying downlink MIMO-NOMA
cellular network is formulated. The objective of this
problem is to maximize the spectral efficiency of the
network while guaranteeing the QoS of both CUEs and
D2D pairs and providing interference protection for
CUEs and DUERxs. The formulated problem belongs to
the non-convex MINLP class. Therefore, it is incredibly
difficult to obtain an optimal global solution to the pro-
posed problem. To solve this problem, it is decomposed
into three subproblems: user clustering, beamforming
design, and power allocation.

• A novel interference-aware graph-based user cluster-
ing algorithm is proposed to solve the user clustering
problem, where the algorithm defines the best cluster of
CUEs for MIMO-NOMA HB and the best user cluster
(i.e., CUEs and D2D pairs) for spectrum sharing.

• A MIMO-NOMA HB is designed with limited RF
chains to increase the energy efficiency, where a single
RF chain is required for each beam and a single beam
serves a cluster of CUEs.

• A novel optimized power allocation algorithm based on
PSO is proposed.

• Simulation results demonstrate that the proposed
resource allocation algorithm for D2D communications
at mmWave underlaying MIMO-NOMA cellular net-
work delivers a greater spectrum efficiency and energy
efficiency compared to the conventional D2D commu-
nications that operate underlay MIMO-OMA cellular
network.

E. PAPER ORGANIZATION
This paper is organized as follows. Section II presents the
system model of D2D communications at mmWave under-
laying MIMO-NOMA cellular network and the problem
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FIGURE 2. The system model of D2D communications at mmWave
underlaying MIMO-NOMA cellular network.

formulation. In Section III, the interference-aware graph-
based user clustering is proposed. In Section IV, the designed
MIMO-NOM HB is presented. In Section V, the optimized
power allocation based on PSO is proposed. SectionVI shows
the simulation results and performance analysis. Finally,
the conclusion and future work are discussed in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION
The system model of D2D communications at mmWave
underlaying a single small-cell downlink MIMO-NOMA
cellular network is developed, as shown in Fig. 2. There
are Q CUEs distributed randomly, each with one antenna.
Additionally, there are Z D2D pairs randomly distributed.
A DUERx has a single receiver antenna and receives a direc-
tional antenna array composed ofND antennas from a DUETx
supported by an independent RF chain. The BS is equipped
with NBS antennas and NRF RF chains that can generate
G high directional beams to simultaneously serve G clus-
ters [10], [32], where NRF < Q + Z < NBS . In particular,
the number of G beams (i.e., the number of G clusters) is
equal to the number of NRF chains, where G = NRF and the
G is not larger than NRF . Thus, Q CUEs and Z D2D pairs
should be partitioned into G clusters, and each cluster should
be supported by an independent RF chain.

The channels for all communication links are estimated by
the BS as follows:

A. NOMA SIGNAL
In beam g, NOMA allows a set of K CUEs to be sched-
uled on the same time-frequency mmWave resource block.
The set of K CUEs served by beam g is denoted as
Sg = {CUE(g, 1),CUE(g, 2), . . . ,CUE(g, k)} for g =
1, 2, . . . ,G. Here, CUE(g, k) denotes that the CUE is served
by the g-th beam with sequence k in that beam, where

∣∣Sg∣∣ ≥
1 and Si ∩ Sj = φ for i 6= j. According to NOMA, the BS
transmits a superimposed signal Xg for allK CUEs in the g-th
cluster via g-th beam [2], [23], and Xg can be expressed as

Xg =
K∑
k=1

√
βCUE(g,k)PgSCUE(g,k), (1)

where SCUE(g,k) is the transmitted signal. βCUE(g,k) is
the power coefficient allocated to CUE(g, k), where∑k=1

K
√
βCUE(g,k)Pg = 1. Pg is the total transmitted power

for the g-th beam.Without loss of generality, the transmission
power is assumed to be equally divided between G beams,
i.e., Pg =

PBS
NBS

, where PBS is the BS total transmission power
provided by the BS.

B. mmWave CHANNEL MODEL
The widely used directional mmWave channel model with
L scatters and a uniform linear array (ULA) with a half-
wavelength antenna spacing proposed in [33] is adopted.
Under this model, the channel vector NBS × 1 of CUE(g, k)
is denoted as HCUE(g,k) and can be expressed as

HCUE(g,k) =

√
NBS

PLCUE(g,k)

Lg,k∑
l=1

α
(l)
g,ka(ϕ

(l)
g,k )a(θ

(l)
g,k ), (2)

where L(g,k) represents the number of paths between the
BS and CUE(g, k); α(l)g,k is the complex gain of path l;
PLCUE(g,k) represents the average path-loss between the BS
andCUE(g, k); ϕ(g,k) and θ(g,k) ∈ [0, 2π ] are angle-of-arrival
(AoA) and angle-of-departure (AoD) of path l, respectively;
and a(ϕ(l)g,k ) and a(θ

(l)
g,k ) represent the BS antenna steering vec-

tor and CUE(g, k) antenna responding vector, respectively.
The steering vector a(ϕ(l)g,k ) of NBS × 1 can be defined as

a(ϕ(l)g,k )=
1
√
NBS

[1, ej(
2π
λ
)� sin(ϕ), . . . , ej(NBS−1)(

2π
λ
)� sin(ϕ)]T

(3)

where λ is the signal wavelength, � is the distance between
antennas, and j is an imaginary element. The response vec-
tor at a given CUE, a(θ (l)g,k ) can be defined using a similar
equation to (3).

The same channel model in (2) is adopted for D2D com-
munication, and the channel between a D2D pair in the g-th
beam is denoted as HDUE(g,m) and expressed as

HDUE(g,m) =

√
ND

PLDUE(g,m)

Lg,m∑
l=1

α(l)g,ma(ϕ
(l)
g,m)a(θ

(l)
g,m), (4)

where ND is the number of DUETx antennas; Lg,m represents
the number of paths between the m-th DUETx and DUERx;
α
(l)
g,m is the complex gain of path l; PLDUE(g,m) represents

the average path-loss between the m-th DUETx and DUERx;
ϕ(g,m) and θ(g,m) ∈ [0, 2π ] are the AoA and AoD of path
l, respectively; a(ϕ(l)g,m) and a(θ

(l)
g,m) are the antenna steering

vector of DUETx and antenna responding vector of DUERx,
respectively. They can be defined using a similar equation
to (3).

Based on the close-in path-loss model [34], the PL for
CUE(g, k) over a given frequency and distance can be
expressed as

PLCUE(g,k)(f , dist) = 20 log(4π
f
ς
)+ 10δlog(dist), (5)
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where dist is the transmitter-receiver distance, f is the carrier
frequency, ς is the speed of light, and δ is the path-loss
exponent. Both line of sight (LOS) and non-line of sight
(NLOS) are considered where PL ∈ {LOS,NLOS}. In addi-
tion, the same model in (5) is used to determine the PL for
DUE(g,m).

C. RECEIVED SIGNAL
The CUEs receive the superimposed signal from the BS
and along with other interference signals. These interference
signals include case (1) (intra-beam), case (2) (inter-beam),
case (3) (intra-cluster), and case (4) (inter-cluster) signals,
as shown in Fig. 1 and denoted as ICUE(g,ḱ), ICUE(ǵ,ḱ),
IDUE(g,m), and IDUE(ǵ,m), respectively.

The signal received by CUE(g, k) can be formulated as

YCUE(g,k) = HCUE(g,k)Adg
√
βCUE(g,k)PgSCUE(g,k)

+ ICUE(g,ḱ) + ICUE(ǵ,ḱ) + IDUE(g,m)
+ IDUE(ǵ,m) + ηCUE(g,k), (6)

where

ICUE(g,ḱ) = HCUE(g,k)Adg
K∑

ḱ=1,ḱ 6=k

√
βCUE(g,ḱ)pg

× SCUE(g,ḱ),

ICUE(ǵ,ḱ) = HCUE(g,k)A
G∑

ǵ=1,ǵ6=g

dǵ

K∑
ḱ=1

√
βCUE(ǵ,ḱ)pǵ

× SCUE(ǵ,ḱ),

IDUE(g,m) =
M∑
m=1

√
PDUE(g,m)HDUE(g,m),CUE(g,k)

× SDUE(g,m),

IDUE(ǵ,m) =
G∑

ǵ=1,ǵ6=g

M∑
m=1

√
PDUE(ǵ,m)HDUE(ǵ,m),CUE(g,k)

× SDUE(ǵ,m),

HCUE(g,k) is the channel gain of CUE(g, k), A of size NBS ×
NRF is the analog precoding matrix, dg of size NRF × 1 is
the digital precoding vector for the g-th beam, ICUE(g,ḱ) is
the intra-beam interference caused by the BS, ICUE(ǵ,ḱ) is the
inter-beam interference caused by the BS, IDUE(g,m) is the
intra-cluster interference caused by DUETx(g,m), IDUE(ǵ,m)
is the inter-cluster interference caused by DUETx(ǵ,m), and
ηCUE(g,k) is the additive white Gaussian noise.

The signal received by DUERx(g,m) can be formulated as

YDUE(g,m) = HDUE(g,m)DUE(g,m)AdDUE(g,m)
√
PDUE(g,m)

× SDUE(g,m) + IDUE(g,ḿ) + IDUE(ǵ,ḿ)
+ ηDUE(g,m), (7)

where

IDUE(g,ḿ) =
M∑

ḿ=1,ḿ6=m

HDUE(g,ḿ)DUE(g,m)
√
PDUE(g,ḿ)

× SDUE(g,ḿ),

IDUE(ǵ,ḿ) =
G∑

ǵ=1,(́g)6=g

M∑
ḿ=1

HDUE(ǵ,ḿ)DUE(g,m)

×

√
PDUE(ǵ,ḿ)SDUE(ǵ,ḿ),

HDUE(g,m) is the channel gain from DUETx(g,m) to
DUERx(g,m), S is the transmitted signal, A of size ND ×
1 is D2D analog precoder; dDUE(g,m) is D2D digital pre-
coder, IDUE(g,ḿ) is the intra-cluster interference caused to
DUERx(g,m) by different DUETx(g, ḿ), IDUE(ǵ,ḿ) is the
inter-cluster interference caused to DUERx(g,m) by different
DUETx(ǵ, ḿ), PDUE is the transmitted power for D2D pair,
and ηDUE(g,m) is the additive white Gaussian noise.

D. SUM-RATE FORMULATION
The SINRs ofCUE(g, k) andDUERx(g,m) can be formulated
as

γCUE(g,k)

=

√
βCUE(g,k)Pg ||H̄CUE(g,k)dg||

2

ICUE(g,ḱ)+ICUE(ǵ,ḱ)+IDUE(g,m)+IDUE(ǵ,m)+ηCUE(g,k)
,

γDUE(g,m)

(8)

=

√
PDUE(g,m)||H̄DUE(g,m)DUE(g,m)dDUE(g,m)||2

IDUE(g,ḿ) + IDUE(ǵ,ḿ) + ηDUE(g,m)
, (9)

where H̄ is the equivalent channel gain vector. Given SINRs,
the data rates for CUE(g, k) and DUERx(g,m) can be calcu-
lated by using the Shannon capacity formula as follow:

RCUE(g,k) = log2(1+ γCUE(g,k)), (10)

RDUE(g,m) = log2(1+ γDUE(g,m)). (11)

The total sum-rate can be expressed as

R =
G∑
g=1

(
K∑
k=1

RCUE(g,k) +
M∑
m=1

RDUE(g,m)). (12)

E. PROBLEM FORMULATION
In this paper, the spectrum efficiency is determined as the
total sum-rate of both CUEs and DUETxs as defined in (12).
The resource allocation optimization problem of D2D com-
munications at mmWave underlaying MIMO-NOMA cellu-
lar network with the objective of maximizing the spectral
efficiency is formulated as

max(R), (13)

Subject to

C1 : γCUE(g,k) ≥ γCUE(g,k),min,

C2 : γDUE(g,m) ≥ γDUE(g,m),min,

C3 :
∑G

g=1
∑K

k=1 βCUE(g,k)Pg ≤ PBSmax ,

C4 :
∑G

g=1
∑M

m=1 PDUE(g,m)H(DUE(g,m),CUE(g,k)) ≤ thg,

C5 : 0 < PCUE(g,k) < PCUEmax ,

C6 : 0 < PDUE(g,m) < PDUEmax ,
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FIGURE 3. The framework of the proposed resource allocation algorithm.

where γCUE,min and γDUE,min are the minimum SINRs
required to satisfy the QoS of CUEs and D2D pairs, respec-
tively. C1 and C2 guarantee minimum SINRs of CUEs and
D2D pairs, respectively. For cost-effective energy consump-
tion, C3 indicates the power limit assigned to the CUEs,
with PBSmax being the maximum transmitted power of the
BS. For intra-cluster mitigation, C4 guarantees that inter-
ference caused to CUE(g, k) by different DUETx(g,m) in the
g-th cluster does not exceed the interference threshold thg

for ∀g ∈ G. Under this constraint, a set of D2D pairs is
allowed to be scheduled with the CUE resources only if the
interference protection can be guaranteed for the CUEs. C5
andC6 indicate the power allocation limits for each CUE and
D2D pair, respectively.

The optimization problem in (13) is non-convex due to
the non-convexity of the objective function, and it belongs
to the MINLP class since a combination of integer and
continuous numbers are used in the optimization variables.
A non-convex MINLP problem is rarely solved by theoret-
ical analysis. However, the proposed solution to solve the
optimized problem in (13) is decomposed into three subprob-
lems. First, interference-aware user clustering based on graph
theory is proposed to provide a suboptimal user clustering
solution. Second,MIMO-NOMAHBatmmWave is designed
to achieve efficient spatial multiplexing despite the limited
number of RF chains. Third, an optimized power allocation
algorithm based on PSO is proposed to maximize the network
spectral efficiency.

Fig. 3 shows the framework of the proposed resource allo-
cation algorithm. Based on the use of time division duplex
(TDD) as spectrum usage technique and the full knowledge
of channel state information (CSI), CUEs and D2D pairs are
sending the CSIs to the BS in uplink transmission, then the
BS estimates the channel of all communications as described
in Section II. Then, the BS performs user clustering for CUEs
and D2D pairs as presented in Section III. Then, the BS
designs the HB with digital precoder and analog precoder as
described in Section IV. Then, the BS optimizes the power
allocation for CUEs and D2D pairs in Section V. According
to the value of channel estimation, digital precoder, analog
precoder, and optimized power allocation the received signal
is estimated by the BS as described in Subsection II-C. Then,
the CUEs receive the downlink data transmission and decode
its desired signal by using SIC since superposition transmis-
sion is utilized within a NOMA cluster. In addition, after the
received signal is estimated, the DUETxs start sending the
data stream to its pair DUERxs.

III. INTERFERENCE-AWARE GRAPH-BASED
USER CLUSTERING
As seen in the previous section, the formulated problem in
(13) is a NP-hard problem whose solutions are combinatorial
by nature. Particularly, for spectral efficiency maximization,
the optimal solution for user clustering requires an exhaustive
search to form a NOMA cluster [35]. This means that all
possible combinations of user clustering must be considered
for every single CUE [36]. In this context, the number of
possible combinations of optimal NOMA user clustering for

Q CUEs can be expressed as follows, O(
∑Q

i=2(
Q
i
)) [36].

This time complexity will be further increased as D2D pair
clustering and clusters matching are processed as the same
way.

In this paper, user clustering is the foundation stone for
resource allocation since it can improve network perfor-
mance. Specifically, user clustering identifies the best user
clusters (i.e., CUEs and D2D pairs) for spectrum utiliza-
tion with minimal interference. In addition, it identifies the
best cluster of CUEs for MIMO-NOMA beamforming, thus
enhancing the beamforming gain by aligning the directional
beam with a specific cluster. Furthermore, it facilitates the
design of HB with cost-effective hardware, where each clus-
ter is served by a single RF chain. Finally, it reduces the SIC
process, where SIC invokes low-density CUEs in each cluster
instead invoking all the CUEs served by the BS.

The interference awareness is a condition in which the BS
gains local awareness of all communication links’ channels
and allowing this information to be used when allocating fre-
quency resources to cellular and D2D communications. The
interference awareness is achieved by applying the following
procedures. First, the BS andDUETxs (as transmitters) broad-
cast sounding signals periodically. Second, the CUEs and
DUERxs (as receivers) receive the sounding signals from the
transmitters if they fall within the transmission coverage area;
then, they measure the channel properties of their commu-
nications and interferences. Third, each receiver reports the
CSI that they have collected to the BS. The receiver reports
the channel gain as 0 if the receiver is outside the transmission
coverage area. Finally, the BS collects all CSIs reported by the
transmitters and therefore becomes the operator for cellular
and D2D communications with regard to interference-aware
scheduling.

Graph theory provides efficient tools to model and ana-
lyze many forms of connections, relationships, and pro-
cesses across various networks, and has therefore beenwidely
used to address the problems of resource allocation and
interference management [37]. In this paper, graph theory
is exploited for user clustering to provide a suboptimal
interference-aware user clustering. Generally, graph-based
clustering relies on partitioning the whole graph into disjoint
subsets of related vertices in the graph [38]. The proposed
user clustering algorithm consists of three main phases: CUE
clustering, D2D pair clustering, and clusters matching. Here,
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FIGURE 4. The channel correlation graph of CUEs.

the power coefficients of each CUEs and D2D pairs are
assumed to be fixed, and the CSI is known perfectly.

A. CUE CLUSTERING
1) GRAPH CONSTRUCTION
The CUE channel graph is constructed by the BS and stated
as problem P1 as follows:

P1: A graph T1 = (V ,E) is given, where V =

{v1, . . . , vQ}, each vertex from set V represents a CUE, and
each edge from E represents a weight. The edge weight rep-
resents the channel correlation between two CUEs. An edge
weight between vi,vj is denoted by wi,j, as shown in Fig. 4.
When there is no channel correlation between vi and vj,
the edge weight wi,j = 0.

The goal of P1 is to partition graph T1 into G disjoint
clusters {C1, . . . ,CG}, where CUEs among clusters have low
channel correlations to eliminate inter-beam interference and
CUEs within a cluster have high channel correlations to
improve the robustness of beamforming, as highly correlated
channels have high beamforming and spatial multiplexing
gains. Here, the edge weight between vi and vj represents the
normalized channel correlation between vi and vj, which is
expressed as

wi,j =
HiHj
‖Hi‖‖Hj‖

, (14)

where H is defined as the same equation used in (2).

2) ALGORITHM DESIGNING
The most appropriate graph theory objective function that
captures P1 is based on a multi-way normalized cut
(Ncut) [39], which is formulated as

Ncut{C1, . . . ,CG} =
G∑
g=1

cut(Cg, C̄g)
vol(Cg)

, (15)

where the numerator cut(Cg, C̄g) measures the similarity
between cluster Cg and other clusters C̄g, and cut(Cg, C̄g) =∑

vi∈C,vj∈C̄ Wi,j. The denominator vol(Cg) measures the

TABLE 1. Graph-based CUEs clustering algorithm.

similarity within clusters, where vol(Cg) =
∑

i∈Cg dii and

dii =
∑Q

j=1 wi,j.
The optimal partition of P1 is based on minimizing the

objective function Ncut, and this involves minimizing the
edges’ weights that need to be cut. However, it was proven
in [39] that minimizing Ncut is NP-hard, and this means
that finding the optimal solution for P1 is computationally
prohibitive. Fortunately, the spectral clustering algorithm can
provide a loose solution within polynomial time to optimize
P1. Here, ‘‘loose’’ means relaxing the discrete optimization
problem to the real number field and then using a heuristic
approach to reconvert it into a discrete solution [40]. The
optimization problem obtained after conducting Ncut relax-
ation [41] is formulated as

min
F∈RK×G

Tr(F tLF) Subject toF tF = I, (16)

where L is the normalized graph Laplacian matrix, with L =
D−0.5WD−0.5; W is the weight matrix identified in P1; I is
the identitymatrix;D is a diagonal matrix whose elements are
the degrees of the graph vertices, and it corresponds to dii =∑Q

j=1 wi,j; F is the spectral embedding matrix; Tr(.) denotes
the trace of a matrix; and t denotes the matrix transposition
operation. The algorithm in [42] is adopted to provide a
suboptimal user clustering solution, and it consists of two
main steps. First, embedding the data points (CUEs in our
algorithm) are embedded in a low dimensional space by using
the eigenvectors of a normalized graph Laplacian matrix.
Second, a classical clustering algorithm such as K-means is
applied. Spectral clustering can capture the manifold struc-
ture of data, which is impossible to accomplish by using only
K-means clustering algorithms [43]. The graph-based CUE
clustering algorithm is outlined in Table 1.

B. D2D PAIR CLUSTERING
1) GRAPH CONSTRUCTION
The D2D pair interference graph is constructed by the BS,
and this stated as problem P2 as follows:

P2: A graph T2 = (V ,E) is given, where V = v1, . . . , vZ
each vertex from set V represents a D2D pair, and each
edge from set E has a weight. An edge weight represents
interference between two D2D pairs. The interference from
vi to vj is denoted as wi,j, while the interference from vj to vi
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FIGURE 5. The interference graph of D2D pairs.

is denoted aswj,i, as shown in Fig. 5.Whenwi,j = 0 indicates
that there is no interference from vi to vj.
The goal of P2 is to partition graph T2 into G dis-

joint clusters {C1, . . . ,CG}, where the highly interfered D2D
pairs are placed in different clusters to eliminate inter-
cluster and intra-cluster interferences. To reach this goal,
the sum of the weights of edges across different clusters,
i.e.,

∑
i∈Ci,j∈Cj,Ci 6=Cj wi,j+wj,i, is maximized. Here, the edge

weight between vi and vj represents the interference from
vi to vj, which is expressed as Hi,j and defined as the same
equation used in (4).

2) ALGORITHM DESIGNING
Problem P2 is equivalent to the MAX K-CUT problem in
graph theory [44], [45], and it was proven in [44] that problem
P2 is NP-hard, which means that finding the optimal solution
for P2 is computationally prohibitive. Therefore, a simple
heuristic algorithm [45] is adopted to cope with P2 and effi-
ciently approximate the optimal solution. The algorithm idea
is to iteratively assign D2D pairs into the clusters such that,
at each step, the increased inter-cluster weight is computed.
Then, D2D pair z is assigned to the cluster with minimum
mutual interference C∗g = argmin

∑Z
z=1,ź∈Cg (wz,ź + wź,z).

The graph-based D2D pairs clustering algorithm is outlined
in Table 2.

C. CLUSTERS MATCHING
1) GRAPH CONSTRUCTION
After performing CUE clustering and D2D pair clustering,
one-to-one matching is applied to match each D2D pair clus-
ter to its best CUE cluster for spectrum sharing under a single
NOMA cluster. The cluster graph is stated as problem P3 as
follows:

P3: A bipartite graph T3 = (V ,E) is given, the vertex set
V = CD2D ∪ CCUE . CD2D = {v1D2D, . . . , v

G
D2D} and CCUE =

{v1CUE , . . . , v
G
CUE } are disjoint sets, whereCD2D∩CCUE = φ,

vD2D represents a cluster of D2D pairs, and vCUE represents
a cluster of CUEs, as shown in Fig. 6. A weighed edge

TABLE 2. Graph-based D2D pairs clustering algorithm.

FIGURE 6. Bipartite graph for clusters matching.

represents the normalized channel gain from vjD2D to viCUE
and is denoted as wi,j.
The goal of P3 is to match each vD2D ∈ CD2D with one

vCUE ∈ CCUE , where the D2D pair cluster with its matched
CUE cluster has high channel correlation while the D2D pair
cluster with other CUE clusters has low channel correlation
for mitigating the inter-cluster interference. To reach this
goal, the sum of the weights of the edges between CD2D and
CCUE i.e.

∑
i∈CD2D,j∈CCUE wi,j, is maximized.

The normalized channel correlation between a CUE cluster
and a D2D cluster is identified as

wi,j =
viD2DvjCUE

viD2D
∑G

j́=1,j́6=j
vjCUE

, (17)

where viD2DvjCUE represents the channel correlation between
viD2D and vjCUE ; andvjD2D

∑G
j́=1,j́6=j

vjCUE represents the chan-

nel correlation between viD2D and all vj́CUE .

2) ALGORITHM DESIGNING
The Hungarian algorithm [46] is an efficient way to solve
problem P3 within polynomial time, and it can be used to
find maximum-weight matches in the bipartite graph. This
identifies the best set of users (i.e., CUEs and D2D pairs) for
spectrum sharing.

D. COMPLEXITY ANALYSIS
Compared with exhaustive search, the time complexity of
the proposed interference-aware graph-based clustering algo-
rithm of is reduced. The proposed user clustering algorithm
has a polynomial complexity in O(Q3

+ (Z2/2+Z/2+G)+
G3), where the first term corresponds to the complexity of the
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spectral clustering used for CUE clustering [47], the second
term corresponds to the heuristic algorithm used to solve the
problem of multi-way MAX K-CUT [45], which is also used
for D2D pair clustering, and the third term corresponds to the
Hungarian algorithm used for clusters matching [48].

IV. NOMA-MIMO HB DESIGN
After performing the user clustering and before the signals
are transmitted, the BS applies NOMA-MIMO HB which
involves the design of a single beamforming vector to sup-
port multiple CUEs. The proposed design for the HB archi-
tecture is composed of a high-dimensional analog precoder
and a low-dimensional digital precoder [19], where the stan-
dard two-step HB scheme [49] is considered, as illustrated
in Fig. 2. The analog beamforming vector for each cluster
is generated based on the channel gain of the strongest CUE
within each cluster, which is known as the cluster-head0. For
the digital precoding, ZF beamforming based on the equiva-
lent channel gain is adopted to eliminate inter-beam interfer-
ence. For analog precoding, phase shifters are employed to
adjust the links of the NRF chain with NBS antennas.
In this paper, fully-connected and partially-connected HB

architectures are considered. In fully-connected architecture,
the phase shifter attaches each RF chain to all antennas
and the number of phase shifters is equal to the number of
antennas, as shown in Fig. 2. In partially-connected archi-
tecture, the phase shifter attaches each RF chain to a subset
of antennas, and only M phase shifters are needed, where
M = NBS

NRF
. In general, a partially-connected HB architecture

is simpler to implement and is expected to be more energy-
efficient, although there could be some performance losses
when compared to the fully-connected HB architecture [10].

A. ANALOG PRECODING
The NBS×NRF matrix is obtained by the analog precoder and
is denoted as A. For fully-connected architecture,

Afully = [ā1, ā2, . . . , āNRF ], (18)

where the elements of ān ∈ NBS × 1 for n = 1, 2, . . . ,NRF
have the same amplitude

1
√
NBS

but different phases [33]. For

partially-connected,

Apartially =


ā1 0 · · · 0
0 ā2 · · · 0
...
...
. . .

...

0 0 · · · ān

 , (19)

where the elements of ān ∈ NBS × 1 for n =

1, 2, . . . ,NRF have the same amplitude
1
√
M

but dif-

ferent phases [16]. In this paper, B-bit quantized phase
shifters [50] is proposed for analog precoding. The phase
set of B-bits composed of A = {

2πn
2B : n =

0, 1, . . . , 2B−1} and ān elements of A belongs to the quantized

phase
1
√
NBS
{ej

2πn
2B : n = 0, 1, . . . , 2B−1} in the case of a

TABLE 3. Analog precoder design algorithm.

fully-connected architecture and
1
√
M
{ej

2πn
2B : n = 0, 1, . . . ,

2B−1} in the case of a partially-connected architecture [10].
Specifically, the analog precoding design is based on maxi-
mizing the array gain of 0 in the g-th cluster HCUE(0,g) for
g = 1, 2, . . . ,G. For a fully-connected architecture [10],
[51], the i-th ān element of A, where i = 1, 2, . . . ,NBS , can
be expressed as

āg(i) =
1
√
NBS

e
j
2π n̂
2B , (20)

where

n̂ = argmin | 6 HCUE(0,g)(i)−
2πn
2B
|. (21)

The design for a fully-connected analog precoder is
illustrated in Table 3. Similarly, for partially-connected archi-
tecture, the i-th ān element ofA, where i = (g−1)M+1, (g−
1)M + 2, . . . , gM can be expressed as

āg(i) =
1
√
M
e
j
2π n̂
2B , (22)

where n̂ is defined using the same equation in (20).

B. DIGITAL PRECODING
After analog precoding is performed, the equivalent chan-
nel matrix is obtained and can be expressed as H̄ =

{H̄CUE(0,1), H̄CUE(0,2), . . . ,HCUE(0,G)} for g = 1, 2, . . . ,G,
where the equivalent channel vector is expressed as
H̄CUE(0,k) = HCUE(0,k)A. Without loss of generality,
fully-digital ZF beamforming is adopted to eliminate the
inter-beam interference as a low-dimensional baseband dig-
ital precoder based on the strongest equivalent channel [51].
However, the digital precoding matrix of size NRF × Q is
generated by

D̄ = [d̄1, d̄2, . . . , d̄G] = H̄H (H̄H̄H )−1. (23)

The summarized digital precoder design is shown in Table 4.
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TABLE 4. Digital precoder design algorithm.

V. OPTIMIZED POWER ALLOCATION
At the receiver, to decode the superimposed signal and elimi-
nate the intra-beam interference, the CUEs apply SIC. In the
g-th beam, CUE(g, k) can eliminate the intra-beam inter-
ference caused by the BS, which is the desired signal for
the CUE(g, ḱ) if all ḱ-th channel gains < the k-th chan-
nel gains [14], where CUEs with higher channel gains are
assigned with lower power coefficients; then, each CUE
decodes the signal by considering weaker signals in the Xg
as interference, and are not decoded. The decoded signal can
be either the desired signal or can be subtracted from the Xg.
The decoding process continues until each CUE decodes its
signal successfully [52]. On the other hand, CUEs with lower
channel gains are assigned with higher power coefficients;
then, they detect signals directly by treating the signals of
CUEs are as noise [53]. In addition, to manage the intra-
cluster interference caused by DUETxs to CUEs in the g-th
cluster, the transmission power of each DUETx is kept under
a predefined threshold thg, as defined in C4 in (12).

A. POWER ALLOCATION PROBLEM FORMULATION
The power allocation problem in this scenario is transformed
into the problem of maximizing the network spectral effi-
ciency while guaranteeing the QoS requirements for both
CUEs and D2D pairs. The sum-rate of the CUE and DUE
maximization problem in (13) can be reformulated as follows:

{P∗CUE ,P
∗
DUE }

= argmax(
G∑
g=1

(
K∑
k=1

RCUE(g,k) +
M∑
m=1

RDUE(g,m))), (24)

Subject to C1,C2,C3,C4,C5, and C6. Since the problem
in (24) is NP-hard, the PSO is adopted to solve this problem
in polynomial time. PSO is a population-based intelligent
stochastic algorithm for global optimization that was devel-
oped in 1995 [54]. Generally, PSO initializes a population
of random particles within the search area. During every
iteration, each particle adjusts its position according to the
corresponding particle velocity. The new position is evaluated
according to the fitness function, which is determined by
the objective function. The particle’s speed and position are
affected by two factors. One is the optimal solution found
by the current population which is denoted as ‘‘personal

best’’ (PBest), and the other is the optimal solution found by
all populations, which is denoted as ‘‘global best’’ (GBest).
The update process is repeated iteratively until either an
optimal GBest is obtained or a fixed number of iterations is
completed.

B. OPTIMIZED POWER ALLOCATION BASED ON PSO
The proposed PSO-based power allocation algorithm solves
the problem in (24), where the objective function in (24) is
defined as the fitness function. The PSO algorithm is based
on five main steps as follows:

1) GENERATION OF PARTICLE POSITION AND VELOCITY
Each particle is represented by its position and velocity during
the t-th iteration. The particle position represents the power
coefficient assigned to each of the Q CUEs and Z D2D pairs.
The position of particle(i) is represented by a vector X in
D-dimensional space as

Xi(t) = [xCUE1i , . . . , x
CUEQ
i , xDUE1i , . . . , xDUEZi ]T ,

for i = 1, 2, . . . , pop, (25)

where pop is the number of particles; D represents the total
number of power coefficients needed and is equal to Q + Z ,
and xi ∈ [Pmin,Pmax], which determines the power range
allowed to be assigned to CUEs and D2D pairs. Constraints
C5 andC6 in (24) are satisfied by the power range determined
by Pmin and Pmax . This search space provides reasonable
parameters that need to be optimized, and these in turn yields
the optimized power coefficients. The velocity of particle(i)
is represented by a vectorV inD-dimensional space as where
vi ∈ [Vmin,Vmax], which determines the velocity range of a
particle. Since the search space is defined by [Pmin,Pmax],
then Vmax = T (Pmax − Pmin), where 0.1 ≤ T ≤ 1.0, and
Vmin = −Vmax .

Vi(t) = [vCUE1i , . . . , v
CUEQ
i , vDUE1i , . . . , vDUEZi ]T ,

for i = 1, 2, . . . , pop. (26)

2) DETERMINING GBest AND PBest
Each particle position is evaluated by the fitness function.
Here, the fitness function evaluates the sum-rate achieved
with the power coefficients suggested by the particle(i) posi-
tions, and the maximum sum-rate achieved by the current
population is stored as PBesti and recorded as,

PBesti(t) = [pbCUE1i , . . . , pb
CUEQ
i , pbDUE1i , . . . , pbDUEZi ]T ,

for i = 1, 2, . . . , pop. (27)

The maximum sum-rate achieved among all iterations is
recorded as

GBest(t) = max (PBesti(1),PBesti(2), . . . ,PBesti(t)),

for t = 1, 2, . . . , iter, (28)

where iter is the number of iterations.
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FIGURE 7. Illustration of the PSO position and velocity update processes.

3) UPDATING VELOCITY
The particle velocity is updated when entering a new iteration
according to

vi(t + 1) = ωvi(t)+ c1r(PBesti(t)− xi(t))

+ c2r(GBesti(t)− xi(t)), (29)

where ω is the inertia weight, r is a random number in the
range [0, 1], c1 is the self-confidence parameter, and c2 is the
swarm influence parameter.

Three components are affecting the particle velocity
formula towards the optimal solution. The first compo-
nent ωvi(t) is used to balance deep search and breadth
search. The second component c1r(PBesti(t)−xi(t)) is used to
emphasize the capabilities of particles to search in the local
area. The third component c2r(GBesi(t) − xi(t)) is used to
emphasize the capabilities of particles to search in the global
area, as shown in Fig. 7.

4) UPDATING PARTICLE POSITIONS
The position of each particle is updated using the new velocity
vector for that particle according to

xi(t + 1) = xi(t)+ vi(t + 1). (30)

An illustration of the PSO-based position and velocity
update processes is shown in Fig. 7.

5) HANDLING CONSTRAINTS
Constraints are used to check the feasibility of the obtained
particles positions. On this basis, the constraints C1,C2, and
C3 in (24) are used to define the feasible search space so that
only particles remaining in the feasible space are considered
to determine the new values of PBest and GBest .

The flowchart of the proposed power allocation algorithm
based on PSO is shown in Fig. 8.

VI. SIMULATION AND RESULTS
The proposed resource allocation algorithm for D2D commu-
nications at mmWave underlaying MIMO-NOMA cellular

FIGURE 8. The flowchart of the PSO-based power allocation algorithm.

TABLE 5. Common simulation parameters.

network is evaluated in terms of spectrum and energy effi-
ciency. The common simulation parameters are illustrated
in Table 5. In particular, the carrier frequency is 28 GHz,
which is commonly used for mmWave broadband service.
The bandwidth is normalized to 1 GHz, and this coincides
with the data rate formulation in (10) and (11). The BS is
equipped with a ULA of NBS = 64 antennas. The DUETx is
equipped with 4 antennas. CUEs and D2D pairs are randomly
distributed in a cell with a radius of 200 meters, and the
maximum distance between D2D pairs is 30 meters. For
CUE(g, k) and DUE(g,m), the channel vector is generated
based on (2) and (4), respectively. Here, we assume that he
number of scatters= 3, and thus, there is the number of paths
for Lg,k = 3 and Lg,m = 3, including one LoS component
for l = 1 and NLoS components for 2 < l < L. The
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path-loss exponent for LOS = 2.1 and NLOS = 3.4. For
simplicity, we assume the minimal SINR required for each
CUE and D2D pair to guarantee the QoS is γCUE(g,k),min =
γDUE(g,m),min = γZF/10, where γZF is the minimal SINR
among all CUEs in fully-digital ZF beamforming.We assume
that the predefined interference threshold thg = 10 dBm. The
spectrum efficiency (bit/s/Hz) is defined as the total achiev-
able sum-rate R in (12). The energy efficiency in (bit/s/dBm)
is determined as the ratio between the total sum-rate and the
total consumed power [7], and it is formulated as

Energy efficiency =
R

PTotal
, (31)

PTotal PBS + PD2D + PRF + PPS + PBB, (32)

where PD2D is the total consumed power by admitted DUETx,
PRF is the total power used by RF chains, PPS is the total
power used by phase shifters, and PBB is power used by the
baseband. Specifically, the values in [55] are adopted, where
PRF = 25 dBm, PPS = 16 dBm, and PBB = 23 dBm.
In this paper, five schemes are considered for the com-

parison as follows: 1) ‘‘D2D communications underlaying
fully-digital ZF beamforming MIMO’’, where one dedi-
cated RF chain is required to each BS antenna and each
D2D pair is one-to-one matched with one CUE based
on their channel correlations; 2) ‘‘D2D communications
underlaying fully-connected HB MIMO-NOMA’’, where
the proposed interference-aware graph-based user clustering
and optimized power allocation based on PSO are applied;
3) ‘‘D2D communications underlay partially-connected HB
MIMO-NOMA’’; 4) ‘‘D2D communications underlaying
fully-connected HB MIMO-OMA’’; and 5) ’’D2D communi-
cations underlaying partially-connected HB MIMO-OMA’’,
where the systemmodel withMIMO-OMA scheme is similar
to ‘‘MIMO-NOMA’’, but OMA is performed for CUEs in
each beam and TDMA is adopted as OMA scheme. Specif-
ically, the time slot in each beam is equally divided among
Q CUEs, and each D2D pair is one-to-one matched to each
CUE based on their channel correlations. In the case of more
number of D2D pairs than the number of CUEs, virtual CUEs
are presumed.

Fig. 9 and Fig. 10 show the convergence of the pro-
posed optimized power allocation based on PSO for the D2D
communications at mmWave underlaying MIMO-NOMA
cellular networks, where Q = 8, Z = 20, NRF = 4,
and signal-to-noise-ratio (SNR) = 0, for fully-connect and
partially-connectedHBs, respectively. The spectral efficiency
tends to be stable after 12 iterations, and this confirms the
convergence of the proposed power allocation based on PSO.

Fig. 11 shows the spectrum efficiency of the five schemes
versus the SNRs, where Q = 8, Z = 20, and NRF = 4. The
proposed resource allocation algorithm for D2D communi-
cations at mmWave underlaying MIMO-NOMA under fully-
connected HB cellular networks achieves greater spectrum
efficiency compared to D2D communications at mmWave
underlaying MIMO-OMA cellular networks under fully-
connectedHB. Furthermore, the proposed resource allocation

FIGURE 9. The convergence of the optimized power allocation for D2D
communication underlaying fully-connected MIMO-NOMA HB.

FIGURE 10. The covergence of the optimized power allocation for D2D
communications underlaying partially-connected MIMO-NOMA HB.

FIGURE 11. Spectral efficiency versus SNRs.

algorithm for D2D communication at mmWave underlay-
ing MIMO-NOMA under partially-connected HB cellular
networks achieves greater spectrum efficiency compared to
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FIGURE 12. Energy efficiency versus SNRs.

D2D communications at mmWave underlayingMIMO-OMA
cellular networks under partially-connected HB. Generally,
D2D communications with MIMO-NOMA HB architecture
achieve greater spectral efficiency than D2D communications
with MIMO-OMA HB. Furthermore, the fully-connected
MIMO-NOMAHB achieves greater spectrum efficiency than
the partially-connected MIMO-NOMA HB, since the RF
chains in the fully-connected leverage the full antenna array
multiplexing gains. In addition, the D2D communications
under fully-digital ZF beamforming MIMO achieve the best
spectrum efficiency compared to other schemes since a ded-
icated RF chain is used to serve each CUE.

Fig. 12 shows the energy efficiency of the five schemes
versus the SNRs, where Q = 8, Z = 20, and NRF = 4.
The proposed resource allocation algorithm for D2D com-
munication at mmWave underlaying MIMO-NOMA cellular
networks achieves the best energy efficiency. It is worth
noting that although the D2D communication underlaying
fully-digital ZF beamforming obtains the best spectral effi-
ciency performance compared to other schemes, it has the
least energy efficiency performance. This happens because
the number of RF chains is equal to the number of BS
antennas in fully-digital MIMO scheme, which results in very
high energy consumption, e.g., 25 dBm for each RF chain.
While in MIMO-NOMA HB, the number of RF chains is
much less than the number of BS antennas. Therefore, it is
possible to greatly reduce the energy consumption caused by
RF chains in MIMO-NOMA HB. In addition, the partially-
connected HB achieves greater energy efficiency than the
fully-connected HB, since the partially-connected HB adopts
a smaller number of phase shifters.

Fig. 13 shows the effect of the cluster size which is rep-
resented as the number of CUEs per cluster on the spectral
efficiency, where Z = 20 and SNR = 20. For comparison
purposes, the number of CUEs in different clusters is equal.
The two scenarios are considered when NRF = G = 4
and 8. The spectral efficiency for the proposed resource

FIGURE 13. Spectral efficiency versus CUE cluster sizes.

FIGURE 14. Spectral efficiency versus the number of D2D pairs.

allocation for D2D communications at mmWave underlaying
MIMO-NOMA cellular network increases almost linearly
with the cluster size until approaching a particular cluster
size, 10 and 12 at the number of clusters 4 and 8, respectively.
After that, spectral efficiency starts to decrease due to the
growth of interference signals. Here, when the number of
CUEs is increased dramatically, the lower is the spectral
efficiency, which implies a tradeoff between spectral effi-
ciency and the number of admitted CUEs. The better spectral
efficiency obtained with large number of clusters with less
CUEs within. Therefore, it is crucial to select the exact cluster
size.

Fig. 14 shows the effect of different numbers of D2D pairs
on the spectral efficiency, where Q = 20 and SNR = 20. The
two scenarios are considered when NRF = G = 4 and when
8. The proposed D2D communications at mmWave underlay-
ing MIMO-NOMA cellular networks achieves greater spec-
trum efficiency as the number of D2D pairs increases until
approaching a particular number of D2D pairs, 40 and 100 at
the number of clusters 4 and 8, respectively. After that,
spectral efficiency starts to decrease due to the growth of
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FIGURE 15. Spectral efficiency performance for graph-based
interference-aware user clustering and k-means based user clustering.

interference signals. When the number of D2D pairs is high
and the number of clusters is small, there is a large chance
of decreasing the spectral efficiency while increasing the
number of clusters helps to reduce the inference and increase
the spectral efficiency. Therefore, it is crucial to select the
exact number of D2D pairs that obtain the highest spectral
efficiency.

To evaluate the user clustering algorithm in terms of spec-
tral efficiency, a k-means based algorithm is considered for
the comparison purposes. In this algorithm, the k-means
clustering algorithm is used for CUE clustering and D2D
pair clustering, and then Hungarian algorithm is used for
one-to-one matching. Fig. 15 shows the spectral efficiency
performance graph-based interference-aware user clustering
algorithm and the K-means clustering for D2D communi-
cations underlaying MIMO-NOMA cellular network, where
G = 8, Q = 80, Z = 80, and SNR = 20. The spectral
efficiency of the proposed graph-based interference-aware
user clustering exceeds K-means clustering for D2D commu-
nications at mmWave underlaying MIMO-NOMA cellular
network.

VII. CONCLUSION AND FUTURE WORK
In this paper, we considered the integration of D2D communi-
cations at mmWave underlaying MIMO-NOMA cellular net-
work to increase its spectral efficiency. To solve the NP-hard
resource allocation problem, user grouping, beamforming,
and power allocation are carefully designed in a tractable
way to obtain a suboptimal solution. First, we proposed a
user clustering algorithm based on graph theory that defines
the best cluster of CUEs for MIMO-NOMA HB and the
best user cluster (i.e., CUEs and DUEs) for spectrum sharing
with eliminated inter-cluster interference caused by DUETxs
to CUEs and by DUETxs to DUERxs, as well as intra-
cluster interferences caused by DUETxs to DUERxs. After
that, we designed a MIMO-NOMA HB to transmit superim-
posed signals through beams to CUE clusters, where analog
precoding is designed based on the cluster-head for each

beam and the digital precoding is designed to eliminate the
inter-beam interference by adopting ZF beamforming based
on the equivalent channel gain in each beam. Next, SIC
technology is adopted in NOMA for superimposed single
decoding at CUEs and to eliminate the intra-beam interfer-
ence. Finally, an optimized power allocation based on PSO
is proposed for both CUEs and DUEs with the objectives of
maximizing the spectral efficiency, while protecting CUEs
from intra-cluster interference caused by DUETx and guar-
anteeing QoS for CUEs and D2D pairs.

Simulation results demonstrate that the proposed resource
allocation algorithm for D2D communications at mmWave
underlaying MIMO-NOMA cellular network delivers greater
spectral efficiency and energy efficiency than the con-
ventional D2D communications that operate underlay
MIMO-OMA cellular networks. In addition, simulation
results display the effects of different cluster sizes and num-
bers of D2D pairs in a cluster on the spectral efficiency.
It has shown that the proposed system model can utilize the
spectrum to support large-scale users with improved spectral
efficiency and energy efficiency. The results obtained in this
paper can also be useful for the design of the future 5G
cellular networks and pave the way for D2D communications
to be implemented into the 5G cellular network.

In future work, the efficiency of the proposed algorithms
will be studied under partial CSI knowledge instead of the full
CSI knowledge we assumed in the proposed algorithm. Fur-
thermore, research will be conducted on the optimized cluster
size and the number of D2D pairs in each cluster. The system
model of D2D communications underlaying MIMO-NOMA
at mmWave in the uplink period is a challenging task and it
will be investigated. In addition, we will consider the results
obtained by the current simulation work as a dataset for a
deep learning resource allocation approach for D2D commu-
nications at mmWave underlaying MIMO-NOMA cellular
networks.
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