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ABSTRACT In practical applications, how to use the complementary strengths of the direct and the feature-
based methods for effective fusion may be the main challenge of simultaneous localization and mapping
(SLAM). To solve this challenge, we propose the DO-SLAM, a novel fast and accurate semi-direct visual
SLAM framework, which can maintain the direct method’s fast performance and the high precision and loop
closure capability of the feature-based method. The direct method is used as the first half of the DO-SLAM
to track the camera pose rapidly and robustly. The feature-based method is used as the second half of the
DO-SLAM to refine the keyframe poses, perform loop closures, and build a globally consistent, long-term,
sparse feature map that can be reused. The proposed pipeline fuses direct odometry and feature-based SLAM
to perform three levels of parallel optimizations: (1) In the direct method module, the keyframe poses are
estimated by minimizing the photometric error, (2) In the feature-based module, using the poses calculated
by the inter-frame matching to correct and fuse the poses calculated by the direct method module as the
initial poses, and the initial poses are optimized by the motion-only bundle adjustment, and (3) A pose
graph optimization is used to achieve global map consistency in the presence of loop closures. Experimental
evaluation on two benchmark datasets demonstrates that the proposed approach achieves higher accuracy
and robustness on motion estimation compared to the other state-of-the-art methods.

INDEX TERMS Simultaneous localization and mapping (SLAM), semi-direct SLAM, three levels of
parallel optimizations.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) plays an
essential role in self-driving cars, virtual and augmented
reality, unmanned aerial vehicles (UAV), artificial intelli-
gence [1], [2]. This technology can provide reliable state
estimation for UAV and self-driving cars in GPS-denied envi-
ronments by relying on its sensors. Various sensors can be
utilized in SLAM, such as stereo camera, lidar, inertial mea-
surement units (IMU), and monocular camera. In different
sensor modes, visual sensors, especially monocular cameras,
provide a cheap solution with great potential [3].

Traditional visual SLAM can be divided into two classes:
feature-based and direct methods. Feature-based methods
extract salient image features in each image, match them
in successive frames using invariant feature descriptors,
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robustly recover camera poses and structure using epipo-
lar geometry, and refine poses and structure by minimizing
projection errors [4]. Despite the good performances in the
past several years, these feature-based approaches are still
very sensitive to noise and outliers, time-consuming during
the process of feature extraction and matching. In addition,
the feature-based methods positively ignore the global cues
except local features, making them unable to solve some
challenges such as missing features [5].

The direct methods have been proposed to tackle the above
drawbacks, which directly recover the camera poses and
structure through photometric error without features extrac-
tion. Therefore, in the low-texture environments and repeated
texture environments, the direct method’s performance is
better than the feature-based method. In addition, without
feature extraction and matching, the direct method’s calcula-
tion speed is faster than the feature-based method. However,
the direct method is based on the assumption of the ideal
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situation that the gray value is constant, so it is susceptible
to camera internal parameters and light changes. Moreover,
the photometric error function is highly non-convex. It is
difficult for the direct method to convergewhen large baseline
motion and image blur occurs.

In order to effectively combine the advantages of the direct
method and the feature-based method to achieve a more
accurate estimation of the camera poses, a novel semi-direct
approach is proposed in this study to maintain the fast perfor-
mance of a direct method and the high precision and loop clo-
sure capability of a feature-based method. This approach uses
the DSO [6] as the first half to track the camera poses rapidly
and robustly and uses the nonlinear optimization based on
sliding window to solve the keyframe poses and the coordi-
nates of map-points. The improved ORB-SLAM2 [7] is used
as the second half of the approach to refine the keyframe
poses, perform loop closures, and build a globally consistent,
long-term, sparse feature map can be reused. Accordingly,
this system is called DO-SLAM. Furthermore, the results of
the proposed monocular SLAM systems are compared with
that of state-of-the-art approaches as demonstrated on open
datasets.

The main contributions of this work are summarized as
follows:

• We present DO-SLAM, a novel fast and accurate semi-
direct visual SLAM framework, that combines the
exactness of the feature-based method and the quickness
of the direct method.

• We propose the three levels of parallel optimization
structure to optimize the keyframes poses.

• We propose a map-points fusion strategy based on
direct method and feature-based method to optimize
map-points’ coordinates.

• We validate the proposed algorithm on two bench-
mark datasets, and results show that our system
outperforms state-of-the-art methods, e.g., DSO [6],
ORB-SLAM2 [7], and OpenVSLAM[8].

The rest of this paper is summarized as follows:
Section II provides an overview of the current direct method,
feature-based method, and semi-direct method. Section III
shows the overview of DO-SLAM. Section IV and V
demonstrate the direct module and feature-based module,
respectively. The results of the open datasets are presented in
Section VI. Finally, the conclusion is drawn in Section VII.

II. RELATED WORKS
There is a significant number of research works related to
visual-based localization over the last decades. According to
the implementation, they can be classified into the following
categories.

(1) Feature-based: Feature-based methods leverage salient
image features (like the point or the line features) to
recover and refine camera motion by minimizing repro-
jection errors of the features correspondences [9]–[11].
The first monocular approachMonoSLAMwas proposed

in 2003 by Davison et al. [12], Davison [13].
MonoSLAM used EKF as the back end to track the
sparse feature points acquired by the front end and used
the camera poses and the landmark points as the state
variables to update its mean and covariance. PTAM [11]
was proposed in 2007, the first real-time feature indi-
rect SLAM method, from the University of Oxford,
which split the poses and map estimation into different
threads and proposed to use BA(Bundle Adjustment).
After that, most feature-based methods were improved
versions of PTAM, one of which is ORB-SLAM2 [7].
ORB-SLAM2 is the most successful feature-based
SLAM, which uses ORB features in tracking, mapping,
re-location, and loop closure detection [7]. OpenVSLAM
was proposed in 2019, which created maps that can be
stored and loaded, then OpenVSLAM can localize new
images using prebuilt maps [8]. Newly, ORB-SLAM3
was released on arXiv in August 2020 [14]. It focused on
the integration of ORB-SLAM2 and IMU information
and multi-map system.

(2) Direct: In contrast to feature-based methods, direct
methods aim at using the whole image to estimate the
structure andmotion. DTAM is amonocular slammethod
based on the direct method proposed in 2011. Compared
with the traditional slam method that extracts sparse
features, this method extracts the inverse depth of each
pixel and constructs a dense map through optimization.
The camera poses are calculated by using the depth map
through direct image matching [15]. LSD-SLAM [16]
is the first direct visual SLAM approach for monocular
cameras that is capable of mapping large scale environ-
ments in real-time. It tracks the camera motion, produces
a semi-dense map, and performs pose graph optimiza-
tion to obtain a consistent global map. On the basis of
LSD-SLAM, direct sparse odometry (DSO) [6] samples
pixels evenly throughout the images and integrates a fully
photometric calibration, which accounts for exposure
time, lens vignetting, and nonlinear response functions.
Based onDSO, LDSO adds loop closure detection, ensur-
ing tracking accuracy during long navigation [17]. Stereo
DSO is an improved version of DSO, in which depth
value is estimated by multiple view geometry [18]. Lee
authors in [19] presents a new implementationmethod for
efficient simultaneous localization and mapping using a
forward-viewing monocular vision sensor. The method
is developed to be applicable in real time on a low-
cost embedded system for indoor service robots. Finally,
with the development of deep learning, some SLAM
applications emerge to imitate the previously proposed
approaches [20], [21].

(3) Semi-Direct: Semi-direct methods estimate camera
poses using both direct and feature-based methods.
In [22], a semi-direct monocular VO (SVO) was imple-
mented on the onboard computer of amultirotor, showing
precise and fast state estimation results by combining
the advantages of feature-based and direct methods,
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FIGURE 1. Overall system architecture of DO-SLAM.

and it was extended to multi-camera systems in [23].
However, SVO does not have back-end optimization
and loop-closing capability. Gomez-Ojeda proposed an
improved SVO by combining points and line segments
(PL-SVO) [24] to solve the problem that SVO is still
a strong dependence on the initial value of the poses.
Nicola Krombach, based on the monocular version of
LSD-SLAM, proposed a semi-direct approach for stereo
odometry [25]. Lee and Civera [26] proposed a loose-
coupled method by combining ORB-SLAM and DSO to
improve the positioning accuracy. However, its front-end
and back-end are almost independent, which cannot share
estimation information to improve the poses precision
further. In [27], a semi-direct approach was proposed
for stereo odometry. This method uses the feature-based
method to obtain a motion estimation, and then perform
direct semi-dense to refine the camera pose. SVL [28] can
be considered a combination of ORB-SLAM and SVO.
The method for ORB-SLAM is adopted in keyframes,
and SVO is adopted in non-keyframes.

III. DO-SLAM SYSTEM
A. THREE OPTIMIZED STRUCTURES OF DO-SLAM
Figure 1 demonstrates the framework of the DO-SLAM
system. DO-SLAM includes two parts: direct module and

feature-based module. As shown in Figure 2, the system
applies DSO to quickly track each frame and provide an initial
keyframe poses and the coordinates of map-points, and a
modified version of ORB-SLAM2 to refine keyframe poses
and coordinates of map-points, build a globally consistent
map and detect loop with marginalized keyframes from the
direct method. Therefore, extracting features and matching
descriptors are no longer required in a non-keyframe. The
system selects ORB as features, which are orientedmultiscale
FAST corners with an associated 256-bit descriptor. These
features are very fast to be extracted and matched with good
invariance in viewpoint.

The system includes three different optimized structures.
In the direct module, this system uses DSO to achieve real-
time camera tracking, uses the nonlinear optimizationmethod
based on the sliding window, and projects the map-points
tracked on each keyframe in the sliding window onto the
current frame to construct a photometric error based on the
camera poses. The initial estimation of the keyframe poses is
obtained by minimizing the photometric error.

In the feature-based module, this system uses the modified
version of ORB-SLAM2 to refine keyframe poses and coor-
dinates ofmap-points.When a keyframe ismarginalized from
the direct module, its image and poses information are sent to
the feature-based module, along with the map points within
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FIGURE 2. DO-SLAM schematic.

its FOV. The feature-based module extracts ORB descriptors
from the marginalized image and then obtains the keyframe
poses and coordinates of map-points by matching feature
points between frames. These poses are used to verify the
poses obtained by the direct module, and then the two poses
are fused by the weighted method to obtain the best initial
poses. Finally, refining the initial poses concerning the local
feature map using motion-only BA.

In addition, when the loop is detected, the pose graph
optimization is performed over Sim (3) constraints [29].
All keyframes and map-points in the map are optimized using
the full bundle adjustment to achieve global consistency.

B. THE ALGORITHM FLOW OF DO-SLAM
The images from the monocular camera are input to the
direct module. New images are tracked using direct image
alignment [30] with respect to the last keyframe and its depth
map created by projecting active points in the sliding window.
If the image should be created as a keyframe, the frame
is inserted into the sliding window. At the same time, an
old keyframe is removed with the marginalization method.
Finally, the keyframes poses and map-points in the sliding
window are optimized.

The marginalized keyframe is sent to the feature-based
module. Since the direct module does not necessarily
marginalize the oldest keyframe in the sliding window,
the system stores the marginalized keyframe information in
the queue andwait for the oldest keyframe to bemarginalized.
When the oldest keyframe is received, the ORB features are
extracted from this keyframe, and then the keyframe poses
are optimized using the optimization method described in
Section A to obtain the accurate poses. The map-points corre-
sponding to the ORB features are solved by the triangulation
method, and the map-points are fused with those obtained by
the direct method. Finally, the keyframe and map-points are
inserted into the local map. Simultaneously, the loop closing
thread detects loops using the bag-of-words place recognizer
built on DBoW2 with ORB. The accumulated error is cor-
rected via pose graph optimization, which distributes loop
closing errors along the graph.

IV. DIRECT MODULE
The system uses the original implementation of DSO [6]
as the direct module. DSO is a keyframe-based sliding
window approach, where 5-7 keyframes are maintained,
and their parameters are jointly optimized in the cur-
rent window. In this section, we mainly describe the
windowed optimization and marginalization strategy of
DSO. For other parts, readers can refer to the original
work [6].

A. WINDOWED PHOTOMETRIC BUNDLE ADJUSTMENT
When a point p in a reference frame Ii is observed in current
frame Ij. The photometric error Epj is defined as the weighted
SSD over the 8-point neighborhood pixels Np as proposed
in [6].

Epj =
∑
p∈Np

ωp

∥∥∥∥(Ij[p′]− bj)− tjeaj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

(1)

where ‖·‖γ is the Huber norm; ti, tj is the exposure times
of the images Ii, Ij; ai, aj, bi, bj is the brightness transfer
function parameters. ωp is a weighting that down-weights
high image gradients; p′ stands for the projected point posi-
tion of p with inverse depth dp. ωp and p′ are calculated as
follows:

ωp =
c2

c2 + ‖∇Ii(p)‖22
(2)

p′ =
∏

K
(Tji

∏−1

K
(p, dp)) (3)

where c is camera intrinsic parameters; Tji is the pose trans-
formation from frame i to frame j;

∏
K : R3

→ �

and
∏
−1
K : R3

→ � is corresponding camera projection and
back-projection functions.

The full photometric error over all frames and points is
given by

Ephoto =
∑

m∈F

∑
p∈Pm

∑
j∈obs(p)

Epj (4)

where F is the set of all frames in the window; Pi is the set
of all points in the frame Im; obs(p) is the set of frames that
can observe the point p.
If exposure times are known, we further add a prior pulling

the affine brightness transfer function to zero. The total
energy function is given by

Eend = Ephoto +
∑

i∈F (λaa2i +λbb
2
i )

(5)

where λa and λb is the specified constant values. If the expo-
sure times are unknown, we set λa = λb = 0 and ti = tj = 1
in (1).

Finally, the Gauss-Newton optimization algorithm is used
to iteratively solve the total energy function in the sliding
window. The update equation is given by:

δξ = −(JTWJ)−1JTWr (6)

ξnew ← δξ � ξ (7)
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where r ∈ R is the stacked residual vector; W ∈ Rn×n is
the diagonal matrix containing the weights; J ∈ Rn×d is the
Jacobian of r; ξ ∈ SE(3)n ×Rm to denote all optimized vari-
ables, including camera poses, affine brightness parameters,
inverse depth values, and camera intrinsics.

B. MARGINALIZATION STRATEGY
When the set of active variables in the sliding window is too
large, the least useful keyframes and points are marginalized
by using the Schur complement. In the point marginalization
strategy, if a point has not been continuously observed in the
latest two keyframes or its host keyframe is marginalized,
the point will be marginalized. In the keyframe marginal-
ization strategy, the latest two keyframes (I1 and I2) are
always kept. For other keyframes in the slidingwindow, if less
than 5 percent of their points are visible in I1, the keyframe
is marginalized. When the active keyframes in the sliding
window are greater than the maximum number of keyframes
that the window can contain, the largest distance score’s
keyframes are marginalized. The distance score is computed
as:

s(Ii) =
√
d(i, 1)

∑
j∈[3,n]\{i}

(d(i, j)+ ε)−1 (8)

where d(i, j) is the euclidean distance between keyframes
Ii and Ij, and ε is a small constant. Through Equation (8),
the keyframes’ information in the sliding window is approx-
imate to the newly inserted keyframe.

V. FEATURE-BASED MODULE
When the keyframe is marginalized from the direct module,
the feature-based module receives the keyframe information,
including its image, poses, and the map-points observed by
the keyframe. This information is then used for feature-based
poses and map-points refinement, mapping, and loop closing.
In this section, we will describe the optimization algorithm
for keyframe poses and map-points. For other parts, the sys-
tem uses the same algorithm as ORB-SLAM2.

A. INTER-FRAME MATCHING POSES ESTIMATION
After matching the ORB features in the current frame and the
previous frame, thematching result can be used for poses esti-
mation. If the map-points corresponding to the ORB features
in the previous frame is known, the correspondence between
the ORB features in the current frame and the map-points can
be obtained. The system then performs RANSAC iterations
alternatively for the current frame and tries to find camera
poses using the PnP algorithm [31].

B. INITIAL POSES FUSION STRATEGY
The keyframe poses ξD by the direct module are the poses
when the photometric error reaches the minimum value.
Since the image is usually a non-convex function, the poses
are likely to fall into a local minimum. The inter-framematch-
ing poses ξF obtained by themulti-view geometry have strong
accuracy. Therefore, the poses calculated by the inter-frame

matching can be used to verify the poses calculated by the
direct module, and the fusion can be conducted according to
the test results. The absolute trajectory error is used to calcu-
late the difference between the two poses. The transformation
matrix of poses ξD is TD, and the transformation matrix of
poses ξF is TF . The calculation method of poses difference e
is as follows:

e = (
∥∥∥trans(T−1D TF )

∥∥∥2) 12 (9)

where trans(T−1D TF ) denotes the translation part in the abso-
lute trajectory error.

If e is greater than the given threshold, it means that ξD falls
into the local minimum, then ξF is taken as the initial pose ξB.

If e is less than the given threshold, it means that ξD is
accurate, and the average weighted method is used to fuse
the two poses as the initial pose ξB.

C. KEYFRAME POSES REFINEMENT
Once the initial pose ξB is obtained, the system refines it using
motion-only geometric BA with respect to the local feature
map. The local feature map’s keyframes are composed of the
keyframes I1 sharing the map-points with the current frame
and the keyframes I2 connected to the keyframes I1 in the
covisibility graph. The map-points in the local feature map
are composed of all map-points of the local feature map’s
keyframes. According to the geometric relationship of projec-
tion, the map-points matched with ORB features in the cur-
rent frame are selected. According to the selectedmap-points’
projection position in the current frame, a set of candidate
ORB features is determined for eachmap-point. Then the best
matching ORB feature of each map-point is determined in the
candidate ORB features. Finally, the total energy function is
composed of the variance-normalized reprojection errors of
the local map points:

Ereproj =
∑

i∈Flocal

∑
x∈Pi

∑
j∈obs(x)

∥∥∥∥pj,x −∏c(Tjwxw)
σ 2
x

∥∥∥∥
γ

(10)

σ 2
x := (λpyr)2Lpyr,x (11)

where Flocal denotes the set of all local keyframes, pj,x ∈ R2

the match to the ORB feature x in frame Ij, and σ 2
x the

variance of the feature location in frame Ii. This variance
depends on the constant scale factor of the image pyramid
λpyr and the pyramid level Lpyr,x at which the ORB feature
was detected.

D. MAP-POINTS REFINEMENT
When there are no map-points corresponding to the ORB
feature in the feature-based module’s global map, new map-
points are created by triangulating the ORB feature from
connected keyframes Ic in the covisibility graph. For each
unmatched ORB feature in Ii, the system searches a match
with other un-matched points in other keyframes. ORB fea-
ture pairs are triangulated, and to accept the new points,
positive depth in both cameras, parallax, reprojection error,
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TABLE 1. The mean error on the TUM mono VO dataset.

and scale consistency are checked. If themap-points have also
been generated in the direct module, the average weighted
method will be used to fuse the two map-points as the final
map-points.

VI. EXPERIMENTS
In this section, we will extensively evaluate our algo-
rithm (DO-SLAM). The DO-SLAM method is compared
with the state-of-the-art vision SLAM methods, such as
ORB-SLAM2, DSO, and OpenVSLAM.We use two datasets
for evaluation:
1) The TUM mono VO dataset [32], which provides

50 photometrically calibrated sequences, comprising
105 minutes of video recorded in dozens of different
environments, indoors and outdoors. Since the dataset
does not provide all the ground truth, we only use part
of the dataset’s ground truth to evaluate the positioning
accuracy.

2) The EuRoC MAV dataset [33], which contains
11 stereo-inertial sequences comprising 19 minutes of
video, recorded in three different indoor environments.
For this dataset, we only use the left video for evaluation.
For this dataset, no photometric calibration or exposure
times are available. Hence we omit photometric image
correction and set (λa = λb = 0). For this dataset,
we crop the beginning and end of each sequence to dis-
regard large occlusions due to the ground and aggressive
motions meant for IMU initialization.

A. POSITIONING ACCURACY ANALYSIS ON THE TUM
MONO VO DATASET
Since DSO does not have the loop-closing capabil-
ity, we close the loop closing thread of ORB-SLAM2,
DO-SLAM, and OpenVSLAM. We adopt the open-source
tool EVO [34] to evaluate the performance of DO-SLAM.
By comparing the estimated value with the actual value,
we calculate the absolute pose error (APE) as an index of
the evaluation algorithm [35]. Table 1, 2 show the mean and
root mean square error (RMSE) of the translation on the TUM
mono VO dataset.

As shown in Tables 1, 2, DO-SLAM is better than DSO,
ORB-SLAM2, and OpenVSLAM in terms of mean and root

TABLE 2. The root mean square error (RMSE) on the TUM mono
VO dataset.

FIGURE 3. Comparison of position estimation.

mean square error. Because the dataset is recorded in the
indoor environment, there are a lot of low-texture environ-
ments, so ORB-SLAM2 and OpenVSLAM based on the
feature-based method are easy to fail (such as sequence 05),
but DO-SLAM combines DSO and ORB-SLAM2, even in
the low-texture environment can run stably, and positioning
accuracy is better than DSO.

B. POSITIONING ACCURACY ANALYSIS ON
THE EUROC DATASET
In the experiments on the EuRoC dataset, we also adopt
the open-source tool EVO [34] to evaluate DO-SLAM per-
formance. For fairness, the following algorithms do not use
the loop closure detection module. Take the test in the
MH_03_medium dataset as an example to illustrate. Figure 3
shows the position comparison results of DO-SLAM,
ORB-SLAM2, DSO, and OpenVSLAM inMH_03_medium.
From the figure, we can see that the trajectory of DO-SLAM
is closer to the real trajectory, followed by ORB-SLAM2,
OpenVSLAM, and finally DSO.

Figure 4 shows more intuitively the trajectory heat map
estimated by DO-SLAM, ORB-SLAM2, OpenVSLAM,
and DSO in MH_03_medium. From the experiment,
we can get that the overall RMSE of DO-SLAM
in MH_03_medium is 0.027, the overall RMSE of
ORB-SLAM2 in MH_03_medium is 0.035, the overall
RMSE of OpenVSLAM in MH_03_medium is 0.039, and
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FIGURE 4. The trajectory heat map estimated by DO-SLAM, ORB-SLAM2,
OpenVSLAM, and DSO in MH_03_medium.

the overall RMSE of DSO in MH_03_medium is 0.639.
Figures 5 and 6 show the change of translation absolute
pose error with time and the overall distribution of absolute

FIGURE 5. The change of translation absolute pose error with time in
MH_03_medium.

FIGURE 6. The overall distribution of absolute pose error in
MH_03_medium.

TABLE 3. The mean error on the EuRoC dataset.

pose error in MH_03_medium. Through Figures 4, 5, and 6,
we conclude that the accuracy and robustness of our algo-
rithm have reached the level of state-of-the-art algorithm.
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TABLE 4. The root mean square error (RMSE) on the EuRoC dataset.

TABLE 5. Average time (ms) spent tracking an image.

Tables 3, 4 show our test results on other sequences on the
EuRoC dataset. It can be seen that the DO-SLAM, which
effectively integrates ORB-SLAM2 and DSO, significantly
improves the positioning accuracy and positioning robustness
compared to the other three algorithms.

FIGURE 7. The left picture shows a comparison of the number of
keyframes and non-keyframes. The right picture shows the comparison of
time consumption between tracking keyframes and non-keyframes.

FIGURE 8. The trajectory heat map estimated by DO-SLAM-LOOP and
DO-SLAM.

In addition, we evaluate the real-time performance of
DO-SLAM. We compared the average time required to track
an image (Table 5).

As shown in Table 5, the image tracking of ORB-SLAM2
and OpenVSLAM uses the feature-based method to extract
and match each frame’s ORB features, which takes a long
time. However, DSO uses the direct method to track features,
saving the calculation of feature descriptors, so the time
consumption is less than ORB-SLAM2 and OpenVSLAM.
In DO-SLAM, non-keyframes are used for fast-tracking and
localization by the direct method, and keyframes are also
tracked by feature-based methods and used for three levels
of parallel optimizations and loop closure detection. This
algorithm saves a lot of time and minimizes the average time
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FIGURE 9. The trajectory heat map estimated by DO-SLAM-LOOP and
DO-SLAM.

of DO-SLAM tracking images. Although DO-SLAM is not
as fast as DSO, its real-time performance is much better than
feature-based methods.

Comparedwith the feature-basedmethod, we use the direct
method to track non-keyframes and accelerate the algorithm
without reducing the accuracy and robustness. As shown
in Figure 7, in MH_03_medium, 24% of the frames are
determined to be keyframes, while 76% of the frames are
determined to be non-keyframes. The time consumption of
tracking keyframes is 69%, while that of non-keyframes are
only 31%. Combinedwith the above, we can conclude that we
can achieve a better balance between quickness and exactness
compared with the state-of-the-art SLAM systems.

Finally, in order to verify the integrity and feasibility
of the proposed algorithm, we evaluate the loop closure
detection capability of DO-SLAM. As can be seen from
Figures 8 and 9, the accuracy of DO-SLAM with loop detec-
tion is improved obviously. Comparedwith the direct method,
DO-SLAMexhibits the function of loop closure detection and
solves the problem of drift in long-term operation.

VII. CONCLUSION
We present DO-SLAM, a novel fast and accurate semi-direct
visual SLAM framework, that combines the exactness of the
feature-based method and quickness of the direct method.
Compared with the state-of-the-art feature-based method,
we use the direct method to track non-keyframes and acceler-
ate the algorithm without reducing the accuracy and robust-
ness. Compared with the direct method, DO-SLAM exhibits
the function of loop closure detection and solves the problem
of drift in long-term operation. In the future, we will extend
the algorithm to support more types of multi-sensor fusion to
increase its robustness in complex environments.
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