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ABSTRACT This paper proposes a novel improved polar bear optimization (IPBO) algorithm and employs
it along with polar bear optimization (PBO) and chaotic population-based variants of polar bear optimization
algorithm to solve combined economic emission dispatch (CEED) problem. PBO is a meta-heuristic
technique inspired by the hunting mechanisms of polar bears in harsh arctic regions based only on their
sense of sight. Polar bears in nature exhibits hunting of prey not only on their sight but also on their keen
sense of smell. Hence, a novel improved variant of PBO which enhances its operation by equipping it with
tracking capabilities utilizing polar bears sense of smell has been proposed in this study. The validity of novel
IPBO is tested through 5 benchmark functions and 140 units Korean ED problem. Furthermore, the impact
of different population initialization methods is also observed on the capabilities of conventional PBO. The
proposed chaotic population based PBO, improved PBO (IPBO) and PBO are employed to solve IEEE 3 unit
and 6-unit CEED problem. CEED is a multi-objective power system optimization problem with conflicting
objectives of cost and emission. The simulations performed undertake each objective individually as well as
collectively. The results achieved by each technique are analyzed statistically through Wilcoxon rank sum
test (WRST), probability density function and cumulative density function. Both the statistical and numerical
analysis of results showcase the strength of each solution technique as well as their ability to improve cost
and emissions in the solution of CEED problem.

INDEX TERMS Improved polar bear optimization (IPBO), economic emission dispatch (CEED), optimiza-
tion, cost, emission.

I. INTRODUCTION
All global energy trends indicate monumental increase in
electric energy demand in coming years. According to
IEA [1], global electrical energy demand increased in 2017 by
2%. Despite the environmental awareness and focus of
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governments to integrate renewable into the grid, this
increased demand was largely fulfilled by traditional ther-
mal generators. The renewable sources contribution was
increased by a percentage of 15.1% for wind and 21.9%
for PV in the year 2017 but still the total contribution of
renewable in global energy mix stands at 26.1%. The ther-
mal sources contribute a whopping 59.4% of global elec-
tricity demand. Renewable sources are prime candidate in
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distributed generation (DG) and several renewable issues in
DG are under research [2]. While thermal generators Ther-
mal generators have proven their mantle for many decades
and our current grids are designed to work around them.
Despite their efficiency, resilience, and reliability they come
with the added baggage of environmentally hazardous emis-
sions. The SO2, CO2, and NOX emissions from thermal units
have adverse environmental impact and contribute to global
warming. As the renewable energy future is still in progress,
the emerging challenge nowadays is to handle thermal gen-
eration sources such that we can obtain maximum power
from them at reduced cost and emissions [3]. The action of
controlling thermal generators for a fixed load demand under
several physical and operational constraints is a renowned
problem of power system operation characterized as eco-
nomic dispatch (ED) [4]. ED is a specific objective optimiza-
tion problem with the intention to attain power dispatch at
least probable cost with no violation of any constraints. The
addition of emission objective turns ED into multi-objective
problem aiming minimization of both cost and emission
for a power demand without violating any constraints. This
multi-objective problem is termed as combined economic
emission dispatch (CEED) problem [5], [6].

Both ED and CEED are non-linear, complex, and com-
putationally intensive power system operational problems.
This mathematically complexity makes them ideal candi-
date for optimization algorithms to tackle and prove their
mantle. Many modern populations based meta-heuristic and
nature inspired techniques have been employed to solve these
problems. The outcomes of these problems are beneficial to
initiate different demand response actions and demand side
flexibility assessment [7]–[10]. Several prominent optimiza-
tions algorithms that tried to solve these problems include:
Genetic algorithm (GA) [11], simulated annealing (SA) [12],
differential evolution (DE) [13], [14], moth swarm opti-
mization algorithm (MSA) [15], spider monkey optimization
(SMO) [16], particle swarm optimization (PSO) [17], [18],
grey wolf optimizer (GWO) [19], gravitational search algo-
rithm (GSA), fire fly algorithm (FFA) [20], [21], harmony
search algorithm (HSA) [22], [23], spiral optimization algo-
rithm (SOA) [24], squirrel search algorithm (SSA) [25],
harris hawks optimization (HHO) [26], sine-cosine algo-
rithm (SCA) [27], artificial bee colony (ABC) [28], bacterial
forging algorithm (BFA) [29], flower pollination algorithm
(FPA) [30], differential evolution (DE) [31], modified flower
pollination algorithm (FPA) [32], Fluid search optimization
(FSO) [33], improved ABC (IABC) [34], modified BFA
(MBFA) [35], whale optimization algorithm (WOA) [36],
hybrid hierarchical evolution (HHE) [37], hybrid particle
swarm gravitational search algorithm (PSOGSA) [38], chaos
turbo PSO (CTPSO) [39], new global PSO (NGPSO) [40],
multi-objective PSO (MOPSO) [41], multi-objective DE
based PSO (MODE/PSO) [42] quantum inspired glowworm
swarm optimization (QGSO) [43], combination of contin-
uous greedy randomized adaptive search procedure and
self-adaptive differential evolution (C-GRASP-SaDE) [44],

combination of continuous greedy randomized adaptive
search procedure and modified differential evolution (C-
GRASP-MDE), successful history-based adaptive DE vari-
ants with linear population size reduction (L-SHADE),
improved L-SHADE (IL-SHADE) [45], and cooperative
coevolving particle swarm optimization CCPSO [32].

All these algorithms are population-based strategies having
fixed population and they locate the optimum solution within
a search space using two distinct stages of search namely local
and global search [46]. All these algorithms were successful
in achieving solution of the desired problem with varying
degree of accuracy and time [47], [48]. Despite the achieve-
ment of a successful solution from these techniques the
research for a better solution is continuous because of avail-
ability of new solution techniques being developed and the
opportunity in optimized solution outlined by no free lunch
theorem (NFL) [49], [50]. Initially PBOwas used by author to
solve ED problem [51] and it showed remarkable results. But
as stated by NFL theorem the prospect to enhancemechanism
of PBO and the possibility to achieve better solution of ED
and CEED problem through this proposed novel IPBO were
main motivating factors behind this research. In this paper
we present solution of CEED problem using polar bear opti-
mization (PBO) [52] algorithm, chaotic population PBO and
a novel Improved Polar Bear Optimization (IPBO) algorithm.
PBO is a nature instigated population-based metaheuristic
approach that simulates the hunting abilities of polar bears
in nature. PBO has three couplet stages of search such as
global search, local search, and dynamic population. Differ-
ent to other population methods PBO has capacity to change
its population hence decreased number of calculations per
iteration causes reduction in time required for execution. The
proposed novel IPBO augments the working of PBO and is
initially validated by applying it to 5 benchmark functions and
large scale 140-unit Korean grid ED problem. The proposed
techniques are utilized to work out CEED 3 unit and 6-unit
system and the results attained are compared with outcomes
in literature.

In this paper, the sections are organized as follows, first
section presents the outline of CEED problem, second section
gives summary andmathematical formulations of PBO, novel
improved PBO (IPBO) and chaotic PBO variants, third
section shows the case studies comprising simulation results
along with statistical analysis among PBO variants, finally
fourth section conveys the conclusion.

II. PROBLEM FORMULATION
CEED is a multi-objective constrained optimization prob-
lem with the objective of arranging electrical power outputs
from varied generation units such that the entire operational
cost and emission is minimalized with no violation of the
respective constraints like generation limits, power balance
and valve point effect. CEED problem may also involve the
calculation of transmission loses acquired by every single
generating unit at its corresponding power output. Arithmeti-
cally, the main purpose of CEED problem is reduction of
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operational cost and emission of generation entities that can
be presented in equation (1) as

Objective Function = W ∗
∑Nx

i=1
FPi+(1−W ) ∗

∑Nx

i=1
EPi
(1)

where, Nx is the total number of generation units, i represents
the ith generator under consideration andW is the weightage
factor which determines contribution of fuel cost or emission
in total objective value, its value is in range (0,1). FPi and EPi
indicate total fuel cost ($/h) and emissions (ton/h) for ith unit
respectively and are explained in mathematical form below.∑Nx

i=1
FPi =

∑Nx

i=1
aP2i + bPi + c (2)∑Nx

i=1
FPi =

∑Nx

i=1
aP2i + bPi + c

+ (e ∗ abs(sin (f ∗ (Pil − Pi)))) (3)

Here equation (2) signifies the quadratic estimate of ther-
mal units fuel cost curves without valve point effect while
equation (3) characterizes the detailed cost equation compris-
ing the valve point impact. In above equations a, b, c, e and
f are cost coefficients, Nx is the maximum number of gen-
eration units available for scheduling, Pi is the ith generating
unit and Pil is the least power limit of ith generating unit.

Similarly, from [34] and [53] the emission from each
thermal generation can be defined as summed quadratic and
exponential functions as:∑Nx

i=1
EPi =

∑Nx

i=1
ηP2i + βPi + α + ξ ∗ e

(λ∗Pi) (4)

where α, β, η, ξ and λ are emission coefficients. The CEED
must comply with the following equality and inequality
constraints.

A. EQUALITY CONSTRAINTS
Equality constraints include power generation balance that
the load demand is met by considering the transmission line
losses shown in equation (5).

Pgenerated = Prequired + Ploss (5)

where Pgenerated is the total power scheduled, Prequired is the
power demand and Ploss is the transmission loss incurred at
respective level of power scheduled and can be computed
from loss coefficient matrix B formed by Kron’s transmission
loss formula shown in Eq. (6).

Ploss =
∑Nx

i=1

∑Nx

k=1
(PiBikPk )+

∑Nx

i=1
(Bi0Pi)+ B00

(6)

where; Bik , Bi0 and B00 are transmission loss coefficients.

B. INEQUALITY CONSTRAINTS
In CEED, Inequality constraint ismainly named as generation
limits on each generator shown in equation (7).

Pil < Pi < Pih (7)

where; Pil and Pih are the lower and upper limits of ith gener-
ation unit and Pi is the power scheduled on the ith generation
unit.

C. PENALTY FUNCTION
The overall fitness function including equality constraints
and objective can be obtained by penalty function formed as
equation (8).

Fitness = penalty ∗ abs
(∑Nx

i=1
Pi− Prequired − PLoss

)
+Objective Function (8)

III. OVERVIEW OF PROPOSED METHODOLOGY
A general overview and mathematical description of each
technique under consideration is presented below.

A. POLAR BEAR OPTIMIZATION ALGORITHM (PBO)
Polar bear optimization [51] is a population based meta-
heuristic optimization algorithm that simulates the hunting
abilities of polar bear in severe arctic territories. PBO algo-
rithm has three distinctive phases of search in search space
namely local search by encircling and catching prey, global
search by gliding ice floats and dynamic population. Each
of these stages represents some vital characteristic of Polar
Bear’s hunting method in arctic zones and is described below.

PBO algorithm begins its search by arbitrarily adjusting
each polar bear having n coordinates as characterized by
x̄ = (x0, x1, . . . . . . , xn−1) and then propels itself to find
optimum solution in search space using global and local
search strategies.

Global search process imitates Polar Bears nature to glide
on arctic ice bergs in exploration of food, this behavior is
modeled using following equation.

(x̄jt )
i
= (x̄jt−1)

i
+ sign (ω) α + γ (9)

where; (x̄jt )
i is movement of ith polar bear having j coor-

dinates in t th iteration towards the optimum, α is random
number in range (0, 1), ω is distance between the present bear
and optimum bear and γ is random number in the range (0,
ω). The distance is dealt in Euclidian metrics and is given as

d((x̄)(i),
(
x̄)(j)

)
=

√∑n−1

k=0
((xk)(i) − (xk )(j))

2
(10)

During local search, the bears surround the prey and shot
it with their teeth. This performance is efficiently modeled
employing trifolium equations. To transmute polar bears
behavior into these equations two parameters are character-
ized known as distance of vision ‘a’ chosen at random in
range (0, 0.3) and angle of tumbling 8o chosen at random in
range (0, π2 ). From these limits, radius of vision is computed
as

r = 4 acos (8o) sin(8o) (11)
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This radius is utilized to calculate movement in local search
space for each spatial coordinate correspondingly as

xnew0 = xactual0 ± rcos(81)
xnew1 = xactual1 ± [rsin (81)+ rcos (82)]
xnew2 = xactual2 ± [rsin (81)+rsin (82)+rcos (83)]

. . .

xnewn−2 = xactualn−2 ± [
∑n−2

k=1
rsin (8k)+ rcos (8n−1)]

xnewn−1 = xactualn−1 ± [
∑n−2

k=1
rsin (8k)+ rsin (8n−1)]

(12)

where 81,82 and 83 are chosen randomly in the
range (0, π ).
Ultimately, to model the impact of severe arctic climatic

conditions and bring in uncertainty to the optimization strat-
egy, PBO algorithm initializes with 75% of population while
the left over 25% depends on population growth controlled by
reproduction of best or malnourishment of worst. To execute
this approach a new constant k is introduced having value
in range (0, 1). Dependent on k , creation or destruction of
individuals will be performed according to following ruling.{

Death if k < 0.25
Reproduction if k > 0.75

(13)

The individuals are destroyed reliant on k until population
in more than 50%while the reproduced individual is provided
as

(x̄ tj )
reproduced

=
x̄ t

(best)

j + x̄ t
(i)

j

2
(14)

where; x̄ t
(best)

j the best solution is up to current iteration and

x̄ t
(i)

j is selected arbitrarily from among top 10% of best indi-
viduals up to current iteration.

B. CHAOTIC POPULATION PBO
In chaotic population-based version of PBOwe simply initial-
ize the population of polar bears based on chaotic tent map.
Chaotic tent map [54] is mathematically defined as{

x (i+ 1) = 2 ∗ x (i) ∗ value if x > 0.5
x (i+ 1) = 2 ∗ (1− x (i)) ∗ value if k ≤ 0.5

(15)

where x (0) is randomly selected from range (0, 1) such that
x (0) is not equal to 1/2, 1/4, 2/3 and 3/4. Value represents the
scaling factor to which the generated chaotic population will
be scaled to. In our case we have used to scaling values.

Value = Upperscale = Pih (16)

Value = Mid_scale = ((Pih − Pil)+ Pil)/2 (17)

C. IMPROVED PBO
PBO algorithm was designed to mimic the hunting capabil-
ities of polar bears based on their sense of sight completely
ignoring polar bears scavenging capabilities. Polar bears have
very sharp sense of smell and they make use of it during
extreme conditions to find food. To incorporate this feature

FIGURE 1. Flow diagram to solve CEED by proposed methodology.

into already existing PBO algorithm we devised a unique
two-tier global search stage in which 1 bear among 30% of
least fit bears is selected to undergo global search based on
their sense of smell mimicking its scavenging capabilities in
extreme food shortage. This behavior is modeled using Levi
flight equation (18) taken from [55] as shown below.

x̄jt(actual) = x̄jt(actual) + Lj ∗ (x̄jt(best) − x̄jt(actual)) (18)

where L is the levy factor that maps the random flight behav-
ior of birds. Here it is used here tomapwindmovement which
carries the smell. So, at a global search stage two bears take
two different trajectories, most fit bear undergoes ice float
global search whereas least fit bears resort to scavenging.

In this paper the proposed techniques will be used to solve
CEED problem. The overall solution strategy for solution of
CEED problem followed by each technique is outlined in
flowchart shown in Fig. 1.

IV. SIMULATION RESULTS
Before tackling the CEED system the validity of proposed
novel IPBO was tested by applying it to unimodal and
multi-modal benchmark functions and compared with the
state of art approaches. IPBO was also implemented to take
on large scale 140-unit Korean grid ED problem at a demand
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FIGURE 2. Convergence characteristics by IPBO for different test functions (a) F1 (b) F2 (c) F3 (d) F4 (e) F5.
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FIGURE 2. (Continued.) Convergence characteristics by IPBO for different test functions (a) F1 (b) F2 (c) F3 (d) F4 (e) F5.

of 49342 MW under two distinct cases. Finally, IPBO along
with chaotic population based PBO variants were applied to
solve.
• IEEE 3-unit CEED test system at a load demand
of 850 MW

• IEEE 6-unit CEED test system at a load demand
of 283.4 MW.

Simulations were performed on MATLAB 2016 software
on Intel Core M-5Y10c@0.8GHz (4 CPU), 4GB RAM sys-
tem. 20 runs were performed for each case of CEED problem
having 100 bears and 100 iterations. For 140-unit ED problem
iterations were kept at 1000.

A. VALIDATION FOR BENCHMARK FUNCTIONS
In this subsection, the validity of proposed IPBO is tested
by applying it to five standard test functions presented by
equation (19) to (23). The equation (19) and (20) represent
unimodal functions whereas equations (21) to (23) represent

multi-modal functions.

F1 (x) =
n∑
i=1

|xi| +
n∏
i=1

|xi| (19)

F2 (x) =
n∑
i=1

(|xi + 0.5|)2 (20)

F3 (x) =
∑n

i=1
−x i sin

√
|xi| (21)

F4 (x) =
n∑
i=1

[x2i − 10 cos (2πxi)+ 10] (22)

F5 (x) = −20 exp

−0.2
√√√√1
n

n∑
i=1

x2i


− exp

(
1
n

∑n

i=1
cos (2πxi)

)
+ 20+ e (23)

VOLUME 9, 2021 56157



S. Fayyaz et al.: Solution of CEED Problem Using Improved and Chaotic Population

TABLE 1. Performance comparison of different techniques for test functions with IPBO.

TABLE 2. Simulation results for best cost of IEEE 140-unit test system (case 1).

TABLE 3. Simulation results for best cost of IEEE 140-unit test system (case 2).

The simulations were performed for 30 independent runs
keeping dimension of each function at 20 and the iterations
were kept at 500. IPBO was able to achieve solution of each
test function as represented by Fig.2.

From Table 1, it can be seen IPBO is able to achieve better
average results in almost all cases. Its solution. strength is
also highlighted in solution of multi-modal functions where
it outclasses most of its competitors.

B. IEEE-140 UNIT TEST SYSTEM
Previously, PBO has been applied by the author to tackle
small scale economic dispatch problem [52]. The knowledge
gained from that research helped fine tune IPBO to take large
scale ED problem. IPBO was employed to solve 140-unit
Korean grid ED problem for two cases. The data was taken
from [39]. In first case, IPBO is solved for only convex cost
solution at a load demand of 49342 MW. Whereas in case 2,

12 units are subjected to valve point effect and 4 units have
POZ constraints. The result achieved are presented in Table 2
and Table 3 along with other similar solutions available in
literature. Furthermore, the convergence characteristics for
both case 1 and case 2 by IPBO is presented in Fig. 3 as
follows.

From Table 2 and Table 3, IPBO was able to achieve
better solution as compared to QGSO, CCPSO, HHE, FPA,
MFPA, CTPSO for case 1 and QGSO, CCPSO, HHE, FPA,
MFPA, CTPSO, PSO C-GRASP-SaDE, C-GRASP-MDE,
L-SHADE, IL-SHADE for case 2 respectively. The improve-
ment in cost was observed to be as high as 6% both for case 1
and case 2.

C. IEEE 3-UNIT TEST SYSTEM
The data for IEEE 3-unit test system including cost coef-
ficients, NOx coefficients and SO2 coefficients was taken
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FIGURE 3. Convergence characteristics of IPBO for of IEEE 140-unit system for (a) Case 1 (b) Case 2.

from [56]. The scaling factor for NOx and SO2 were taken
from [57] having value147582.78814 ($/ton) and 970.031569
($/ton) respectively. Table 4 shows results for 3-unit

system. From the Table 4 all techniques were successful in
achieving solution of CEED problem for minimization of fuel
cost, NOx emission and SO2 emission, respectively. When
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TABLE 4. Simulation results for IEEE 3-unit test system.

TABLE 5. Simulation results for best cost of IEEE 6-unit test system (case 1 and 2).
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TABLE 6. Simulation results for best emission of IEEE 6-unit test system (case 1 and 2).

TABLE 7. Simulations results for best compromise solution of IEEE 6-unit test system (case 1 & 2).

compared among each other IPBO outclassed all its compan-
ions achieving an improvement as high as 0.027452% in cost,
0.1525% in NOx emissions and 0.002464% in SO2 emission,
respectively.

D. IEEE 6-UNIT TEST SYSTEM
The data for 6-unit system including cost coefficients, NOx
coefficients and B matrix was taken from [34]. The scal-
ing factor of NOx values was 1000 ($/ton). The results for
6-unit system for case 1 without considering loses and case 2
including loses are tabulated in Table 5 for best cost solution.
From Table 5 IPBO was able to achieve an improvement as
high as 0.0272% and 0.0766% in cost for case 1 and case 2,
respectively.

Similarly, Table 6 and 7 represent best emission and best
compromise solutions. From Table 6 IPBO was able to
achieve an improvement as high as 0.0325% and 0.056%
in emission for case 1 and 2, respectively. Whereas data

from Table 7 indicates that IPBO achieves best compromise
solution at minimum cost at a comparable level of emission.

Table 8 and 9 show comparison of case 1 and case 2 respec-
tively with other techniques available in literature. From
Table 8 it can be seen that IPBO was able to achieve best
cost and best compromise solution as compared toMSA [15],
FFA [21], PSOGSA [38], MBFA [35], SOA [24], PSO [17],
MOPSO [41], DE [31], and MODE/PSO [42], respectively.
Other PBO variants PBO, PBO-CM and PBO-CU were also
successful in achieving comparable cost and compromise
solutions. The improvement in cost was in the range 0.88$ to
0.0105$when compared to literature and in the range 0.0163$
to 0.092$ when compared to other PBO variants for best cost
solution. For best compromise solution IPBO was able to
achieve a cost improvement in the range 19.69$ to 1.88$when
compared to literature at a comparable emission level. For
IPBO achieved comparable emission levels at an improved
cost as compared to literature whereas PBO, PBO-CM
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TABLE 8. Comparison of best results for case 1 with promising techniques in literature.

TABLE 9. Comparison of best results for case 2 with promising techniques in literature.

and PBO-CU showed comparable cost and emissions
reviewer.

From Table 9, it can be seen than IPBOwas able to achieve
best cost and best compromise solution as compared to
MSA [15], FFA [21], PSOGSA [38], MBFA [35], PSO [17],

MOPSO [41], DE [31], MODE/PSO [42], IABC, FSO [33],
and NGPSO [40], respectively. In case of IABC [34], IPBO
achieved better emission level at comparable cost for best
cost solution. The overall improvement in cost was in
the range 2.23$ to 0.057$ whereas for best compromise
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FIGURE 4. Convergence characteristics of Best Cost Solution (Case 1 and 2) for all PBO variants.

FIGURE 5. Convergence characteristics of Best Cost Solution (PBO vs IPBO) for Case 1 and Case 2.

TABLE 10. Statistical analysis performed to prove superiority of one technique in both Cases.

TABLE 11. Results of Wilcoxon rank sum test (WRST) for both cases.
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FIGURE 6. Probability Density Function (PDF) of both Cases.

FIGURE 7. Cumulative Density Function (CDF) of both Cases.

solution the improvement in cost was in the range 16.09$
to 0.29$ at a comparable emission level. Other PBO vari-
ants PBO, PBO-CM and PBO-CU were also successful in
solving CEED problem at comparable cost and emissions.
In case of best compromise solution all PBO variant achieved
better cost at comparable emission level. For best emis-
sion solution all PBO variants achieved comparable emis-
sion levels at comparable cost as compared to literature.
Fig. 4 and 3 show convergence characteristics for best cost
solution of both cases. In Fig. 4 all PBO variants are plotted,
chaotic PBO variants start search from higher fitness val-
ues because of compulsion on initial population according
to chaotic level employed. Fig. 5 shows same convergence
curve excluding the higher value chaotic variants to better
understand convergence behavior of IPBO as compared to
PBO. From both Figures it is evident that IPBO converges
to a lower value more swiftly as compared to other PBO
variants. For case 1 IPBO converged to first decimal digit

in 74 iterations whereas PBO, PBO-CM and PBO-CU took
84, 86, 79 iterations, respectively. Similarly, for case 2 IPBO
converged to a first decimal digit in 84 iterations whereas
PBO, PBO-CM and PBO-CU took 85, 90, 89 iterations,
respectively.

V. STATISTICAL ANALYSIS
To demonstrate the supremacy of one method a statistical
analysis is executed demonstrating best, worst, mean, stan-
dard deviation and rank of each state is performed [58]–[60].
This statistical analysis is achieved by taking the data
of 20 runs individually for all methods as examined earlier
and results are exhibited in Table 10.

Wilcoxon rank sum test was introduced by Wilcoxon
[61], [62].This is non-parametric test that can reflect the
relationship between two different data sets in both cases. The
Wilcoxon rank sum test is based on the hypothesis. We made
a hypothesis that most of the results of IPBO as shown in both
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cases are less than other techniques. The probability-value of
Wilcoxon rank-sum test shows the probability that how many
times the results of PBO, PBO-CM and PBO-CU are less than
IPBO results. The probability-value in Table 10 shows that
there is very low probability that the other cases have cost
values less than IPBO for case 1. In case 2 IPBO outclasses
PBO significantly whereas PBO-CM or PBO-CU show sig-
nificant probability for better results but at a higher stan-
dard deviation and variance. Table 11 proves our hypothesis
is true.

The results of all four techniques are taken by independent
trial runs for both cases. To show the distribution of data for
each case Probability Density Function (PDF) and Cumula-
tive Density Function (CDF) are plotted as shown in Fig.6 and
Fig. 7.

It can be seen from Fig. 6 that highest peak is obtained
for IPBO in both cases and widest data distribution is in
PBO-CU. So, statistically IPBO is best, and PBO-CU is
worst. It can also be seen that slope is highest for IPBO
in both the cases and it reaches to 1 first than other
techniques.

VI. CONCLUSION
In this paper novel improved PBO (IPBO), PBO and chaotic
population PBO were employed to solve CEED problem
for the first time in literature. Also, IPBO was validated by
applying it to solve 140-unit Korean grid ED problem and
5 standard benchmark functions. All the proposed algorithms
were successful in achieving solution of 3 unit and 6-unit
CEED problem. Statistical analysis performed established
that IPBO is superior to other PBO variants when it comes
to solution of CEED problem showing an improvement as
high as 0.027452% in cost, 0.1525% in NOx emissions and
0.002464% in SO2 emission respectively for 3-unit system
and an improvement as high as 0.0272% and 0.0766% in
cost, and 0.0325% & 0.056% in emission for 6-unit system
case 1 and case 2, respectively. From convergence behav-
ior we can see that IPBO converges to optimum value in
a smaller number of iterations as compared to other PBO
variants with the difference in the range of 6 to 1 iteration.
When compared to literature IPBO showed best cost and
best compromise solutions for both cases. IPBO achieved
an improvement in cost as high as 0.1475% and 3.255% for
best cost and best compromise solutions of 6-unit system
case 1, whereas an improvement in cost as high as 0.3686%
and 2.65% for best cost and best compromise solutions of
6-unit system case 2 was observed. For best emission solu-
tion IPBO achieved better cost at a comparable emission
level. The success of all PBO variants in achieving bet-
ter solution of CEED problem is a motivating factor for
further research applying IPBO and other PBO variants to
engineering problems. Different demand response programs
with integrated distributed energy resources will be explored
for energy management in different energy consumption
sectors.
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